Introduction to Computational Chemistry

Size: px
Start display at page:

Download "Introduction to Computational Chemistry"

Transcription

1 Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry room B430, Chemicum 4th floor September 3, 2013 Introduction and theoretical backround September 4 1 / 18

2 Overview of this course lectures include basic theory results of chemical problems student home work traditional home exercises write a report of some research topic oral presentation computer exercises final exam computational chemistry in supercomputer enviroment Introduction and theoretical backround September 4 2 / 18

3 What is computational chemistry? relies on results of theoretical chemistry and computer science practice of efficient computer programs to calculate numerical data of molecular systems and solids some of the current hot topics are ground level information to atmospheric phenomena (aerosol nucleation, atmospheric heat balance, reaction rates) nano chemistry (carbon nanotubes, semiconductors, metal clusters) drug design main challenges and limitations theory level: Is the precision high enough for the application? the computer programs: Efficiency and implementation computer resources: Is there enough power for the task? Introduction and theoretical backround September 4 3 / 18

4 About CSC CSC IT Center for Science Ltd is administered by the Ministry of Education, Science and Culture. CSC provides IT support and resources for academia, research institutions and companies. Researchers can use the largest collection of scientific software and databases in Finland. Introduction and theoretical backround September 4 4 / 18

5 Methods of computational chemistry Ab initio uses rigorous quantum mechanics + accurate and versatile computationally expensive good results for small systems Semi empirical uses approximate quantum mechanics relies on empirical or ab initio parameters big systems with hundreds of atoms Molecular mechanics Uses classical mechanics relies on empirical force fields no electronic properties and thus no bond breaking or forming large systems with thousands of atoms Introduction and theoretical backround September 4 5 / 18

6 Scrödinger equation HΨ = EΨ. (1) The list of closed-form analytic solutions is VERY short. The list of famous chemical problems includes the H atom, the harmonic oscillator, the rigid rotor, the Morse potential, and the ESR/NMR problem. hydrogen atom atomic orbitals can used as a basis for the molecular orbitals. Harmonic oscillator basis for the molecular vibrational motion Morse oscillator basis for the molecular stretching vibration Rigid rotor basis for molecular rotational motion Introduction and theoretical backround September 4 6 / 18

7 Variational method Yields approximate solution for the Scrödinger equation. Variational principle states that the expectation value of the Hamiltonian for trial wavefunction φ must be greater than or equal to the actual ground state energy E ground Φ H Φ (2) Proof: Trial function φ expanded as a linear combination of the exact eigenfunctions Ψ. Φ = c k Ψ k (3) The energy corresponding to this trialfunction is k E[Φ] = Φ H Φ Φ Φ (4) Introduction and theoretical backround September 4 7 / 18

8 Variational method Substituting the expansion over the exact wavefuntions, i,j E[Φ] = c ic j Ψ i H Ψ j c = c i,j ic j E j Ψ i Ψ j i,j ic j Ψ i Ψ j c i,j ic j Ψ i Ψ j = ic ic i E i i c ic i (5) We now subtract the exact ground state energy E 0 from both sides to obtain i E[Φ] E 0 = c ic i (E i E 0 ) i c (6) ic i E[Φ] E 0 (7) Any variations in the trial function which lower its energy are making the approximate energy closer to the exact answer. The solution can be obtained by optimizing (i.e. searching for the minimum) the parameters c i E/ c i = 0 (8) Introduction and theoretical backround September 4 8 / 18

9 Variational method Example: For a helium atom we can choose the trial function as follows: parameters: p, q, α Φ(r 1,r 2 ) = C[1+pr 12 +q(r 1 r 2 ) 2 ]exp[ α(r 1 +r 2 )] (9) electron coordinates: r 1,r 2,r 12 r 1 r 12 p = 0.30,q = 0.13,α = r 2 After optimization: E = (three parameters) E = (1024 parameters) E = (Experimental value) Introduction and theoretical backround September 4 9 / 18

