r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4

Size: px
Start display at page:

Download "r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4"

Transcription

1 Variational calculations for Hydrogen and Helium Recall the variational principle See Chapter 16 of the textbook The variational theorem states that for a Hermitian operator H with the smallest eigenvalue E, any normalized ψ satisfies E ψ H ψ Please prove this now without opening the text Given a Hamiltonian the method consists in starting with a clever and tractable guess for the so-called trial wave function with one or more free variational parameters Normalize the wave function and evaluate ψ H ψ This yields a function of the variational parameters Find the value of the parameters that minimizes this function and this yields the variational estimate for the ground state energy Gaussian trial wave function for the hydrogen atom: Try a Gaussian wave function since it is used often in quantum chemistry Start from the normalized Gaussian: 2 3/4 ψr = α 3/4 e αr2 π The kinetic energy can be evaluated to be r 2 dr h2 2m ψr ψr = h2 2m 3α Observe that since the dimensions of α is L 2 we can guess the dependence on dimensional considerations only The potential energy is given by Minimize the energy with respect to α e2 r 2 dr ψ 2 r 1 2 ɛ r = 2 π q2 α 1/2 α = 8m2 q 4 9π h 4 Substituting we find that variational estimate for the energy is E G = 4 3π m e q 4 The exact energy has a factor of 1/2 in front and the error is 151% If one uses the sum of two Gaussians Ae αx2 + Be βx2 one can do better but this is tedious to implement The Hamiltonian is given by H = h2 2m 2 1 h2 2m 2 2 r 1 1 r 2 + q 2 r 1 r 2

2 where the first two terms correspond to the kinetic energies of the two electrons and the last term is the Coulombic repulsion between the two electrons For Helium the nuclear charge Z = 2 As a variational trial wave function we place the two electrons in a 1s-like state with the spatial part being symmetric both electrons are in the same state and the spin part in the antisymmetric spin singlet So we write the spatial part of the wave function as φ r 1 φ r 2 1 We try a form inspired by the 1s state of the hydrogen atom which is exponentially decaying: φr = 1 2α 3/2 e αr This is normalized and has one variational parameter α which controls the spatial extent of the wave function The angular part is a constant, ie, l = We need to evaluate Ψ H Ψ The first term we need is d 3 r 2 φ r 1 φ r 2 h2 2m 2 1 φ r 1 φ r 2 Since the operator only involves the first coordinate r 1 the integral over d 3 r 2 yields 1 since φ r 2 is normalized We are left with 2m [ φr] 2 and this is the same calculation as the kinetic energy of the electron in the hydrogen atom and we find h2 α 2 ; this must be multiplied by a factor of 2 for the kinetic energy of the 2m second electron which involves identical integrals 2 Now for the potential energies For the attractive energy of the first electron and the nucleus we have d 3 r 2 φ r 1 φ r 2 r 1 Again the d 3 r 2 integral yields 1 and we are left with φ r 1 r 1 φ r 1 φ r 1 φ r 2 which can be done since this is spherically symmetric and yields αzq 2 ; this should also be multiplied by 2 for the contribution from the other electron 1 Note that the actual wave function will not be of this form and can depend upon r 1 r 2 which cannot be written as a product of a function of r 1 and r 2 separately However, we choose the product form for calculational convenience If we want a better approximation to the ground state energy we can use other forms of the wave function 2 Observe that when the Hamiltonian involves a single-particle term, ie, depends on the coordinates of one of the particles only, the expectation value involves a three-dimensional integral over the coordinates of that particle only 2

