Lecture 8: Radial Distribution Function, Electron Spin, Helium Atom

Size: px
Start display at page:

Download "Lecture 8: Radial Distribution Function, Electron Spin, Helium Atom"

Transcription

1 Lecture 8: Radial Distribution Function, Electron Spin, Helium Atom Radial Distribution Function The interpretation of the square of the wavefunction is the probability density at r, θ, φ. This function is normalized as π π ψ n,l,m l (r, θ, φ)ψ n,l,ml (r, θ, φ)r sin θdrdθdφ = Substituting for the radial and angular parts we get π r Rn,l(r)dr π Y l,m l (θ, φ)y l,m l (θ, φ) sin θdθdφ = If we want to find the probability of finding at a given r independent of angular distribution, it is convenient to define a quantity called the radial distribution function P (r) which is defined as P (r) = r R(r) where R(r) is the radial part of the probability distribution function. The radial distribution gives the probability density at a distance r from the nucleus. For example, we can use the s orbital and find out the distance r max from the nucleus where the electron is most likely to be found by P (r) r e r/a

2 Using the condition for maximum as dp dr = P andd dr <, we get r max = a. A simple extension of the Hydrogen atom is to Hydrogen-like atoms, which have a nuclear charge of Ze and one electron. For example, He +, Li + etc can be thought of as hydrogen-like atoms.the solutions look exactly the same with the nuclear charge replaced by Ze. The energy expression is E n = m ee 4 Z 8h ɛ n The wavefunctions are given by the same form as before with ρ = Zr/na and ψ n,l,ml (r, θ, φ) = N n,l ρ l L n,l (ρ)e ρ/ Y l,ml (θ, φ) Thus only the radial part is affected since that is the only term that depends on the interaction. We had briefly talked about Spin quantum number earlier. For electrons, since s = /, we can have two states m s = / and m s = /. The wavefunctions corresponding to these two eigenvalues are functions of a spin variable s i and are denoted by α(s i ) and β(s i ) so that Ŝzα(s i ) = / α(s i ) and Ŝzβ(s i ) = / β(s i ). The total wavefunction is said to be a function of both spatial and spin coordinates and is referred to as a spin orbital sα ψ,,,/ ψ,, (r, θ, φ)α(s i ) Spin will become especially important for many-electron atoms. describe this when we come to the Helium atom. We will Helium Atom The Helium Atom is represented in the picture below. operator for this system can be written as ( Ĥ( R, r, r ) = M R m e m e + e 4πɛ The Hamiltonian R r R r + r r )

3 r r + Assuming that the nucleus is much heavier and fixing it at the origin, we can write a simpler Hamiltonian as ( Ĥ( r, r ) = + e + ) m e m e 4πɛ r r r where r = r r. The corresponding Schrödinger equation cannot be solved exactly since the Hamiltonian involves two coordinates of two particles which cannot be separated out due to the r term due to the electron-electron interactions. In fact, this interaction is the reason why all multi-electron systems cannot be solved analytically. This has resulted in development of very powerful and accurate numerical methods to treat systems which we shall not describe here. However, we will consider one very simple approximation that is related to the concept of shielding. Suppose we assume that we can neglect the electron-electron repulsion. Then the Hamiltonian can be separated into two terms, one involving electron and the other involving electron and each can be solved exactly using Hydrogen-like functions with nuclear charge +. The Schrödinger equation is now given by m e m e ψ( r, r ) + e 4πɛ ( r r ) ψ( r, r ) = Eψ( r, r ) 3