10 Variational method In reality the trial function written as a linear combination of some basis functions which are not eigenfunctions Φ = c i φ i (10) i The variational parameters are the expansion coefficients c i. The energy for this approximate wavefunction is i,j E[Φ] = c ic j φ i H φ j c (11) i,j ic j φ i φ j which can be simplified using the notation H i,j = φ i H φ j (12) to yield E[Φ] = S i,j = φ i φ j (13) i,j c ic j H i,j i,j c ic j S i,j (14) Introduction and theoretical backround September 4 10 / 18

11 Variational method In order to the find the minimum value of E we differentiate with respect to the expansion coefficients c i and set values to 0 in each case. E = c jh j i,j c i c c js j i,j E i,j ic j S i,j c = 0, (15) i,j ic j S i,j If an orthonormal basis is used, the above equation is greatly simplified because S ij is 1 for i = j and 0 for i j. In this case, we can write it as an secular determinant as H 11 E H 12 H 1N H 21 H 22 E H 2N... H N1 H N2 H NN E = 0. (16) The secular determinant for N basis functions gives an N-th order polynomial in which is solved for N different roots, each of which approximates a different eigenvalue. Introduction and theoretical backround September 4 11 / 18

12 Born-Oppenheimer approximation Hamilton operator includes the kinetic and potential energy parts of the electrons and nuclei. Ĥ = ˆT + ˆV (17) Kinetic energy operator for N particles (electrons and nuclei) is ˆT = h2 2 N i 2 i m i, (18) where 2 i = 2 x 2 i + 2 y 2 i + 2 z 2 i and m i is the mass if i:th particle. Potential energy part includes Coulombic nucleus electron interaction, electron electron interaction, and nucleus nucleus interaction. Because electron is lighter than the proton by the factor 2000, the electron quickly rearranges in response to the slower motion of the nuclei. The total wave function for the molecule can be factored into its electronic and nuclear components. Introduction and theoretical backround September 4 12 / 18

13 Born-Oppenheimer approximation Example for H + 2 -ion, potential energy operator can be written as ˆV = e2 4πε 0 r 1 e2 4πε 0 r 2 + e 2 4πε 0 R AB, (19) where R AB is the distance between two nuclei, r 1 is the distance between the nucleus A and electron, r 2 is the distance between the nucleus B. The Scrödinger equation for the H + 2 -ion can be written according to the BO-approximation in simple form Ĥ (el) = h2 2 e 2m e 2 j=1 e 2 4πε 0 r j, (20) where first term is electronic kinetic energy operator. This equation can be further simplified by using dimensionless variables (atomic units) by setting electron mass and charge to one. The atomic unit of energy is called hartree. Ĥ (el) = 2 e 2 2 j=1 1 r j. (21) Introduction and theoretical backround September 4 13 / 18

14 Born-Oppenheimer approximation Three important equations Introduction and theoretical backround September 4 14 / 18

15 Born-Oppenheimer approximation The BO approximation is justified when the energy gap between ground and excited electronic states is larger than the energy scale of the nuclear motion. The BO approximation breaks down when for example in metals, some semiconductors and graphene the band gab is zero leading to coupling between electronic motion and lattice vibrations (electron-phonon interaction) electronic transitions becomes allowed by vibronic coupling (Herzberg-Teller effect) ground state degeneracies are removed by lowering the symmetry in non-linear molecules (Jahn-Teller effect) interaction of electronic and vibrational angular momenta in linear molecules (Renner-Teller effect) Introduction and theoretical backround September 4 15 / 18

16 Born-Oppenheimer approximation B-O potential energy surface of molecular electronic excited state Conical intersection B-O potential energy surface of molecular electronic ground state Molecule dissociates Introduction and theoretical backround September 4 16 / 18