3 The interaction energy is much harder to calculate Please see the end of this note if you are mathematically curious and yields 5q 2 α/8 Together we have Eα = h2 α 2 m q2 α 2Z 5 8 Minimizing with respect to α we obtain 3 α = mq2 Z 5 16 The minimum energy is given by Eα = α and is E g = mq4 Z Recall that the ground state of the hydrogen atom is given by E = mq4 2 Thus we write our estimate of the ground state energy is E g = 2E Z If we had just naively used the 1s hydrogen atom energy except with nuclear charge Z, each electron would have an energy E Z 2 and so for two electrons we would have 2E Z 2 excluding the repulsive energy Instead the nuclear charge is reduced from Z = 2 to a lower value thanks to the shielding effect of the other electron Evaluating we find an energy of 28477Ry per electron while the experimental value is 294Ry per electron for a 2% error which is rather good The variational estimate for the ground state energy is 775eV in contrast to the experimental value of 79eV S Chandrasekhar and G, Herzberg used 1 variational parameters and then 18 Later T Kinoshita used 39 and later 8 parameters If we had set Z = 1 this calculation corresponds to the variational estimate for H : note that our calculation for Z = 1 yields 121/128 Ry which is higher than that of the hydrogen atom and so this makes the prediction that H is unstable with respect to the hydrogen atom and the electron far away However, experimentally, H is stable Bethe was one of the first to ask this question Superior trial wave functions have been tried For 3 2 α m q2 2Z 5 8 α=α = 3

4 example, multiply by 1+W r 12 where r 12 = r 1 r 2 4 Using two variational parameters we obtain an energy that yields a stable ion with an energy of Ry Calculation of the interaction energy for the Helium atom with the simplest variational ansatz The trial wave function is given by u r = 1 2α 3/2 e αr We need to evaluate the six-dimensional inetgral I d 3 r 2 u r 1 2 q 2 r 1 r 2 u r 2 2 There are many ways of doing this integral Here is one: We use the fact that the three-dimensional Fourier transform of the Coulomb potential is /k 2, a very important result 5 : 1 r 1 r 2 = d 3 k 2π 3 k 2 ei k r 1 r 2 Substituting this in the integral and changing the orders of integration I = d 3 k q 2 2π 3 k 2 u r 1 2 e i k r 1 d 3 r 2 u r 2 2 e i k r 2 Clearly, we need we need the Fourier transform of u r 2 which occurs twice: 6 we have Using e i k r 1 α 3 dω e i k r 1 π e 2αr 1 = e i k r 1 α 3 π dθ sin θ π e 2αr 1 2π dφ e i k r 1 = sinkr 1 kr 1 dr r 2 4α 3 sinkr 1 kr 1 e 2αr 1 = 16α 4 4α 2 + k This is a non-trivial calculation done most simply by using spherical coordinates for r 1 and cylindrical coordinates for r 2 with the z axis aligned along r 1 and ρ = r Even with this one has to work hard to evaluate the different terms 5 One way of convincing yourself of this is to Fourier transform the equation 1 2 = δ r r 6 Since we can change r 2 r 2 the sign of the argument in the exponential does not matter You have done essentially this integral in an earlier homework when you considered the momentum distribution of the hydrogen atom ground state 4

5 So we finally need the integral 7 d 3 k q 2 2π 3 k 2 16α 4 4α 2 + k = 5 8 q2 α 7 This is not difficult to do or you can be use Maple or Mathematica 5

Chemistry 3502/4502. Exam III. All Hallows Eve/Samhain, ) This is a multiple choice exam. Circle the correct answer.

Chemistry 3502/4502. Exam III. All Hallows Eve/Samhain, ) This is a multiple choice exam. Circle the correct answer. B Chemistry 3502/4502 Exam III All Hallows Eve/Samhain, 2003 1) This is a multiple choice exam. Circle the correct answer. 2) There is one correct answer to every problem. There is no partial credit. 3)

More information

Lecture 8: Radial Distribution Function, Electron Spin, Helium Atom

Lecture 8: Radial Distribution Function, Electron Spin, Helium Atom Lecture 8: Radial Distribution Function, Electron Spin, Helium Atom Radial Distribution Function The interpretation of the square of the wavefunction is the probability density at r, θ, φ. This function

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

PDEs in Spherical and Circular Coordinates

PDEs in Spherical and Circular Coordinates Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) This lecture Laplacian in spherical & circular polar coordinates Laplace s PDE in electrostatics Schrödinger

More information

( ) = 9φ 1, ( ) = 4φ 2.

