Angular momentum. Quantum mechanics. Orbital angular momentum

Size: px
Start display at page:

Download "Angular momentum. Quantum mechanics. Orbital angular momentum"

Transcription

1 Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular momentum of such a particle about the origin is L = r p, giving L x = y p z z p y, (1 L y = z p x x p z, (2 L z = x p y y p x. (3 Let us assume that the operators (L x, L y, L z L which represent the components of orbital angular momentum in quantum mechanics can be defined in an analogous manner to the corresponding components of classical angular momentum. In other words, we are going to assume that the above equations specify the angular momentum operators in terms of the position and linear momentum operators. Note that L x, L y, and L z are Hermitian, so they represent things which can, in principle, be measured. Note, also, that there is no ambiguity regarding the order in which operators appear in products on the right-hand sides Eqs. (1 (3, since all of the products consist of operators which commute. The fundamental commutation relations satisfied by the position and linear momentum operators are [x i, x j ] = 0, (4 [p i, p j ] = 0, (5 [x i, p j ] = i h δ ij, (6 where i and j stand for either x, y, or z. Consider the commutator of the operators L x and L z : [L x, L y ] = [(y p z z p y, (z p x x p z ] = y [p z, z] p x + x p y [z, p z ] = i h ( y p x + x p y = i h L z.

2 Orbital angular momentum The cyclic permutations of the above result yield the fundamental commutation relations satisfied by the components of an angular momentum: These can be summed up more succinctly by writing [L x, L y ] = i h L z, (8 [L y, L z ] = i h L x, (9 [L z, L x ] = i h L y. (10 L L = i h L. (11 The three commutation relations (8 (10 are the foundation for the whole theory of angular momentum in quantum mechanics. Whenever we encounter three operators having these commutation relations, we know that the dynamical variables which they represent have identical properties to those of the components of an angular momentum (which we are about to derive. In fact, we shall assume that any three operators which satisfy the commutation relations (8 (10 represent the components of an angular momentum. Suppose that there are N particles in the system, with angular momentum vectors L i (where i runs from 1 to N. Each of these vectors satisfies Eq. (11, so that L i L i = i h L i. (12 However, we expect the angular momentum operators belonging to different particles to commute, since they represent different degrees of freedom of the system. So, we can write L i L j + L j L i = 0, (13 for i j. Consider the total angular momentum of the system, L = N i=1 L i. It is clear from Eqs. (12 and (13 that L L = L i i=1 = i h L j = j=1 L i = i h L. i=1 L i L i i=1 (L i L j + L j L i i,j=1

3 Orbital angular momentum L 2 y Consider the magnitude squared of the angular momentum vector, L 2 L 2 + Lz 2. The commutator of L 2 and L z is written It is easily demonstrated that [L 2, L z ] = [L 2 x, L z ] + [L 2 y, L z ] + [L 2 z, L z ]. (15 x + so [L 2 x, L z ] = i h (L x L y + L y L x, (16 [L 2 y, L z ] = +i h (L x L y + L y L x, (17 [L 2 z, L z ] = 0, (18 [L 2, L z ] = 0. (19 Since there is nothing special about the z-axis, we conclude that L 2 also commutes with L x and L y. It is clear from Eqs. ( 8 (10 and (19 that the best we can do in quantum mechanics is to specify the magnitude of an angular momentum vector along with one of its components (by convention, the z-component. It is convenient to define the shift operators L + and L : Note that L + = L x + i L y, (20 L = L x i L y. (21 [L +, L z ] = h L +, (22 Note, also, that both shift operators commute with L 2. [L, L z ] = + h L, (23 [L +, L ] = 2 h L z. (24

4 Eigenfunctions of orbital angular momentum Eigenfunctions of orbital angular momentum In Cartesian coordinates, the three components of orbital angular momentum can be written L x L y L z = i h y z z y = i h z x x z = i h x y y x using the Schrödinger representation. Transforming to standard spherical polar coordinates, 26 we obtain x = r sin θ cos ϕ, y = r sin θ sin ϕ, z = r cos θ, L x = i h sin ϕ θ L y = i h cos ϕ θ L z = i h ϕ. L 2 = Lx 2 + Ly 2 + Lz 2 + cot θ cos ϕ ϕ cot θ sin ϕ ϕ (27 (28 (29 (30 (31 (32 (33 from the above eqs. (30, (31, (32 and (34, we can obtain: L 2 = h 2 1 sin θ θ sin θ θ sin 2 θ ϕ 2. (34