17 Electron orbitals Electrons are assumed to locate in spin-orbitals which are one-particle wavefunctions φ(r,σ) = φ(ξ) taking both the position r and spin angular momentum σ (α =+ 1 or β = 2 1 ) as its coordinates. 2 The Pauli exclusion principle states: Electrons cannot occupy the same quantum states. Example: Wavefunction for two electrons (1 and 2) Ψ = 1 2 [φ 1 (1)φ 2 (2) φ 2 (1)φ 1 (2)]. (22) The heart of Pauli exclusion principle: Valid electronic wavefunctions must change sign upon exchanging the coordinates of any two electrons. Equation (22) can be written as determinant Ψ = 1 2 φ 1 (1) φ 2 (1) φ 1 (2) φ 2 (2). (23) Introduction and theoretical backround September 4 17 / 18

18 Electron orbitals In general, N el -electron molecular orbital is expressed as Slater determinant: φ 1 (1) φ 2 (1) φ N (1) Ψ = 1 φ 1 (2) φ 2 (2) φ N (2) Nel!.., (24). φ 1 (N) φ 2 (N) φ N (N) Consequence of the Pauli principle Without the Pauli principle matter would collapse and occupy a much smaller space. Fortunately, electrons of the same spin are kept apart by a repulsive short-range force. This exchange interaction which is additional to the long-range electrostatic force is responsible for the everyday observation that two objects cannot be in the same place in the same time. Introduction and theoretical backround September 4 18 / 18

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Quantum mechanics can be used to calculate any property of a molecule. The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is,

Quantum mechanics can be used to calculate any property of a molecule. The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is, Chapter : Molecules Quantum mechanics can be used to calculate any property of a molecule The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is, E = Ψ H Ψ Ψ Ψ 1) At first this seems like

More information

Computational Chemistry

Computational Chemistry Computational Chemistry Physical Chemistry Course Autumn 2015 Lecturers: Dos. Vesa Hänninen and Dr Garold Murdachaew vesa.hanninen@helsinki.fi Room B407 http://www.helsinki.fi/kemia/fysikaalinen/opetus/

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 3 The Born-Oppenheimer approximation C.-K. Skylaris Learning outcomes Separate molecular Hamiltonians to electronic and nuclear parts according to the Born-Oppenheimer

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Marc R. Roussel January 5, 2018 Marc R. Roussel Introduction to molecular orbitals January 5, 2018 1 / 24 Review: quantum mechanics

More information

Chemistry 334 Part 2: Computational Quantum Chemistry

Chemistry 334 Part 2: Computational Quantum Chemistry Chemistry 334 Part 2: Computational Quantum Chemistry 1. Definition Louis Scudiero, Ben Shepler and Kirk Peterson Washington State University January 2006 Computational chemistry is an area of theoretical

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β

(1/2) M α 2 α, ˆTe = i. 1 r i r j, ˆV NN = α>β Chemistry 26 Spectroscopy Week # The Born-Oppenheimer Approximation, H + 2. Born-Oppenheimer approximation As for atoms, all information about a molecule is contained in the wave function Ψ, which is the

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Exam 4 Review. Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be posted.

Exam 4 Review. Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be posted. Chem 4502 Quantum Mechanics & Spectroscopy (Jason Goodpaster) Exam 4 Review Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be

More information

Electron States of Diatomic Molecules

Electron States of Diatomic Molecules IISER Pune March 2018 Hamiltonian for a Diatomic Molecule The hamiltonian for a diatomic molecule can be considered to be made up of three terms Ĥ = ˆT N + ˆT el + ˆV where ˆT N is the kinetic energy operator

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

Ch 125a Problem Set 1

Ch 125a Problem Set 1 Ch 5a Problem Set Due Monday, Oct 5, 05, am Problem : Bra-ket notation (Dirac notation) Bra-ket notation is a standard and convenient way to describe quantum state vectors For example, φ is an abstract