( ) = 9φ 1, ( ) = 4φ 2. Chemistry 46 Dr Jean M Standard Homework Problem Set 6 Solutions The Hermitian operator A ˆ is associated with the physical observable A Two of the eigenfunctions of A ˆ are and These eigenfunctions are

More information

Self-consistent Field

Self-consistent Field Chapter 6 Self-consistent Field A way to solve a system of many electrons is to consider each electron under the electrostatic field generated by all other electrons. The many-body problem is thus reduced

More information

P3317 HW from Lecture 15 and Recitation 8

P3317 HW from Lecture 15 and Recitation 8 P3317 HW from Lecture 15 and Recitation 8 Due Oct 23, 218 Problem 1. Variational Energy of Helium Here we will estimate the ground state energy of Helium. Helium has two electrons circling around a nucleus

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Physics 216 Spring The Variational Computation of the Ground State Energy of Helium

Physics 216 Spring The Variational Computation of the Ground State Energy of Helium Physics 26 Spring 22 The Variational Computation of the Ground State Energy of Helium I. Introduction to the variational computation where The Hamiltonian for the two-electron system of the helium atom

More information

only two orbitals, and therefore only two combinations to worry about, but things get

only two orbitals, and therefore only two combinations to worry about, but things get 131 Lecture 1 It is fairly easy to write down an antisymmetric wavefunction for helium since there are only two orbitals, and therefore only two combinations to worry about, but things get complicated

More information

Chemistry 3502/4502. Exam III. March 28, ) Circle the correct answer on multiple-choice problems.

Chemistry 3502/4502. Exam III. March 28, ) Circle the correct answer on multiple-choice problems. A Chemistry 352/452 Exam III March 28, 25 1) Circle the correct answer on multiple-choice problems. 2) There is one correct answer to every multiple-choice problem. There is no partial credit. On the short-answer

More information

We now turn to our first quantum mechanical problems that represent real, as

We now turn to our first quantum mechanical problems that represent real, as 84 Lectures 16-17 We now turn to our first quantum mechanical problems that represent real, as opposed to idealized, systems. These problems are the structures of atoms. We will begin first with hydrogen-like

More information

Physics 828 Problem Set 7 Due Wednesday 02/24/2010

Physics 828 Problem Set 7 Due Wednesday 02/24/2010 Physics 88 Problem Set 7 Due Wednesday /4/ 7)a)Consider the proton to be a uniformly charged sphere of radius f m Determine the correction to the s ground state energy 4 points) This is a standard problem

More information

Intermission: Let s review the essentials of the Helium Atom

Intermission: Let s review the essentials of the Helium Atom PHYS3022 Applied Quantum Mechanics Problem Set 4 Due Date: 6 March 2018 (Tuesday) T+2 = 8 March 2018 All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the

More information

1 Schroenger s Equation for the Hydrogen Atom

1 Schroenger s Equation for the Hydrogen Atom Schroenger s Equation for the Hydrogen Atom Here is the Schroedinger equation in D in spherical polar coordinates. Note that the definitions of θ and φ are the exact reverse of what they are in mathematics.