5 Eigenfunctions of orbital angular momentum Quantum The eigenvalue problem for L 2 takes the form where Equation ψ(r, θ, ϕ L 2 ψ = λ h 2 ψ, (35 is the wave-function, and λ is a numbeṙ Let us write (r, θ, ϕ = R(r Y(θ, ϕ. (36 (35 reduces to 1 sin θ θ sin θ θ sin 2 θ ϕ 2 Y + λ Y = 0, (37 where use has been made of Eq. (34 As is well-known, square integrable solutions to this equation only exist when λ takes the values l (l + 1, where l is an integer. These solutions are known as spherical harmonics, and can be written Yl m (θ, ϕ = 2 l + 1 (l m! 4π (l + m! ( 1m e i m ϕ Pl m (cos ϕ, (38 where m is a positive integer lying in the range 0 m l. Here, P m l (ξ is an associated Legendre function satisfying the equation We define [ d (1 ξ 2 dpm l dξ dξ ] m2 1 ξ 2Pm l + l (l + 1 P m l = 0. Y m l = ( 1 m (Y m l, (40 (41 which allows m to take the negative values l m < 0. The spherical harmonics are orthogonal functions, and are properly normalized with respect to integration over the entire solid angle: π 2π 0 0 Y m l (θ, ϕ Y m l (θ, ϕ sin θ dθ dϕ = δ ll δ mm. (42

6 Eigenfunctions of orbital angular momentum The spherical harmonics also form a complete set for representing general functions of θ and ϕ. By definition, L 2 Y m l = l (l + 1 h 2 Y m l, (43 where l is an integer. It follows from Eqs. (32 and (38 that L z Y m l = m h Y m l, (44 where m is an integer lying in the range l m l. Thus, the wave-function (r, θ, ϕ = R(r Y m l (θ, φ, where R is a general function, has all of the expected features of the wave-function of a simultaneous eigenstate of L 2 and L z belonging to the quantum numbers l and m.

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators Lecture Spin, orbital, and total angular momentum 70.00 Mechanics Very brief background MATH-GA In 9, a famous experiment conducted by Otto Stern and Walther Gerlach, involving particles subject to a nonuniform

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

Angular Momentum. Classically the orbital angular momentum with respect to a fixed origin is. L = r p. = yp z. L x. zp y L y. = zp x. xpz L z.

Angular Momentum. Classically the orbital angular momentum with respect to a fixed origin is. L = r p. = yp z. L x. zp y L y. = zp x. xpz L z. Angular momentum is an important concept in quantum theory, necessary for analyzing motion in 3D as well as intrinsic properties such as spin Classically the orbital angular momentum with respect to a

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

Quantum Theory of Angular Momentum and Atomic Structure

Quantum Theory of Angular Momentum and Atomic Structure Quantum Theory of Angular Momentum and Atomic Structure VBS/MRC Angular Momentum 0 Motivation...the questions Whence the periodic table? Concepts in Materials Science I VBS/MRC Angular Momentum 1 Motivation...the

More information

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1 L1.P1 Lecture #1 Review Postulates of quantum mechanics (1-3) Postulate 1 The state of a system at any instant of time may be represented by a wave function which is continuous and differentiable. Specifically,

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Summary: angular momentum derivation

Summary: angular momentum derivation Summary: angular momentum derivation L = r p L x = yp z zp y, etc. [x, p y ] = 0, etc. (-) (-) (-3) Angular momentum commutation relations [L x, L y ] = i hl z (-4) [L i, L j ] = i hɛ ijk L k (-5) Levi-Civita

More information

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics We now consider the spatial degrees of freedom of a particle moving in 3-dimensional space, which of course is an important

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

1 Commutators (10 pts)

1 Commutators (10 pts) Final Exam Solutions 37A Fall 0 I. Siddiqi / E. Dodds Commutators 0 pts) ) Consider the operator  = Ĵx Ĵ y + ĴyĴx where J i represents the total angular momentum in the ith direction. a) Express both

More information

Quantum Mechanics in 3-Dimensions

Quantum Mechanics in 3-Dimensions Quantum Mechanics in 3-Dimensions Pavithran S Iyer, 2nd yr BSc Physics, Chennai Mathematical Institute Email: pavithra@cmi.ac.in August 28 th, 2009 1 Schrodinger equation in Spherical Coordinates 1.1 Transforming