More information

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait

CHEMISTRY Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait CHEMISTRY 2000 Topic #1: Bonding What Holds Atoms Together? Spring 2012 Dr. Susan Lait Why Do Bonds Form? An energy diagram shows that a bond forms between two atoms if the overall energy of the system

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation Diatomic Molecules 7th May 2009 1 Hydrogen Molecule: Born-Oppenheimer Approximation In this discussion, we consider the formulation of the Schrodinger equation for diatomic molecules; this can be extended

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 4 Molecular orbitals C.-K. Skylaris Learning outcomes Be able to manipulate expressions involving spin orbitals and molecular orbitals Be able to write down

More information

Intermission: Let s review the essentials of the Helium Atom

Intermission: Let s review the essentials of the Helium Atom PHYS3022 Applied Quantum Mechanics Problem Set 4 Due Date: 6 March 2018 (Tuesday) T+2 = 8 March 2018 All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

Structure of diatomic molecules

Structure of diatomic molecules Structure of diatomic molecules January 8, 00 1 Nature of molecules; energies of molecular motions Molecules are of course atoms that are held together by shared valence electrons. That is, most of each

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

VALENCE Hilary Term 2018

VALENCE Hilary Term 2018 VALENCE Hilary Term 2018 8 Lectures Prof M. Brouard Valence is the theory of the chemical bond Outline plan 1. The Born-Oppenheimer approximation 2. Bonding in H + 2 the LCAO approximation 3. Many electron

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 5 The Hartree-Fock method C.-K. Skylaris Learning outcomes Be able to use the variational principle in quantum calculations Be able to construct Fock operators

More information

Simulation Methods II

Simulation Methods II Simulation Methods II Maria Fyta Institute for Computational Physics Universität Stuttgart Summer Term 2018 SM II - contents First principles methods Hartree-Fock and beyond Density-funtional-theory Ab

More information

2 Electronic structure theory

2 Electronic structure theory Electronic structure theory. Generalities.. Born-Oppenheimer approximation revisited In Sec..3 (lecture 3) the Born-Oppenheimer approximation was introduced (see also, for instance, [Tannor.]). We are

More information

Introduction and theoretical background

Introduction and theoretical background 1 Introduction and theoretical background 1.1 The Schrödinger equation and models of chemistry The Schrödinger equation and its elements As early as 1929, the noted physicist P. A. M. Dirac wrote 1 The

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

Orbital approximation

Orbital approximation Orbital approximation Assign the electrons to an atomic orbital and a spin Construct an antisymmetrized wave function using a Slater determinant evaluate the energy with the Hamiltonian that includes the

More information

Instructor background for the discussion points of Section 2

Instructor background for the discussion points of Section 2 Supplementary Information for: Orbitals Some fiction and some facts Jochen Autschbach Department of Chemistry State University of New York at Buffalo Buffalo, NY 14260 3000, USA Instructor background for

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory Introduction to Electronic Structure Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2002 Last Revised: June 2003 1 Introduction The purpose of these

More information

Born-Oppenheimer Approximation

Born-Oppenheimer Approximation Born-Oppenheimer Approximation Adiabatic Assumption: Nuclei move so much more slowly than electron that the electrons that the electrons are assumed to be obtained if the nuclear kinetic energy is ignored,

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

wbt Λ = 0, 1, 2, 3, Eq. (7.63)

wbt Λ = 0, 1, 2, 3, Eq. (7.63) 7.2.2 Classification of Electronic States For all diatomic molecules the coupling approximation which best describes electronic states is analogous to the Russell- Saunders approximation in atoms The orbital

More information

Lecture 10. Born-Oppenheimer approximation LCAO-MO application to H + The potential energy surface MOs for diatomic molecules. NC State University

Lecture 10. Born-Oppenheimer approximation LCAO-MO application to H + The potential energy surface MOs for diatomic molecules. NC State University Chemistry 431 Lecture 10 Diatomic molecules Born-Oppenheimer approximation LCAO-MO application to H + 2 The potential energy surface MOs for diatomic molecules NC State University Born-Oppenheimer approximation

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 17, March 1, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 17, March 1, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 17, March 1, 2006 (Some material in this lecture has been adapted from Cramer, C. J.