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

VARIATIONAL PRINCIPLE AND THE HYDROGEN ION: TWO PARAMETERS

VARIATIONAL PRINCIPLE AND THE HYDROGEN ION: TWO PARAMETERS VARIATIONAL PRINCIPLE AND THE HYDROGEN ION: TWO PARAMETERS Link to: physicspages home page. To leave a comment or report an error, please use the auxiliary blog. References: Griffiths, David J. 005), Introduction

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

The Central Force Problem: Hydrogen Atom

The Central Force Problem: Hydrogen Atom The Central Force Problem: Hydrogen Atom B. Ramachandran Separation of Variables The Schrödinger equation for an atomic system with Z protons in the nucleus and one electron outside is h µ Ze ψ = Eψ, r

More information

Approximation Methods in QM

Approximation Methods in QM Chapter 3 Approximation Methods in QM Contents 3.1 Time independent PT (nondegenerate)............... 5 3. Degenerate perturbation theory (PT)................. 59 3.3 Time dependent PT and Fermi s golden

More information

Quantum Physics II (8.05) Fall 2002 Assignment 11

Quantum Physics II (8.05) Fall 2002 Assignment 11 Quantum Physics II (8.05) Fall 00 Assignment 11 Readings Most of the reading needed for this problem set was already given on Problem Set 9. The new readings are: Phase shifts are discussed in Cohen-Tannoudji

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 22, March 20, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 22, March 20, 2006 Chem 350/450 Physical Chemistry II Quantum Mechanics 3 Credits Spring Semester 006 Christopher J. Cramer Lecture, March 0, 006 Some material in this lecture has been adapted from Cramer, C. J. Essentials

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

Variational Methods for Electronic Structure

Variational Methods for Electronic Structure Variational Methods for Electronic Structure The hydrogen atom is a two-body system consisting of a proton and an electron. If spin and relativistic effects are ignored, then the Schrödinger equation for

More information

Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering 22.101 Applied Nuclear Physics (Fall 2006) Lecture 8 (10/4/06) Neutron-Proton Scattering References: M. A. Preston, Physics of the Nucleus (Addison-Wesley, Reading, 1962). E. Segre, Nuclei and Particles

More information

1.6. Quantum mechanical description of the hydrogen atom

1.6. Quantum mechanical description of the hydrogen atom 29.6. Quantum mechanical description of the hydrogen atom.6.. Hamiltonian for the hydrogen atom Atomic units To avoid dealing with very small numbers, let us introduce the so called atomic units : Quantity

More information

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

Landau s Fermi Liquid Theory

Landau s Fermi Liquid Theory Thors Hans Hansson Stockholm University Outline 1 Fermi Liquids Why, What, and How? Why Fermi liquids? What is a Fermi liquids? Fermi Liquids How? 2 Landau s Phenomenological Approach The free Fermi gas

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

Physics 115C Homework 2

Physics 115C Homework 2 Physics 5C Homework Problem Our full Hamiltonian is H = p m + mω x +βx 4 = H +H where the unperturbed Hamiltonian is our usual and the perturbation is H = p m + mω x H = βx 4 Assuming β is small, the perturbation

More information

Physical Chemistry Quantum Mechanics, Spectroscopy, and Molecular Interactions. Solutions Manual. by Andrew Cooksy

Physical Chemistry Quantum Mechanics, Spectroscopy, and Molecular Interactions. Solutions Manual. by Andrew Cooksy Physical Chemistry Quantum Mechanics, Spectroscopy, and Molecular Interactions Solutions Manual by Andrew Cooksy February 4, 2014 Contents Contents i Objectives Review Questions 1 Chapter Problems 11 Notes

More information

Outline Spherical symmetry Free particle Coulomb problem Keywords and References. Central potentials. Sourendu Gupta. TIFR, Mumbai, India

Outline Spherical symmetry Free particle Coulomb problem Keywords and References. Central potentials. Sourendu Gupta. TIFR, Mumbai, India Central potentials Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 2013 3 October, 2013 Outline 1 Outline 2 Rotationally invariant potentials 3 The free particle 4 The Coulomb problem 5 Keywords

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

More information

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func

Solved radial equation: Last time For two simple cases: infinite and finite spherical wells Spherical analogs of 1D wells We introduced auxiliary func Quantum Mechanics and Atomic Physics Lecture 16: The Coulomb Potential http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Solved radial equation: Last time For two simple cases: infinite

More information

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.3: Vector Model of Angular Momentum Modern Physics Unit 6: Hydrogen Atom - Radiation ecture 6.3: Vector Model of Angular Momentum Ron Reifenberger Professor of Physics Purdue University 1 Summary of Important Points from ast ecture The magnitude

More information

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance

IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance IV. Electronic Spectroscopy, Angular Momentum, and Magnetic Resonance The foundation of electronic spectroscopy is the exact solution of the time-independent Schrodinger equation for the hydrogen atom.