More information

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry

Spin Dynamics Basic Theory Operators. Richard Green SBD Research Group Department of Chemistry Spin Dynamics Basic Theory Operators Richard Green SBD Research Group Department of Chemistry Objective of this session Introduce you to operators used in quantum mechanics Achieve this by looking at:

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor

A Quantum Mechanical Model for the Vibration and Rotation of Molecules. Rigid Rotor A Quantum Mechanical Model for the Vibration and Rotation of Molecules Harmonic Oscillator Rigid Rotor Degrees of Freedom Translation: quantum mechanical model is particle in box or free particle. A molecule

More information

26 Group Theory Basics

26 Group Theory Basics 26 Group Theory Basics 1. Reference: Group Theory and Quantum Mechanics by Michael Tinkham. 2. We said earlier that we will go looking for the set of operators that commute with the molecular Hamiltonian.

More information

Angular momentum. Angular momentum operators. Quantum mechanics for scientists and engineers

Angular momentum. Angular momentum operators. Quantum mechanics for scientists and engineers 7.1 Angular momentum Slides: Video 7.1.1 Angular momentum operators Text reference: Quantum Mechanics for Scientists and Engineers Chapter 9 introduction and Section 9.1 (first part) Angular momentum Angular

More information

Angular momentum & spin

Angular momentum & spin Angular momentum & spin January 8, 2002 1 Angular momentum Angular momentum appears as a very important aspect of almost any quantum mechanical system, so we need to briefly review some basic properties

More information

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta Physics 1A Fall 1996 Notes 14 Coupling of Angular Momenta In these notes we will discuss the problem of the coupling or addition of angular momenta. It is assumed that you have all had experience with

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x ] =

More information

Sample Quantum Chemistry Exam 2 Solutions

Sample Quantum Chemistry Exam 2 Solutions Chemistry 46 Fall 7 Dr. Jean M. Standard Name SAMPE EXAM Sample Quantum Chemistry Exam Solutions.) ( points) Answer the following questions by selecting the correct answer from the choices provided. a.)

More information

More On Carbon Monoxide

More On Carbon Monoxide More On Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results Jerry Gilfoyle The Configurations of CO 1 / 26 More On Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results Jerry Gilfoyle The Configurations

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

9 Angular Momentum I. Classical analogy, take. 9.1 Orbital Angular Momentum

9 Angular Momentum I. Classical analogy, take. 9.1 Orbital Angular Momentum 9 Angular Momentum I So far we haven t examined QM s biggest success atomic structure and the explanation of atomic spectra in detail. To do this need better understanding of angular momentum. In brief:

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x = 0,

More information

Lecture 7. More dimensions

Lecture 7. More dimensions Lecture 7 More dimensions 67 68 LECTURE 7. MORE DIMENSIONS 7.1 Introduction In this lecture we generalize the concepts introduced so far to systems that evolve in more than one spatial dimension. While

More information

Ch 125a Problem Set 1

Ch 125a Problem Set 1 Ch 5a Problem Set Due Monday, Oct 5, 05, am Problem : Bra-ket notation (Dirac notation) Bra-ket notation is a standard and convenient way to describe quantum state vectors For example, φ is an abstract

More information

Chemistry 532 Practice Final Exam Fall 2012 Solutions

Chemistry 532 Practice Final Exam Fall 2012 Solutions Chemistry 53 Practice Final Exam Fall Solutions x e ax dx π a 3/ ; π sin 3 xdx 4 3 π cos nx dx π; sin θ cos θ + K x n e ax dx n! a n+ ; r r r r ˆL h r ˆL z h i φ ˆL x i hsin φ + cot θ cos φ θ φ ) ˆLy i

More information

Waves and the Schroedinger Equation

Waves and the Schroedinger Equation Waves and the Schroedinger Equation 5 april 010 1 The Wave Equation We have seen from previous discussions that the wave-particle duality of matter requires we describe entities through some wave-form

More information

Physics 70007, Fall 2009 Answers to Final Exam

Physics 70007, Fall 2009 Answers to Final Exam Physics 70007, Fall 009 Answers to Final Exam December 17, 009 1. Quantum mechanical pictures a Demonstrate that if the commutation relation [A, B] ic is valid in any of the three Schrodinger, Heisenberg,