4 which can be separated using ψ( r, r ) = ψ ( r )ψ ( r ). This leads to two separate equations ) ( e ψ ( r ) = E ψ ( r ) m e 4πɛ r ( m e e 4πɛ r ) ψ ( r ) = E ψ ( r ) which are basically hydrogenic wavefunctions whose energies are given by E = 4m ee 4 8h ɛ n and similarly for E. We can do a little better than this using the following argument. Let us assume that the effect of interelectron repulsion is to shield part of the nuclear charge from the other electron. Thus, the effective nuclear charge felt by the electrons is σ where σ is a positive number less than, that estimates how much of the nuclear charge is shielded. Now we have the energy expression given by E = ( σ) m e e 4 8h ɛ n and similarly for E. The value of σ can be derived from variational techniques that we do not describe here. However, we can calculate the best value of σ that fits exerimental observations. The wavefunction is given by ψ n,l,ml,n,l,m l (r, θ, φ, r, θ, φ ) = N n,l R n,l (r )Y l,ml (θ, φ )N n,l R n,l (r )Y l,ml (θ, φ ) where n, n =,, 3..., and so on. We should use a nuclear charge of σ. The ground state wavefunction corresponds to both electrons in their n = states and is given by ψ,,,,, (r, θ, φ, r, θ, φ ) 4

5 ( ) 3/ ( ) / σ = e ( σ)r /a 4π a ( σ a ) 3/ ( ) / e ( σ)r /a 4π We use this expression to explain the importance of spin and Pauli s exclusion principle. We notice that for the ground state we have ψ( r, r ) = ψ( r, r ) Thus we can say that the spatial part of the wavefunction is sysmmetric to exchange of electrons. The total wavefunction has to be antisymmetric to exchange of electrons. The total wavefunction is for each electron (spin orbital) is written as a product of the spatial part times the spin part. The spin part can be either α or β. If the spin variables are denoted by s and s, then there are four possibilities for the total wavefunction. ψ( r, s, r, s ) = ψ,,,,, (r, θ, φ, r, θ, φ )α(s )α(s ) ψ( r, s, r, s ) = ψ,,,,, (r, θ, φ, r, θ, φ )β(s )β(s ) ψ( r, s, r, s ) = ψ,,,,, (r, θ, φ, r, θ, φ ) (α(s )β(s ) + β(s )α(s )) ψ( r, s, r, s ) = ψ,,,,, (r, θ, φ, r, θ, φ ) (α(s )β(s ) β(s )α(s )) Notice that the first 3 functions are symmetric to exchange of spin variables. The fourth one is antisymmetric. Since the spatial parts are symmetric, the spin part HAS to be antisymmetric so that the total wavefunction is antisymmteric. Thus the ground state wavefunction is given by ψ( r, s, r, s ) = ψ,,,,, (r, θ, φ, r, θ, φ ) (α(s )β(s ) β(s )α(s )) This is a statement of Pauli s exclusion principle. If the first 3 quantum numbers (n, l, m l ) for two electrons are identical, then the fourth one (m s ) must necessarily be different for the two electrons. Notice that α(s )β(s ) is not an allowed spin function since it is neither symmetric nor antisymmetric. If we have an excited states where the spatial parts are different, say ψ ( r ) and ψ ( r ), then the only allowed spatial wavefunctions are (ψ ( r )ψ ( r ) + ψ ( r )ψ ( r )) 5

6 and (ψ ( r )ψ ( r ) ψ ( r )ψ ( r )) The first one is symmetric to exchange of electrons and the second one is antisymmetric to exchange of electrons. They combine with antisymmetric and symmetric spin states respectively so that the total wavefunction is always antisymmetric to exchange of electrons. 6

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS

I. RADIAL PROBABILITY DISTRIBUTIONS (RPD) FOR S-ORBITALS 5. Lecture Summary #7 Readings for today: Section.0 (.9 in rd ed) Electron Spin, Section. (.0 in rd ed) The Electronic Structure of Hydrogen. Read for Lecture #8: Section. (. in rd ed) Orbital Energies

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

only two orbitals, and therefore only two combinations to worry about, but things get

only two orbitals, and therefore only two combinations to worry about, but things get 131 Lecture 1 It is fairly easy to write down an antisymmetric wavefunction for helium since there are only two orbitals, and therefore only two combinations to worry about, but things get complicated

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4 Variational calculations for Hydrogen and Helium Recall the variational principle See Chapter 16 of the textbook The variational theorem states that for a Hermitian operator H with the smallest eigenvalue

More information

1 Schroenger s Equation for the Hydrogen Atom

1 Schroenger s Equation for the Hydrogen Atom Schroenger s Equation for the Hydrogen Atom Here is the Schroedinger equation in D in spherical polar coordinates. Note that the definitions of θ and φ are the exact reverse of what they are in mathematics.