More information

( ( ; R H = 109,677 cm -1

( ( ; R H = 109,677 cm -1 CHAPTER 9 Atomic Structure and Spectra I. The Hydrogenic Atoms (one electron species). H, He +1, Li 2+, A. Clues from Line Spectra. Reminder: fundamental equations of spectroscopy: ε Photon = hν relation

More information

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial:

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial: St Hugh s 2 nd Year: Quantum Mechanics II Reading The following sources are recommended for this tutorial: The key text (especially here in Oxford) is Molecular Quantum Mechanics, P. W. Atkins and R. S.

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

Physics 139B Solutions to Homework Set 4 Fall 2009

Physics 139B Solutions to Homework Set 4 Fall 2009 Physics 139B Solutions to Homework Set 4 Fall 9 1. Liboff, problem 1.16 on page 594 595. Consider an atom whose electrons are L S coupled so that the good quantum numbers are j l s m j and eigenstates

More information

Physics 6C Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. July 16, Figure 1: Coulombs Law

Physics 6C Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. July 16, Figure 1: Coulombs Law Physics 6C Review 1 Eric Reichwein Department of Physics University of California, Santa Cruz July 16, 2012 1 Review 1.1 Coulombs Law Figure 1: Coulombs Law The steps for solving any problem of this type

More information

2 Electronic structure theory

2 Electronic structure theory Electronic structure theory. Generalities.. Born-Oppenheimer approximation revisited In Sec..3 (lecture 3) the Born-Oppenheimer approximation was introduced (see also, for instance, [Tannor.]). We are

More information

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 505 FINAL EXAMINATION. January 18, 2013, 1:30 4:30pm, A06 Jadwin Hall SOLUTIONS

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 505 FINAL EXAMINATION. January 18, 2013, 1:30 4:30pm, A06 Jadwin Hall SOLUTIONS PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 55 FINAL EXAMINATION January 18, 13, 1:3 4:3pm, A6 Jadwin Hall SOLUTIONS This exam contains five problems Work any three of the five problems All problems

More information

Addition of Angular Momenta

Addition of Angular Momenta Addition of Angular Momenta What we have so far considered to be an exact solution for the many electron problem, should really be called exact non-relativistic solution. A relativistic treatment is needed

More information

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation

Diatomic Molecules. 7th May Hydrogen Molecule: Born-Oppenheimer Approximation Diatomic Molecules 7th May 2009 1 Hydrogen Molecule: Born-Oppenheimer Approximation In this discussion, we consider the formulation of the Schrodinger equation for diatomic molecules; this can be extended

More information

PHYSICS 721/821 - Spring Semester ODU. Graduate Quantum Mechanics II Midterm Exam - Solution

PHYSICS 721/821 - Spring Semester ODU. Graduate Quantum Mechanics II Midterm Exam - Solution PHYSICS 72/82 - Spring Semester 2 - ODU Graduate Quantum Mechanics II Midterm Exam - Solution Problem ) An electron (mass 5, ev/c 2 ) is in a one-dimensional potential well as sketched to the right (the

More information

Problem 1: Step Potential (10 points)

Problem 1: Step Potential (10 points) Problem 1: Step Potential (10 points) 1 Consider the potential V (x). V (x) = { 0, x 0 V, x > 0 A particle of mass m and kinetic energy E approaches the step from x < 0. a) Write the solution to Schrodinger