More information

Time part of the equation can be separated by substituting independent equation

Time part of the equation can be separated by substituting independent equation Lecture 9 Schrödinger Equation in 3D and Angular Momentum Operator In this section we will construct 3D Schrödinger equation and we give some simple examples. In this course we will consider problems where

More information

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation:

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation: One-electron Atom The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's

More information

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Justin Campbell August 3, 2017 1 Representations of SU 2 and SO 3 (R) 1.1 The following observation is long overdue. Proposition

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Prof. Boris Altshuler April, 20 Lecture 2. Scattering Theory Reviewed Remember what we have covered so far for scattering theory. We separated the Hamiltonian similar to the way in

More information

Addition of Angular Momenta

Addition of Angular Momenta Addition of Angular Momenta What we have so far considered to be an exact solution for the many electron problem, should really be called exact non-relativistic solution. A relativistic treatment is needed

More information

PHYS 771, Quantum Mechanics, Final Exam, Fall 2011 Instructor: Dr. A. G. Petukhov. Solutions

PHYS 771, Quantum Mechanics, Final Exam, Fall 2011 Instructor: Dr. A. G. Petukhov. Solutions PHYS 771, Quantum Mechanics, Final Exam, Fall 11 Instructor: Dr. A. G. Petukhov Solutions 1. Apply WKB approximation to a particle moving in a potential 1 V x) = mω x x > otherwise Find eigenfunctions,

More information

Problems and Multiple Choice Questions

Problems and Multiple Choice Questions Problems and Multiple Choice Questions 1. A momentum operator in one dimension is 2. A position operator in 3 dimensions is 3. A kinetic energy operator in 1 dimension is 4. If two operator commute, a)

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.32 Fall 2006 Quantum Theory I October 9, 2006 Assignment 6 Due October 20, 2006 Announcements There will be a makeup lecture on Friday,

More information

PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 10: Solutions

PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 10: Solutions PHYS851 Quantum Mechanics I, Fall 009 HOMEWORK ASSIGNMENT 10: Solutions Topics Covered: Tensor product spaces, change of coordinate system, general theory of angular momentum Some Key Concepts: Angular

More information

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum Chapter 2 The Hydrogen atom In the previous chapter we gave a quick overview of the Bohr model, which is only really valid in the semiclassical limit. cf. section 1.7.) We now begin our task in earnest

More information

The energy of the emitted light (photons) is given by the difference in energy between the initial and final states of hydrogen atom.

The energy of the emitted light (photons) is given by the difference in energy between the initial and final states of hydrogen atom. Lecture 20-21 Page 1 Lectures 20-21 Transitions between hydrogen stationary states The energy of the emitted light (photons) is given by the difference in energy between the initial and final states of

More information

3.5 Finite Rotations in 3D Euclidean Space and Angular Momentum in QM

3.5 Finite Rotations in 3D Euclidean Space and Angular Momentum in QM 3.5 Finite Rotations in 3D Euclidean Space and Angular Momentum in QM An active rotation in 3D position space is defined as the rotation of a vector about some point in a fixed coordinate system (a passive

More information

Physics 215 Quantum Mechanics I Assignment 8

Physics 215 Quantum Mechanics I Assignment 8 Physics 15 Quantum Mechanics I Assignment 8 Logan A. Morrison March, 016 Problem 1 Let J be an angular momentum operator. Part (a) Using the usual angular momentum commutation relations, prove that J =

More information

Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom.

Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom. Chemistry 356 017: Problem set No. 6; Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom. The H atom involves spherical coordinates and angular momentum, which leads to the shapes

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Expansion of 1/r potential in Legendre polynomials

Expansion of 1/r potential in Legendre polynomials Expansion of 1/r potential in Legendre polynomials In electrostatics and gravitation, we see scalar potentials of the form V = K d Take d = R r = R 2 2Rr cos θ + r 2 = R 1 2 r R cos θ + r R )2 Use h =

More information

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators

Collection of formulae Quantum mechanics. Basic Formulas Division of Material Science Hans Weber. Operators Basic Formulas 17-1-1 Division of Material Science Hans Weer The de Broglie wave length λ = h p The Schrödinger equation Hψr,t = i h t ψr,t Stationary states Hψr,t = Eψr,t Collection of formulae Quantum