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

23 The Born-Oppenheimer approximation, the Many Electron Hamiltonian and the molecular Schrödinger Equation M I

23 The Born-Oppenheimer approximation, the Many Electron Hamiltonian and the molecular Schrödinger Equation M I 23 The Born-Oppenheimer approximation, the Many Electron Hamiltonian and the molecular Schrödinger Equation 1. Now we will write down the Hamiltonian for a molecular system comprising N nuclei and n electrons.

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Lecture 15 From molecules to solids

Lecture 15 From molecules to solids Lecture 15 From molecules to solids Background In the last two lectures, we explored quantum mechanics of multi-electron atoms the subject of atomic physics. In this lecture, we will explore how these

More information

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics.

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics. A 10-MINUTE RATHER QUICK INTRODUCTION TO QUANTUM MECHANICS 1. What is quantum mechanics (as opposed to classical mechanics)? Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours

More information

Intro to ab initio methods

Intro to ab initio methods Lecture 2 Part A Intro to ab initio methods Recommended reading: Leach, Chapters 2 & 3 for QM methods For more QM methods: Essentials of Computational Chemistry by C.J. Cramer, Wiley (2002) 1 ab initio

More information

we have to deal simultaneously with the motion of the two heavy particles, the nuclei

we have to deal simultaneously with the motion of the two heavy particles, the nuclei 157 Lecture 6 We now turn to the structure of molecules. Our first cases will be the e- quantum mechanics of the two simplest molecules, the hydrogen molecular ion, H +, a r A r B one electron molecule,

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep Problem set 1 Due Sep 15 2005 1. Let V be the set of all complex valued functions of a real variable θ, that are periodic with period 2π. That is u(θ + 2π) = u(θ), for all u V. (1) (i) Show that this V

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Molecular Bonding. Molecular Schrödinger equation. r - nuclei s - electrons. M j = mass of j th nucleus m 0 = mass of electron

Molecular Bonding. Molecular Schrödinger equation. r - nuclei s - electrons. M j = mass of j th nucleus m 0 = mass of electron Molecular onding Molecular Schrödinger equation r - nuclei s - electrons 1 1 W V r s j i j1 M j m i1 M j = mass of j th nucleus m = mass of electron j i Laplace operator for nuclei Laplace operator for

More information

Chem120a : Exam 3 (Chem Bio) Solutions

Chem120a : Exam 3 (Chem Bio) Solutions Chem10a : Exam 3 (Chem Bio) Solutions November 7, 006 Problem 1 This problem will basically involve us doing two Hückel calculations: one for the linear geometry, and one for the triangular geometry. We

More information

Condensed matter physics FKA091

Condensed matter physics FKA091 Condensed matter physics FKA091 Ermin Malic Department of Physics Chalmers University of Technology Henrik Johannesson Department of Physics University of Gothenburg Teaching assistants: Roland Jago &

More information

Hückel Molecular orbital Theory Application PART III

Hückel Molecular orbital Theory Application PART III Subject PHYSICAL Paper No and Title TOPIC Sub-Topic (if any) 2, PHYSICAL -I QUANTUM Hückel Molecular orbital Theory Module No. 33 PAPER: 2, PHYSICAL -I TABLE OF CONTENTS 1. Learning outcomes 2. Hückel

More information

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Up to now we have considered one-electron atoms. Almost all atoms are multiple-electron atoms and their description is more complicated

More information

Conical Intersections. Spiridoula Matsika

Conical Intersections. Spiridoula Matsika Conical Intersections Spiridoula Matsika The Born-Oppenheimer approximation Energy TS Nuclear coordinate R ν The study of chemical systems is based on the separation of nuclear and electronic motion The