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics

CHM Physical Chemistry II Chapter 9 - Supplementary Material. 1. Constuction of orbitals from the spherical harmonics CHM 3411 - Physical Chemistry II Chapter 9 - Supplementary Material 1. Constuction of orbitals from the spherical harmonics The wavefunctions that are solutions to the time independent Schrodinger equation

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 3 The Born-Oppenheimer approximation C.-K. Skylaris Learning outcomes Separate molecular Hamiltonians to electronic and nuclear parts according to the Born-Oppenheimer

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

The Central Force Problem: Hydrogen Atom

The Central Force Problem: Hydrogen Atom The Central Force Problem: Hydrogen Atom B. Ramachandran Separation of Variables The Schrödinger equation for an atomic system with Z protons in the nucleus and one electron outside is h µ Ze ψ = Eψ, r

More information

Single Electron Atoms

Single Electron Atoms Single Electron Atoms In this section we study the spectrum and wave functions of single electron atoms. These are hydrogen, singly ionized He, doubly ionized Li, etc. We will write the formulae for hydrogen

More information

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2 PHYS 4 3. The momentum operator in three dimensions is p = i Therefore the momentum-squared operator is [ p 2 = 2 2 = 2 r 2 ) + r 2 r r r 2 sin θ We notice that this can be written as sin θ ) + θ θ r 2

More information

Outlines of Quantum Physics

Outlines of Quantum Physics Duality S. Eq Hydrogen Outlines of 1 Wave-Particle Duality 2 The Schrödinger Equation 3 The Hydrogen Atom Schrödinger Eq. of the Hydrogen Atom Noninteracting Particles and Separation of Variables The One-Particle

More information

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in Lecture #3. Incorporating a vector potential into the Hamiltonian. Spin postulates 3. Description of spin states 4. Identical particles in classical and QM 5. Exchange degeneracy - the fundamental problem

More information

It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s.

It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s. Lecture 9 Title: - coupling Page- It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s. For large Z atoms,

More information

Physics and Chemistry of the Interstellar Medium

Physics and Chemistry of the Interstellar Medium 0. Physics and Chemistry of the Interstellar Medium Pierre Hily-Blant Master2 Lecture, LAOG pierre.hilyblant@obs.ujf-grenoble.fr, Office 53 2012-2013 Pierre Hily-Blant (Master2) The ISM 2012-2013 1 / 220

More information

Lecture #21: Hydrogen Atom II

Lecture #21: Hydrogen Atom II 561 Fall, 217 Lecture #21 Page 1 Lecture #21: Hydrogen Atom II Last time: TISE For H atom: final exactly solved problem Ĥ in spherical polar coordinates Separation: ψ nlml ( r,θ,φ) = R nl (r)y m l (θ,φ)

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

5.111 Lecture Summary #6

5.111 Lecture Summary #6 5.111 Lecture Summary #6 Readings for today: Section 1.9 (1.8 in 3 rd ed) Atomic Orbitals. Read for Lecture #7: Section 1.10 (1.9 in 3 rd ed) Electron Spin, Section 1.11 (1.10 in 3 rd ed) The Electronic

More information

Lecture 7: Angular Momentum, Hydrogen Atom

Lecture 7: Angular Momentum, Hydrogen Atom Lectue 7: Angula Momentum, Hydogen Atom Vecto Quantization of Angula Momentum and Nomalization of 3D Rigid Roto wavefunctions Conside l, so L 2 2 2. Thus, we have L 2. Thee ae thee possibilities fo L z

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

Lecture January 18, Quantum Numbers Electronic Configurations Ionization Energies Effective Nuclear Charge Slater s Rules

Lecture January 18, Quantum Numbers Electronic Configurations Ionization Energies Effective Nuclear Charge Slater s Rules Lecture 3 362 January 18, 2019 Quantum Numbers Electronic Configurations Ionization Energies Effective Nuclear Charge Slater s Rules Inorganic Chemistry Chapter 1: Figure 1.4 Time independent Schrödinger