More information

which implies that we can take solutions which are simultaneous eigen functions of

which implies that we can take solutions which are simultaneous eigen functions of Module 1 : Quantum Mechanics Chapter 6 : Quantum mechanics in 3-D Quantum mechanics in 3-D For most physical systems, the dynamics is in 3-D. The solutions to the general 3-d problem are quite complicated,

More information

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2 PHYS 4 3. The momentum operator in three dimensions is p = i Therefore the momentum-squared operator is [ p 2 = 2 2 = 2 r 2 ) + r 2 r r r 2 sin θ We notice that this can be written as sin θ ) + θ θ r 2

More information

1.4 Solution of the Hydrogen Atom

1.4 Solution of the Hydrogen Atom The phase of α can freely be chosen to be real so that α = h (l m)(l + m + 1). Then L + l m = h (l m)(l + m + 1) l m + 1 (1.24) L l m = h (l + m)(l m + 1) l m 1 (1.25) Since m is bounded, it follow that

More information

PH425 Spins Homework 5 Due 4 pm. particles is prepared in the state: + + i 3 13

PH425 Spins Homework 5 Due 4 pm. particles is prepared in the state: + + i 3 13 PH45 Spins Homework 5 Due 10/5/18 @ 4 pm REQUIRED: 1. A beam of spin- 1 particles is prepared in the state: ψ + + i 1 1 (a) What are the possible results of a measurement of the spin component S z, and

More information

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41

The Hydrogen Atom. Chapter 18. P. J. Grandinetti. Nov 6, Chem P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, / 41 The Hydrogen Atom Chapter 18 P. J. Grandinetti Chem. 4300 Nov 6, 2017 P. J. Grandinetti (Chem. 4300) The Hydrogen Atom Nov 6, 2017 1 / 41 The Hydrogen Atom Hydrogen atom is simplest atomic system where

More information

Quantum Mechanics in Multidimensions

Quantum Mechanics in Multidimensions Quantum Mechanics in Multidimensions In this chapter we discuss bound state solutions of the Schrödinger equation in more than one dimension. In this chapter we will discuss some particularly straightforward

More information

Physics 342 Lecture 26. Angular Momentum. Lecture 26. Physics 342 Quantum Mechanics I

Physics 342 Lecture 26. Angular Momentum. Lecture 26. Physics 342 Quantum Mechanics I Physics 342 Lecture 26 Angular Momentum Lecture 26 Physics 342 Quantum Mechanics I Friday, April 2nd, 2010 We know how to obtain the energy of Hydrogen using the Hamiltonian operator but given a particular

More information

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4

H atom solution. 1 Introduction 2. 2 Coordinate system 2. 3 Variable separation 4 H atom solution Contents 1 Introduction 2 2 Coordinate system 2 3 Variable separation 4 4 Wavefunction solutions 6 4.1 Solution for Φ........................... 6 4.2 Solution for Θ...........................

More information

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments PHYS85 Quantum Mechanics I, Fall 9 HOMEWORK ASSIGNMENT Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments. [ pts]

More information

Schrödinger equation for the nuclear potential

Schrödinger equation for the nuclear potential Schrödinger equation for the nuclear potential Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 24, 2011 NUCS 342 (Lecture 4) January 24, 2011 1 / 32 Outline 1 One-dimensional

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx Physics 74 Graduate Quantum Mechanics Solutions to Midterm Exam, Fall 4. [ points] Consider the wave function x Nexp x ix (a) [6] What is the correct normaliation N? The normaliation condition is. exp,

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Schrödinger equation for central potentials

Schrödinger equation for central potentials Chapter 2 Schrödinger equation for central potentials In this chapter we will extend the concepts and methods introduced in the previous chapter ifor a one-dimenional problem to a specific and very important

More information

3. Quantum Mechanics in 3D

3. Quantum Mechanics in 3D 3. Quantum Mechanics in 3D 3.1 Introduction Last time, we derived the time dependent Schrödinger equation, starting from three basic postulates: 1) The time evolution of a state can be expressed as a unitary

More information

1 The postulates of quantum mechanics

1 The postulates of quantum mechanics 1 The postulates of quantum mechanics The postulates of quantum mechanics were derived after a long process of trial and error. These postulates provide a connection between the physical world and the

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

The Central Force Problem: Hydrogen Atom

The Central Force Problem: Hydrogen Atom The Central Force Problem: Hydrogen Atom B. Ramachandran Separation of Variables The Schrödinger equation for an atomic system with Z protons in the nucleus and one electron outside is h µ Ze ψ = Eψ, r