More information

r R A 1 r R B + 1 ψ(r) = αψ A (r)+βψ B (r) (5) where we assume that ψ A and ψ B are ground states: ψ A (r) = π 1/2 e r R A ψ B (r) = π 1/2 e r R B.

r R A 1 r R B + 1 ψ(r) = αψ A (r)+βψ B (r) (5) where we assume that ψ A and ψ B are ground states: ψ A (r) = π 1/2 e r R A ψ B (r) = π 1/2 e r R B. Molecules Initial questions: What are the new aspects of molecules compared to atoms? What part of the electromagnetic spectrum can we probe? What can we learn from molecular spectra? How large a molecule

More information

Single Electron Atoms

Single Electron Atoms Single Electron Atoms In this section we study the spectrum and wave functions of single electron atoms. These are hydrogen, singly ionized He, doubly ionized Li, etc. We will write the formulae for hydrogen

More information

1 Commutators (10 pts)

1 Commutators (10 pts) Final Exam Solutions 37A Fall 0 I. Siddiqi / E. Dodds Commutators 0 pts) ) Consider the operator  = Ĵx Ĵ y + ĴyĴx where J i represents the total angular momentum in the ith direction. a) Express both

More information

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep Problem set 1 Due Sep 15 2005 1. Let V be the set of all complex valued functions of a real variable θ, that are periodic with period 2π. That is u(θ + 2π) = u(θ), for all u V. (1) (i) Show that this V

More information

would represent a 1s orbital centered on the H atom and φ 2px )+ 1 r 2 sinθ

would represent a 1s orbital centered on the H atom and φ 2px )+ 1 r 2 sinθ Physical Chemistry for Engineers CHEM 4521 Homework: Molecular Structure (1) Consider the cation, HeH +. (a) Write the Hamiltonian for this system (there should be 10 terms). Indicate the physical meaning

More information

Helium and two electron atoms

Helium and two electron atoms 1 Helium and two electron atoms e 2 r 12 e 1 r 2 r 1 +Ze Autumn 2013 Version: 04.12.2013 2 (1) Coordinate system, Schrödinger Equation 3 slides Evaluation of repulsion term 2 slides Radial Integral - details

More information

Schrödinger equation for central potentials

Schrödinger equation for central potentials Chapter 2 Schrödinger equation for central potentials In this chapter we will extend the concepts and methods introduced in the previous chapter for a one-dimensional problem to a specific and very important

More information

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments PHYS85 Quantum Mechanics I, Fall 9 HOMEWORK ASSIGNMENT Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments. [ pts]

More information

Electron States of Diatomic Molecules

Electron States of Diatomic Molecules IISER Pune March 2018 Hamiltonian for a Diatomic Molecule The hamiltonian for a diatomic molecule can be considered to be made up of three terms Ĥ = ˆT N + ˆT el + ˆV where ˆT N is the kinetic energy operator

More information

Quantum mechanics can be used to calculate any property of a molecule. The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is,

Quantum mechanics can be used to calculate any property of a molecule. The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is, Chapter : Molecules Quantum mechanics can be used to calculate any property of a molecule The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is, E = Ψ H Ψ Ψ Ψ 1) At first this seems like

More information

1. Thomas-Fermi method

1. Thomas-Fermi method 1. Thomas-Fermi method We consider a system of N electrons in a stationary state, that would obey the stationary Schrödinger equation: h i m + 1 v(r i,r j ) Ψ(r 1,...,r N ) = E i Ψ(r 1,...,r N ). (1.1)

More information

Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom.

Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom. Chemistry 356 017: Problem set No. 6; Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom. The H atom involves spherical coordinates and angular momentum, which leads to the shapes

More information

Angular Momentum Quantization: Physical Manifestations and Chemical Consequences

Angular Momentum Quantization: Physical Manifestations and Chemical Consequences Angular Momentum Quantization: Physical Manifestations and Chemical Consequences Michael Fowler, University of Virginia 7/7/07 The Stern-Gerlach Experiment We ve established that for the hydrogen atom,

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

PHYSICS 505 FINAL EXAMINATION

PHYSICS 505 FINAL EXAMINATION PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 505 FINAL EXAMINATION January 18, 2013, 1:30 4:30pm, A06 Jadwin Hall This exam contains five problems. Work any three of the five problems. All problems

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 20, March 8, 2006 Solved Homework We determined that the two coefficients in our two-gaussian

More information

Proton Neutron Scattering

Proton Neutron Scattering March 6, 205 Lecture XVII Proton Neutron Scattering Protons and neutrons are both spin /2. We will need to extend our scattering matrix to dimensions to include all the possible spin combinations fof the

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

Quantum Physics 130A. April 1, 2006

Quantum Physics 130A. April 1, 2006 Quantum Physics 130A April 1, 2006 2 1 HOMEWORK 1: Due Friday, Apr. 14 1. A polished silver plate is hit by beams of photons of known energy. It is measured that the maximum electron energy is 3.1 ± 0.11

More information

Helium Atom, Approximate Methods

Helium Atom, Approximate Methods Helium Atom, Approximate Methods 7th April 009 I. The Helium Atom and Variational Principle: Approximation Methods for Complex Atomic Systems The hydrogen atom wavefunctions and energies, we have seen,

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

C/CS/Phy191 Problem Set 6 Solutions 3/23/05

C/CS/Phy191 Problem Set 6 Solutions 3/23/05 C/CS/Phy191 Problem Set 6 Solutions 3/3/05 1. Using the standard basis (i.e. 0 and 1, eigenstates of Ŝ z, calculate the eigenvalues and eigenvectors associated with measuring the component of spin along

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Justin Campbell August 3, 2017 1 Representations of SU 2 and SO 3 (R) 1.1 The following observation is long overdue. Proposition

More information

Solutions Final exam 633

Solutions Final exam 633 Solutions Final exam 633 S.J. van Enk (Dated: June 9, 2008) (1) [25 points] You have a source that produces pairs of spin-1/2 particles. With probability p they are in the singlet state, ( )/ 2, and with

More information

Quantum Theory of Angular Momentum and Atomic Structure

Quantum Theory of Angular Momentum and Atomic Structure Quantum Theory of Angular Momentum and Atomic Structure VBS/MRC Angular Momentum 0 Motivation...the questions Whence the periodic table? Concepts in Materials Science I VBS/MRC Angular Momentum 1 Motivation...the

More information

1.4 Solution of the Hydrogen Atom

1.4 Solution of the Hydrogen Atom The phase of α can freely be chosen to be real so that α = h (l m)(l + m + 1). Then L + l m = h (l m)(l + m + 1) l m + 1 (1.24) L l m = h (l + m)(l m + 1) l m 1 (1.25) Since m is bounded, it follow that

More information

Quantum Physics Lecture 9

Quantum Physics Lecture 9 Quantum Physics Lecture 9 Potential barriers and tunnelling Examples E < U o Scanning Tunelling Microscope E > U o Ramsauer-Townsend Effect Angular Momentum - Orbital - Spin Pauli exclusion principle potential

More information

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 1

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 1 QUANTUM MECHANICS I PHYS 516 Solutions to Problem Set # 1 1. Scaling: Bohr computed the energy level spectrum of the hydrogen atom using the Old Quantum Theory, Heisenberg did the same using Matrix Mechanics,

More information

Phys 622 Problems Chapter 6

Phys 622 Problems Chapter 6 1 Problem 1 Elastic scattering Phys 622 Problems Chapter 6 A heavy scatterer interacts with a fast electron with a potential V (r) = V e r/r. (a) Find the differential cross section dσ dω = f(θ) 2 in the

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components. Chem 44 Review for Exam Hydrogenic atoms: The Coulomb energy between two point charges Ze and e: V r Ze r Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative

More information

Exam 4 Review. Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be posted.