More information

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory

Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Chemistry 2000 Lecture 1: Introduction to the molecular orbital theory Marc R. Roussel January 5, 2018 Marc R. Roussel Introduction to molecular orbitals January 5, 2018 1 / 24 Review: quantum mechanics

More information

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am

Sparks CH301. Quantum Mechanics. Waves? Particles? What and where are the electrons!? UNIT 2 Day 3. LM 14, 15 & 16 + HW due Friday, 8:45 am Sparks CH301 Quantum Mechanics Waves? Particles? What and where are the electrons!? UNIT 2 Day 3 LM 14, 15 & 16 + HW due Friday, 8:45 am What are we going to learn today? The Simplest Atom - Hydrogen Relate

More information

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum Chapter 2 The Hydrogen atom In the previous chapter we gave a quick overview of the Bohr model, which is only really valid in the semiclassical limit. cf. section 1.7.) We now begin our task in earnest

More information

Helium Atom, Approximate Methods

Helium Atom, Approximate Methods Helium Atom, Approximate Methods 7th April 009 I. The Helium Atom and Variational Principle: Approximation Methods for Complex Atomic Systems The hydrogen atom wavefunctions and energies, we have seen,

More information

How we describe bonding is affected strongly by how we describe where/how electrons are held by atoms in molecules.

How we describe bonding is affected strongly by how we describe where/how electrons are held by atoms in molecules. CHEM 2060 Lecture 8: Atomic Configurations L8-1 Electronic Configurations How we describe bonding is affected strongly by how we describe where/how electrons are held by atoms in molecules. We know that

More information

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4 H atom solution Contents 1 Introduction 2 2 Coordinate system 2 3 Variable separation 4 4 Wavefunction solutions 6 4.1 Solution for Φ........................... 6 4.2 Solution for Θ...........................

More information

Approximation Methods in QM

Approximation Methods in QM Chapter 3 Approximation Methods in QM Contents 3.1 Time independent PT (nondegenerate)............... 5 3. Degenerate perturbation theory (PT)................. 59 3.3 Time dependent PT and Fermi s golden

More information

Electric fields : Stark effect, dipole & quadrupole polarizability.

Electric fields : Stark effect, dipole & quadrupole polarizability. Electric fields : Stark effect, dipole & quadrupole polarizability. We are often interested in the effect of an external electric field on the energy levels and wavefunction of H and other one-electron

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Helium and two electron atoms

Helium and two electron atoms 1 Helium and two electron atoms e 2 r 12 e 1 r 2 r 1 +Ze Autumn 2013 Version: 04.12.2013 2 (1) Coordinate system, Schrödinger Equation 3 slides Evaluation of repulsion term 2 slides Radial Integral - details

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

7.1 Variational Principle

7.1 Variational Principle 7.1 Variational Principle Suppose that you want to determine the ground-state energy E g for a system described by H, but you are unable to solve the time-independent Schrödinger equation. It is possible

More information

Lecture 3: Helium Readings: Foot Chapter 3

Lecture 3: Helium Readings: Foot Chapter 3 Lecture 3: Helium Readings: Foot Chapter 3 Last Week: the hydrogen atom, eigenstate wave functions, and the gross and fine energy structure for hydrogen-like single-electron atoms E n Z n = hcr Zα / µ

More information

Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM

Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM Workshop on: ATOMIC STRUCTURE AND TRANSITIONS: THEORY IN USING SUPERSTRUCTURE PROGRAM PROF. SULTANA N. NAHAR Astronomy, Ohio State U, Columbus, Ohio, USA Email: nahar.1@osu.edu http://www.astronomy.ohio-state.edu/

More information

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation VANDERBILT UNIVERSITY MATH 31 INTRO DO PDES The Schrödinger equation 1. Introduction Our goal is to investigate solutions to the Schrödinger equation, i Ψ t = Ψ + V Ψ, 1.1 µ where i is the imaginary number

More information

Schrödinger equation for the nuclear potential

Schrödinger equation for the nuclear potential Schrödinger equation for the nuclear potential Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 24, 2011 NUCS 342 (Lecture 4) January 24, 2011 1 / 32 Outline 1 One-dimensional

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

Multielectron Atoms.