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

Formation Mechanism and Binding Energy for Icosahedral Central Structure of He + 13 Cluster

Formation Mechanism and Binding Energy for Icosahedral Central Structure of He + 13 Cluster Commun. Theor. Phys. Beijing, China) 42 2004) pp. 763 767 c International Academic Publishers Vol. 42, No. 5, November 5, 2004 Formation Mechanism and Binding Energy for Icosahedral Central Structure of

More information

Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or "Second Quantization"

Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or Second Quantization Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or "Second Quantization" Outline 1 Bosons and Fermions 2 N-particle wave functions ("first quantization" 3 The method of quantized

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

Vibrations and Rotations of Diatomic Molecules

Vibrations and Rotations of Diatomic Molecules Chapter 6 Vibrations and Rotations of Diatomic Molecules With the electronic part of the problem treated in the previous chapter, the nuclear motion shall occupy our attention in this one. In many ways

More information

1.6. Quantum mechanical description of the hydrogen atom

1.6. Quantum mechanical description of the hydrogen atom 29.6. Quantum mechanical description of the hydrogen atom.6.. Hamiltonian for the hydrogen atom Atomic units To avoid dealing with very small numbers, let us introduce the so called atomic units : Quantity

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 27st Page 1 Lecture 27 L27.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Lecture 8: Radial Distribution Function, Electron Spin, Helium Atom

Lecture 8: Radial Distribution Function, Electron Spin, Helium Atom Lecture 8: Radial Distribution Function, Electron Spin, Helium Atom Radial Distribution Function The interpretation of the square of the wavefunction is the probability density at r, θ, φ. This function

More information

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1 L1.P1 Lecture #1 Review Postulates of quantum mechanics (1-3) Postulate 1 The state of a system at any instant of time may be represented by a wave function which is continuous and differentiable. Specifically,

More information

Chemistry 3502/4502. Exam III. All Hallows Eve/Samhain, ) This is a multiple choice exam. Circle the correct answer.

Chemistry 3502/4502. Exam III. All Hallows Eve/Samhain, ) This is a multiple choice exam. Circle the correct answer. B Chemistry 3502/4502 Exam III All Hallows Eve/Samhain, 2003 1) This is a multiple choice exam. Circle the correct answer. 2) There is one correct answer to every problem. There is no partial credit. 3)

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

SIMPLE QUANTUM SYSTEMS

SIMPLE QUANTUM SYSTEMS SIMPLE QUANTUM SYSTEMS Chapters 14, 18 "ceiiinosssttuu" (anagram in Latin which Hooke published in 1676 in his "Description of Helioscopes") and deciphered as "ut tensio sic vis" (elongation of any spring

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

Last Name or Student ID

Last Name or Student ID 12/9/15, Chem433 Final Exam Last Name or Student ID 1. (2 pts) 11. (4 pts) 2. (6 pts) 12. (3 pts) 3. (2 pts) 13. (4 pts) 4. (3 pts) 14. (3 pts) 5. (5 pts) 15. (3 pts) 6. (3 pts) 16. (7 pts) 7. (12 pts)

More information

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems Chm 331 Fall 015, Exercise Set 4 NMR Review Problems Mr. Linck Version.0. Compiled December 1, 015 at 11:04:44 4.1 Diagonal Matrix Elements for the nmr H 0 Find the diagonal matrix elements for H 0 (the

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno Quantum Chemical Simulations and Descriptors Dr. Antonio Chana, Dr. Mosè Casalegno Classical Mechanics: basics It models real-world objects as point particles, objects with negligible size. The motion

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

Hartree-Fock-Roothan Self-Consistent Field Method

Hartree-Fock-Roothan Self-Consistent Field Method Hartree-Fock-Roothan Self-Consistent Field Method 1. Helium Here is a summary of the derivation of the Hartree-Fock equations presented in class. First consider the ground state of He and start with with