More information

Introduction to Quantum Physics and Models of Hydrogen Atom

Introduction to Quantum Physics and Models of Hydrogen Atom Introduction to Quantum Physics and Models of Hydrogen Atom Tien-Tsan Shieh Department of Applied Math National Chiao-Tung University November 7, 2012 Physics and Models of Hydrogen November Atom 7, 2012

More information

Isotropic harmonic oscillator

Isotropic harmonic oscillator Isotropic harmonic oscillator 1 Isotropic harmonic oscillator The hamiltonian of the isotropic harmonic oscillator is H = h m + 1 mω r (1) = [ h d m dρ + 1 ] m ω ρ, () ρ=x,y,z a sum of three one-dimensional

More information

Spherical Harmonics on S 2

Spherical Harmonics on S 2 7 August 00 1 Spherical Harmonics on 1 The Laplace-Beltrami Operator In what follows, we describe points on using the parametrization x = cos ϕ sin θ, y = sin ϕ sin θ, z = cos θ, where θ is the colatitude

More information

Angular Momentum. Classical. J r p. radius vector from origin. linear momentum. determinant form of cross product iˆ xˆ J J J J J J

Angular Momentum. Classical. J r p. radius vector from origin. linear momentum. determinant form of cross product iˆ xˆ J J J J J J Angular Momentum Classical r p p radius vector from origin linear momentum r iˆ ˆj kˆ x y p p p x y determinant form of cross product iˆ xˆ ˆj yˆ kˆ ˆ y p p x y p x p y x x p y p y x x y Copyright Michael

More information

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case The Postulates of Quantum Mechanics Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about the

More information

Chapter 13. Electron Spin Double Groups

Chapter 13. Electron Spin Double Groups Chapter 3. Electron Spin Double Groups Notes: Most of the material presented in this chapter is taken from Bunker and Jensen (998), Chap. 8. 3. Half-integer Angular Momenta and the Operation R While determining

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

The one and three-dimensional particle in a box are prototypes of bound systems. As we

The one and three-dimensional particle in a box are prototypes of bound systems. As we 6 Lecture 10 The one and three-dimensional particle in a box are prototypes of bound systems. As we move on in our study of quantum chemistry, we'll be considering bound systems that are more and more

More information

Physics 342 Lecture 27. Spin. Lecture 27. Physics 342 Quantum Mechanics I

Physics 342 Lecture 27. Spin. Lecture 27. Physics 342 Quantum Mechanics I Physics 342 Lecture 27 Spin Lecture 27 Physics 342 Quantum Mechanics I Monday, April 5th, 2010 There is an intrinsic characteristic of point particles that has an analogue in but no direct derivation from

More information

POSTULATES OF QUANTUM MECHANICS

POSTULATES OF QUANTUM MECHANICS POSTULATES OF QUANTUM MECHANICS Quantum-mechanical states - In the coordinate representation, the state of a quantum-mechanical system is described by the wave function ψ(q, t) = ψ(q 1,..., q f, t) (in

More information

The rotation group and quantum mechanics 1 D. E. Soper 2 University of Oregon 30 January 2012

The rotation group and quantum mechanics 1 D. E. Soper 2 University of Oregon 30 January 2012 The rotation group and quantum mechanics 1 D. E. Soper 2 University of Oregon 30 January 2012 I offer here some background for Chapter 3 of J. J. Sakurai, Modern Quantum Mechanics. 1 The rotation group

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

3 Angular Momentum and Spin

3 Angular Momentum and Spin In this chapter we review the notions surrounding the different forms of angular momenta in quantum mechanics, including the spin angular momentum, which is entirely quantum mechanical in nature. Some

More information

Chapter 13. Electron Spin Double Groups Half-integer Angular Momenta and the Operation R. , (13.1) sin α 2 ( )

Chapter 13. Electron Spin Double Groups Half-integer Angular Momenta and the Operation R. , (13.1) sin α 2 ( ) Chapter 3. Electron Spin Double Groups Notes: Most of the material presented in this chapter is taken from Bunker and Jensen (998), Chap. 8. 3. Half-integer Angular Momenta and the Operation R While determining