Multielectron Atoms. Multielectron Atoms. Chem 639. Spectroscopy. Spring 00 S.Smirnov Atomic Units Mass m e 1 9.109 10 31 kg Charge e 1.60 10 19 C Angular momentum 1 1.055 10 34 J s Permittivity 4 0 1 1.113 10 10 C J 1 m 1

More information

Quantum mechanics can be used to calculate any property of a molecule. The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is,

Quantum mechanics can be used to calculate any property of a molecule. The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is, Chapter : Molecules Quantum mechanics can be used to calculate any property of a molecule The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is, E = Ψ H Ψ Ψ Ψ 1) At first this seems like

More information

( ( ; R H = 109,677 cm -1

( ( ; R H = 109,677 cm -1 CHAPTER 9 Atomic Structure and Spectra I. The Hydrogenic Atoms (one electron species). H, He +1, Li 2+, A. Clues from Line Spectra. Reminder: fundamental equations of spectroscopy: ε Photon = hν relation

More information

Please read the following instructions:

Please read the following instructions: MIDTERM #1 PHYS 33 (MODERN PHYSICS II) DATE/TIME: February 11, 016 (8:30 a.m. - 9:45 a.m.) PLACE: RB 306 Only non-programmable calculators are allowed. Name: ID: Please read the following instructions:

More information

Announcements. Please check for errors now

Announcements. Please check for errors now Announcements Print worksheet #10 prior to your Thursday discussion section LON-CAPA assignment #6 due Tuesday, Oct. 5 at 9am Next week s quiz will be on Tuesday atomic history and electron configurations

More information

The Electronic Structure of Atoms

The Electronic Structure of Atoms The Electronic Structure of Atoms Classical Hydrogen-like atoms: Atomic Scale: 10-10 m or 1 Å + - Proton mass : Electron mass 1836 : 1 Problems with classical interpretation: - Should not be stable (electron

More information

Chapter 12: Phenomena

Chapter 12: Phenomena Chapter 12: Phenomena K Fe Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected

More information

1.2 Rare earth atoms H Ψ=E Ψ, (1.2.1) where the non-relativistic Hamiltonian operator is. H = h2 2m. v ext (r i ) (1.2.

1.2 Rare earth atoms H Ψ=E Ψ, (1.2.1) where the non-relativistic Hamiltonian operator is. H = h2 2m. v ext (r i ) (1.2. 8 1. ELEMENTS OF RARE EARTH MAGNETISM 1.2 Rare earth atoms The starting point for the understanding of the magnetism of the rare earths is the description of the electronic states, particularly of the

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation

Electromagnetic Radiation. Chapter 12: Phenomena. Chapter 12: Quantum Mechanics and Atomic Theory. Quantum Theory. Electromagnetic Radiation Chapter 12: Phenomena Phenomena: Different wavelengths of electromagnetic radiation were directed onto two different metal sample (see picture). Scientists then recorded if any particles were ejected and

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Orbital approximation

Orbital approximation Orbital approximation Assign the electrons to an atomic orbital and a spin Construct an antisymmetrized wave function using a Slater determinant evaluate the energy with the Hamiltonian that includes the

More information

Schrödinger equation for central potentials

Schrödinger equation for central potentials Chapter 2 Schrödinger equation for central potentials In this chapter we will extend the concepts and methods introduced in the previous chapter for a one-dimensional problem to a specific and very important

More information

Identical Particles in Quantum Mechanics

Identical Particles in Quantum Mechanics Identical Particles in Quantum Mechanics Chapter 20 P. J. Grandinetti Chem. 4300 Nov 17, 2017 P. J. Grandinetti (Chem. 4300) Identical Particles in Quantum Mechanics Nov 17, 2017 1 / 20 Wolfgang Pauli

More information

E = 2 (E 1)+ 2 (4E 1) +1 (9E 1) =19E 1

E = 2 (E 1)+ 2 (4E 1) +1 (9E 1) =19E 1 Quantum Mechanics and Atomic Physics Lecture 22: Multi-electron Atoms http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Last Time Multi-electron atoms and Pauli s exclusion principle Electrons