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s One of these two states is a repulsive (dissociative) state. Other excited states can be constructed using linear combinations of other orbitals. Some will be binding and others will be repulsive. Thus

More information

Rotations and vibrations of polyatomic molecules

Rotations and vibrations of polyatomic molecules Rotations and vibrations of polyatomic molecules When the potential energy surface V( R 1, R 2,..., R N ) is known we can compute the energy levels of the molecule. These levels can be an effect of: Rotation

More information

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES i FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES Credit units: 6 ECTS Lectures: 48 h Tapio Rantala, prof. Tue 10 12 SC203 SG219 8 10 SG312 FirstName.LastName@tut.fi http://www.tut.fi/~trantala/opetus/

More information

Basic Physical Chemistry Lecture 2. Keisuke Goda Summer Semester 2015

Basic Physical Chemistry Lecture 2. Keisuke Goda Summer Semester 2015 Basic Physical Chemistry Lecture 2 Keisuke Goda Summer Semester 2015 Lecture schedule Since we only have three lectures, let s focus on a few important topics of quantum chemistry and structural chemistry

More information

MOLECULAR STRUCTURE. The general molecular Schrödinger equation, apart from electron spin effects, is. nn ee en

MOLECULAR STRUCTURE. The general molecular Schrödinger equation, apart from electron spin effects, is. nn ee en MOLECULAR STRUCTURE The Born-Oppenheimer Approximation The general molecular Schrödinger equation, apart from electron spin effects, is ( ) + + V + V + V =E nn ee en T T ψ ψ n e where the operators in

More information

Exp. 4. Quantum Chemical calculation: The potential energy curves and the orbitals of H2 +

Exp. 4. Quantum Chemical calculation: The potential energy curves and the orbitals of H2 + Exp. 4. Quantum Chemical calculation: The potential energy curves and the orbitals of H2 + 1. Objectives Quantum chemical solvers are used to obtain the energy and the orbitals of the simplest molecules

More information

Chemistry Physical Chemistry II Spring 2017

Chemistry Physical Chemistry II Spring 2017 Chemistry 310 - Physical Chemistry II Spring 2017 Instructor: Office Hours: Prerequisites: Texts: Required: Samuel A. Abrash 208C Gottwald Science Center Office: 289-8248 Home: 323-7363 Cell: 804-363-2597

More information

Electronic structure calculations: fundamentals George C. Schatz Northwestern University

Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic Structure (often called Quantum Chemistry) calculations use quantum mechanics to determine the wavefunctions

More information

r R A 1 r R B + 1 ψ(r) = αψ A (r)+βψ B (r) (5) where we assume that ψ A and ψ B are ground states: ψ A (r) = π 1/2 e r R A ψ B (r) = π 1/2 e r R B.

r R A 1 r R B + 1 ψ(r) = αψ A (r)+βψ B (r) (5) where we assume that ψ A and ψ B are ground states: ψ A (r) = π 1/2 e r R A ψ B (r) = π 1/2 e r R B. Molecules Initial questions: What are the new aspects of molecules compared to atoms? What part of the electromagnetic spectrum can we probe? What can we learn from molecular spectra? How large a molecule

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

PAPER:2, PHYSICAL CHEMISTRY-I QUANTUM CHEMISTRY. Module No. 34. Hückel Molecular orbital Theory Application PART IV

PAPER:2, PHYSICAL CHEMISTRY-I QUANTUM CHEMISTRY. Module No. 34. Hückel Molecular orbital Theory Application PART IV Subject PHYSICAL Paper No and Title TOPIC Sub-Topic (if any), PHYSICAL -II QUANTUM Hückel Molecular orbital Theory Module No. 34 TABLE OF CONTENTS 1. Learning outcomes. Hückel Molecular Orbital (HMO) Theory

More information