More information

EE201/MSE207 Lecture 10 Angular momentum

EE201/MSE207 Lecture 10 Angular momentum EE20/MSE207 Lecture 0 Angular momentum (A lot of mathematics; I will try to explain as simple as possile) Classical mechanics r L = r p (angular momentum) Quantum mechanics The same, ut p x = iħ x p =

More information

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case:

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: The Schrodinger Equation and Postulates Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about

More information

(3.1) Module 1 : Atomic Structure Lecture 3 : Angular Momentum. Objectives In this Lecture you will learn the following

(3.1) Module 1 : Atomic Structure Lecture 3 : Angular Momentum. Objectives In this Lecture you will learn the following Module 1 : Atomic Structure Lecture 3 : Angular Momentum Objectives In this Lecture you will learn the following Define angular momentum and obtain the operators for angular momentum. Solve the problem

More information

Legendre Polynomials and Angular Momentum

Legendre Polynomials and Angular Momentum University of Connecticut DigitalCommons@UConn Chemistry Education Materials Department of Chemistry August 006 Legendre Polynomials and Angular Momentum Carl W. David University of Connecticut, Carl.David@uconn.edu

More information

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I Physics 342 Lecture 23 Radial Separation Lecture 23 Physics 342 Quantum Mechanics I Friday, March 26th, 2010 We begin our spherical solutions with the simplest possible case zero potential. Aside from

More information

A note on the Lipkin model in arbitrary fermion number

A note on the Lipkin model in arbitrary fermion number Prog. Theor. Exp. Phys. 017, 081D01 9 pages) DOI: 10.1093/ptep/ptx105 Letter A note on the Lipkin model in arbitrary fermion number Yasuhiko Tsue 1,,, Constança Providência 1,, João da Providência 1,,

More information

5. Spherically symmetric potentials

5. Spherically symmetric potentials TFY4215/FY1006 Lecture notes 5 1 Lecture notes 5 5. Spherically symmetric potentials Chapter 5 of FY1006/TFY4215 Spherically symmetric potentials is covered by sections 5.1 and 5.4 5.7 in Hemmer s bok,

More information

1 Schroenger s Equation for the Hydrogen Atom

1 Schroenger s Equation for the Hydrogen Atom Schroenger s Equation for the Hydrogen Atom Here is the Schroedinger equation in D in spherical polar coordinates. Note that the definitions of θ and φ are the exact reverse of what they are in mathematics.

More information

Spherical Coordinates and Legendre Functions

Spherical Coordinates and Legendre Functions Spherical Coordinates and Legendre Functions Spherical coordinates Let s adopt the notation for spherical coordinates that is standard in physics: φ = longitude or azimuth, θ = colatitude ( π 2 latitude)

More information

We now turn to our first quantum mechanical problems that represent real, as

We now turn to our first quantum mechanical problems that represent real, as 84 Lectures 16-17 We now turn to our first quantum mechanical problems that represent real, as opposed to idealized, systems. These problems are the structures of atoms. We will begin first with hydrogen-like

More information

Angular momentum and spin

Angular momentum and spin Luleå tekniska universitet Avdelningen för Fysik, 007 Hans Weber Angular momentum and spin Angular momentum is a measure of how much rotation there is in particle or in a rigid body. In quantum mechanics

More information

Lecture 5 Scattering theory, Born Approximation. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 5 Scattering theory, Born Approximation. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 5 Scattering theory, Born Approximation SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 Scattering amplitude We are going to show here that we can obtain the differential cross

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 5 I. REPRESENTING STATES IN THE FULL HILBERT SPACE Given a representation of the states that span the spin Hilbert space, we now need to consider the problem

More information

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2 One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly

More information

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04 Page 71 Lecture 4: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 009/0/04 Date Given: 009/0/04 Plan of Attack Section 14.1 Rotations and Orbital Angular Momentum: Plan of Attack

More information

Quantum Physics 130A. April 1, 2006

Quantum Physics 130A. April 1, 2006 Quantum Physics 130A April 1, 2006 2 1 HOMEWORK 1: Due Friday, Apr. 14 1. A polished silver plate is hit by beams of photons of known energy. It is measured that the maximum electron energy is 3.1 ± 0.11

More information

Are these states normalized? A) Yes

Are these states normalized? A) Yes QMII-. Consider two kets and their corresponding column vectors: Ψ = φ = Are these two state orthogonal? Is ψ φ = 0? A) Yes ) No Answer: A Are these states normalized? A) Yes ) No Answer: (each state has

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information