More information

QUANTUM MECHANICS AND ATOMIC STRUCTURE

QUANTUM MECHANICS AND ATOMIC STRUCTURE 5 CHAPTER QUANTUM MECHANICS AND ATOMIC STRUCTURE 5.1 The Hydrogen Atom 5.2 Shell Model for Many-Electron Atoms 5.3 Aufbau Principle and Electron Configurations 5.4 Shells and the Periodic Table: Photoelectron

More information

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5) LECTURE 12 Maxwell Velocity Distribution Suppose we have a dilute gas of molecules, each with mass m. If the gas is dilute enough, we can ignore the interactions between the molecules and the energy will

More information

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer IFF 10 p. 1 Magnetism in low dimensions from first principles Atomic magnetism Gustav Bihlmayer Institut für Festkörperforschung, Quantum Theory of Materials Gustav Bihlmayer Institut für Festkörperforschung

More information

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04 Page 71 Lecture 4: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 009/0/04 Date Given: 009/0/04 Plan of Attack Section 14.1 Rotations and Orbital Angular Momentum: Plan of Attack

More information

Schrödinger equation for central potentials

Schrödinger equation for central potentials Chapter 2 Schrödinger equation for central potentials In this chapter we will extend the concepts and methods introduced in the previous chapter ifor a one-dimenional problem to a specific and very important

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

Degeneracy & in particular to Hydrogen atom

Degeneracy & in particular to Hydrogen atom Degeneracy & in particular to Hydrogen atom In quantum mechanics, an energy level is said to be degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely,

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Atomic Structure Ch , 9.6, 9.7

Atomic Structure Ch , 9.6, 9.7 Ch. 9.2-4, 9.6, 9.7 Magnetic moment of an orbiting electron: An electron orbiting a nucleus creates a current loop. A current loop behaves like a magnet with a magnetic moment µ:! µ =! µ B " L Bohr magneton:

More information

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation

Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Chapter 9: Multi- Electron Atoms Ground States and X- ray Excitation Up to now we have considered one-electron atoms. Almost all atoms are multiple-electron atoms and their description is more complicated

More information

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214 Oh, the humanity! -Herbert Morrison, radio reporter of the Hindenburg disaster David J. Starling Penn State Hazleton PHYS 24 The hydrogen atom is composed of a proton and an electron with potential energy:

More information

Physical Chemistry Quantum Mechanics, Spectroscopy, and Molecular Interactions. Solutions Manual. by Andrew Cooksy

Physical Chemistry Quantum Mechanics, Spectroscopy, and Molecular Interactions. Solutions Manual. by Andrew Cooksy Physical Chemistry Quantum Mechanics, Spectroscopy, and Molecular Interactions Solutions Manual by Andrew Cooksy February 4, 2014 Contents Contents i Objectives Review Questions 1 Chapter Problems 11 Notes

More information

Electron Configurations

Electron Configurations Ch08 Electron Configurations We now understand the orbital structure of atoms. Next we explore how electrons filling that structure change it. version 1.5 Nick DeMello, PhD. 2007-2016 2 Ch08 Putting Electrons

More information

Chapter 1 - Basic Concepts: atoms

Chapter 1 - Basic Concepts: atoms Chapter 1 - Basic Concepts: atoms Discovery of atomic structure Rutherford (1910) JJ Thomson (1897) Milliken (1909) Rutherford (1911) 1 Symbol p + e - n 0 Mass (amu) 1.0073 0.000549 1.00870 Discovery 1919,

More information

Towards the Hartree Method

Towards the Hartree Method Towards the Hartree Method Recall from Lecture 11: Schrödinger Equation for Helium rewritten in simple abstract form as follows, where the subscript of H and V indicate which electrons these terms apply

More information

(1.1) In particular, ψ( q 1, m 1 ; ; q N, m N ) 2 is the probability to find the first particle

(1.1) In particular, ψ( q 1, m 1 ; ; q N, m N ) 2 is the probability to find the first particle Chapter 1 Identical particles 1.1 Distinguishable particles The Hilbert space of N has to be a subspace H = N n=1h n. Observables Ân of the n-th particle are self-adjoint operators of the form 1 1 1 1