Exam 4 Review. Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be posted. Chem 4502 Quantum Mechanics & Spectroscopy (Jason Goodpaster) Exam 4 Review Exam Review: A exam review sheet for exam 4 will be posted on the course webpage. Additionally, a practice exam will also be

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2 PHYS 4 3. The momentum operator in three dimensions is p = i Therefore the momentum-squared operator is [ p 2 = 2 2 = 2 r 2 ) + r 2 r r r 2 sin θ We notice that this can be written as sin θ ) + θ θ r 2

More information

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04 Page 71 Lecture 4: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 009/0/04 Date Given: 009/0/04 Plan of Attack Section 14.1 Rotations and Orbital Angular Momentum: Plan of Attack

More information

Hartree-Fock. It can also be viewed as the lowest order term in perturbative expansion (linear in U) with respect to interaction between electrons.

Hartree-Fock. It can also be viewed as the lowest order term in perturbative expansion (linear in U) with respect to interaction between electrons. Hartree-Fock It is probably the simplest method to treat the many-particle system. The dynamic many particle problem is replaced by an effective one-electron problem: electron is moving in an effective

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

Two-parameter Study of the 1s2s Excited State of He and Li + - Hund's Rule

Two-parameter Study of the 1s2s Excited State of He and Li + - Hund's Rule Two-parameter Study of the 1ss xcited State of He and Li + - Hund's Rule The trial variational wave functions for the 1s 1 s 1 excited state of helium atom and lithium ion are scaled hydrogen 1s and s

More information

CHMY 564 Homework #3 2Feb17 Due Friday, 10Feb17

CHMY 564 Homework #3 2Feb17 Due Friday, 10Feb17 564-17 Lec 11 Mon 6feb17 CHMY 564 Homework #3 2Feb17 Due Friday, 10Feb17 1. (a) Find the eigenfunctions and eigenvalues of the x component of linear momentum. (b) Why can a momentum eigenfunction never

More information

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions Quantum Physics III (8.6) Spring 8 Final Exam Solutions May 19, 8 1. Short answer questions (35 points) (a) ( points) α 4 mc (b) ( points) µ B B, where µ B = e m (c) (3 points) In the variational ansatz,

More information

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41 The Hydrogen Atom Chapter 18 P. J. Grandinetti Chem. 4300 Nov 6, 2017 P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, 2017 1 / 41 The Hydrogen Atom Hydrogen atom is simplest atomic system where

More information

PRACTICE PROBLEMS Give the electronic configurations and term symbols of the first excited electronic states of the atoms up to Z = 10.

PRACTICE PROBLEMS Give the electronic configurations and term symbols of the first excited electronic states of the atoms up to Z = 10. PRACTICE PROBLEMS 2 1. Based on your knowledge of the first few hydrogenic eigenfunctions, deduce general formulas, in terms of n and l, for (i) the number of radial nodes in an atomic orbital (ii) the

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

1 Reduced Mass Coordinates

1 Reduced Mass Coordinates Coulomb Potential Radial Wavefunctions R. M. Suter April 4, 205 Reduced Mass Coordinates In classical mechanics (and quantum) problems involving several particles, it is convenient to separate the motion

More information

Physics 1C Lecture 29B

Physics 1C Lecture 29B Physics 1C Lecture 29B Emission Spectra! The easiest gas to analyze is hydrogen gas.! Four prominent visible lines were observed, as well as several ultraviolet lines.! In 1885, Johann Balmer, found a

More information

Physics 342 Lecture 22. The Hydrogen Atom. Lecture 22. Physics 342 Quantum Mechanics I

Physics 342 Lecture 22. The Hydrogen Atom. Lecture 22. Physics 342 Quantum Mechanics I Physics 342 Lecture 22 The Hydrogen Atom Lecture 22 Physics 342 Quantum Mechanics I Friday, March 28th, 2008 We now begin our discussion of the Hydrogen atom. Operationally, this is just another choice

More information

Jack Simons Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information