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m. PHY464 Introduction to Quantum Mechanics Fall 4 Final Eam SOLUTIONS December 7, 4, 7:3 a.m.- 9:3 a.m. No other materials allowed. If you can t do one part of a problem, solve subsequent parts in terms

More information

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation:

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation: One-electron Atom The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's

More information

Introduction and theoretical background

Introduction and theoretical background 1 Introduction and theoretical background 1.1 The Schrödinger equation and models of chemistry The Schrödinger equation and its elements As early as 1929, the noted physicist P. A. M. Dirac wrote 1 The

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry room B430, Chemicum 4th floor vesa.hanninen@helsinki.fi September 3, 2013 Introduction and theoretical backround September

More information

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry.

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry - 5.61 Physical Chemistry Exam III (1) PRINT your name on the cover page. (2) It is suggested that you READ THE ENTIRE EXAM before

More information

Atomic and molecular physics Revision lecture

Atomic and molecular physics Revision lecture Atomic and molecular physics Revision lecture Answer all questions Angular momentum J`2 ` J z j,m = j j+1 j,m j,m =m j,m Allowed values of mgo from j to +jin integer steps If there is no external field,

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Quantum Theory of Angular Momentum and Atomic Structure

Quantum Theory of Angular Momentum and Atomic Structure Quantum Theory of Angular Momentum and Atomic Structure VBS/MRC Angular Momentum 0 Motivation...the questions Whence the periodic table? Concepts in Materials Science I VBS/MRC Angular Momentum 1 Motivation...the

More information

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4

Lectures 21 and 22: Hydrogen Atom. 1 The Hydrogen Atom 1. 2 Hydrogen atom spectrum 4 Lectures and : Hydrogen Atom B. Zwiebach May 4, 06 Contents The Hydrogen Atom Hydrogen atom spectrum 4 The Hydrogen Atom Our goal here is to show that the two-body quantum mechanical problem of the hydrogen

More information

Final Examination. Tuesday December 15, :30 am 12:30 pm. particles that are in the same spin state 1 2, + 1 2

Final Examination. Tuesday December 15, :30 am 12:30 pm. particles that are in the same spin state 1 2, + 1 2 Department of Physics Quantum Mechanics I, Physics 57 Temple University Instructor: Z.-E. Meziani Final Examination Tuesday December 5, 5 :3 am :3 pm Problem. pts) Consider a system of three non interacting,

More information

Self-consistent Field

Self-consistent Field Chapter 6 Self-consistent Field A way to solve a system of many electrons is to consider each electron under the electrostatic field generated by all other electrons. The many-body problem is thus reduced

More information

Section 10: Many Particle Quantum Mechanics Solutions

Section 10: Many Particle Quantum Mechanics Solutions Physics 143a: Quantum Mechanics I Section 10: Many Particle Quantum Mechanics Solutions Spring 015, Harvard Here is a summary of the most important points from this week (with a few of my own tidbits),

More information

Variational Methods for Electronic Structure

Variational Methods for Electronic Structure Variational Methods for Electronic Structure The hydrogen atom is a two-body system consisting of a proton and an electron. If spin and relativistic effects are ignored, then the Schrödinger equation for

More information

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments PHYS85 Quantum Mechanics I, Fall 9 HOMEWORK ASSIGNMENT Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments. [ pts]

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split Electron Spin Electron spin hypothesis Solution to H atom problem gave three quantum numbers, n,, m. These apply to all atoms. Experiments show not complete description. Something missing. Alkali metals

More information

Further Quantum Mechanics Problem Set

Further Quantum Mechanics Problem Set CWPP 212 Further Quantum Mechanics Problem Set 1 Further Quantum Mechanics Christopher Palmer 212 Problem Set There are three problem sets, suitable for use at the end of Hilary Term, beginning of Trinity

More information

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func Quantum Mechanics and Atomic Physics Lecture 16: The Coulomb Potential http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Solved radial equation: Last time For two simple cases: infinite

More information

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case The Postulates of Quantum Mechanics Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about the

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory Introduction to Electronic Structure Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2002 Last Revised: June 2003 1 Introduction The purpose of these

More information