Physics 342 Lecture 26. Angular Momentum. Lecture 26. Physics 342 Quantum Mechanics I

Size: px
Start display at page:

Download "Physics 342 Lecture 26. Angular Momentum. Lecture 26. Physics 342 Quantum Mechanics I"

Transcription

1 Physics 342 Lecture 26 Angular Momentum Lecture 26 Physics 342 Quantum Mechanics I Friday, April 2nd, 2010 We know how to obtain the energy of Hydrogen using the Hamiltonian operator but given a particular E n, there is degeneracy many ψ nlm r, θ, φ) have the same energy. What we would like is a set of operators that allow us to determine l and m. The angular momentum operator ˆL, and in particular the combination L 2 and L z provide precisely the additional Hermitian observables we need Classical Description Going back to our Hamiltonian for a central potential, we have H = p p 2 m + Ur). 26.1) It is clear from the dependence of U on the radial distance only, that angular momentum should be conserved in this setting. Remember the definition: L = r p, 26.2) and we can write this in indexed notation which is slightly easier to work with using the Levi-Civita symbol, defined as in three dimensions) 1 for ijk) an even permutation of 123). ɛ ijk = 1 for an odd permutation 26.3) 0 otherwise Then we can write 3 3 L i = ɛ ijk r j p k = ɛ ijk r j p k 26.4) j=1 k=1 1 of 8

2 26.2. QUANTUM COMMUTATORS Lecture 26 where the sum over j and k is implied in the second equality this is Einstein summation notation). There are three numbers here, L i for i = 1, 2, 3, we associate with L x, L y, and L z, the individual components of angular momentum about the three spatial axes. To see that this is a conserved vector of quantities, we calculate the classical Poisson bracket: [H, L i ] = H j L i p j H p j L i j and p j p k ɛ ijk = 0 1. Noting that j = du dr j ɛ ikj r k p j 2 m ɛ ijk p k 26.5) = r j r, we have the first term in the bracket above proportional to ɛ ijk r j r k, and this is zero as well. So we learn that along the dynamical trajectory, dl i dt = 0. The vanishing of the classical Poisson bracket suggests that we take a look at the quantum commutator of the operator form ˆL and the Hamiltonian operator Ĥ. If these commute, then we know that the eigenvectors of ˆL can be shared by Ĥ Quantum Commutators Consider the quantum operator: ˆL = r ) i which, again, we can write in indexed form: We have seen that the replacement [, ] P B [, ] i 26.7) ˆL i = ɛ ijk r j i k. 26.8) leads from the Poisson bracket to the commutator, and so it is reasonable to ask how ˆL i commutes with Ĥ we expect, from the classical consideration, that [Ĥ, ˆL i ] = 0 for i = 1, 2, 3. To see that this is indeed the case, let s use a test function fr n ) shorthand for fx, y, z)), and consider the commutator directly: [Ĥ, ˆL i ] fr n ) = Ĥ ˆL i fr n ) ˆL i Ĥ fr n ). 26.9) 1 the object p j p k is unchanged under j k, while ɛ ijk flips sign ɛ ijk p j p k = ɛ ijk p k p j = ɛ ikj p k p j = ɛ ijk p k p j = ɛ ijk p j p k, 26.6) and then we must have ɛ ijk p j p k = 0 since it is equal to its own negative. 2 of 8

3 26.2. QUANTUM COMMUTATORS Lecture 26 The first term, written out, is ) i Ĥ ˆL i fr n ) = 2 2 m q q + Ur) ɛ ijk r j k fr n )) = 2 2 m q ɛ ijk δ jq k fr n ) + ɛ ijk r j q k fr n )) + Ur) ɛ ijk r j k fr n )) = 2 2 m ɛ iqk q k fr n ) + ɛ ijk δ jq q k fr n )) + ɛ ijk r j q q k fr n )) + Ur) ɛ ijk r j k fr n )) 26.10) and note that the first two terms involving second derivatives are automatically zero. Then, in vector notation, we can write: Ĥ ˆL fr n ) = ] [ 2 i 2 m r 2 f) + Ur) r f ) Now consider the other direction, ) i ˆL i Ĥ fr n ) = ɛ ijk r j k 2 2 m q q fr n ) + Ur) fr n ) ) = 2 U 2 m ɛ ijk r j k q q fr n ) + ɛ ijk r j fr n ) + Ur) k fr n ) k 26.12) where, once again, k r k so the term involving the derivative of U will vanish, leaving us with ˆL Ĥ fr n) = ] [ 2 i 2 m r 2 f) + Ur) r f ) So it is, indeed, the case that [Ĥ, ˆL i ] = ˆLi Commutators Before exploring the implications of the shared eigenfunctions of Ĥ and ˆL i, let s calculate the commutators of the components of ˆL i with themselves. Consider, for example 1 2 ˆL i ˆLj fr n ) = ɛ ipq r p q ɛ juv r u v fr n )) = ɛ ipq r p ɛ jqv v fr n ) + ɛ ipq r p ɛ juv r u q v fr n ) 26.14) 3 of 8

4 26.2. QUANTUM COMMUTATORS Lecture 26 and the other direction, obtained by interchanging i j: 1 ˆL 2 j ˆLi fr n ) = ɛ jpq r p ɛ iqv v fr n ) + ɛ jpq r p ɛ iuv r u q v fr n ), 26.15) then the commutator is 1 2 [ˆL i, ˆL j ] fr n ) = ɛ ipq r p ɛ jqv v fr n ) ɛ jpq r p ɛ iqv v fr n ) ) Using the identity ɛ qip ɛ qjv = δ ij δ pv δ iv δ pj, we can rearrange 1 2 [ˆL i, ˆL j ] fr n ) =δ iv δ pj δ jv δ pi )] r p v fr n ) = δ ip δ jv δ iv δ jp ) v fr n ) = ɛ lij ɛ lpv r p v fr n ) 26.17) or, finally = i ɛ lij ˆL l, [ˆL i, ˆL j ] = i ɛ lij ˆLl ) We learn that, for example, [ˆL x, ˆL y ] = i L z. This tells us that it is impossible to find eigenfunctions of L x that are simultaneously eigenfunctions of L y and/or L z. So returning to the issue of [Ĥ, ˆL i ] = 0, we can, evidently, choose any one of the angular momentum operators, and have shared eigenfunctions of Ĥ and ˆL i, but we cannot also have these eigenfunctions for ˆL j. That may seem strange after all, if a vector is an eigenvector of Ĥ and ˆL x, and we can also make an eigenvector that is shared between Ĥ and ˆL z, then surely there is an eigenvector shared by all three? The above says that this is not true, and we shall see some explicit examples next time. For now, let s look for combinations of angular momentum operators that simultaneously commute with Ĥ and ˆL z, for example we are preferentially treating ˆL z as the operator that shares its eigenstates with Ĥ, but this is purely a matter of choice). The most obvious potential operator is ˆL 2 : [ˆL 2, ˆL z ] = [L 2 x + L 2 y + L 2 z), L z ] = L x [L x, L z ] i L y L x + L y [L y, L z ] + i L x L y + 0 = L x i L y ) + L y i L x ) i L y L x + i L x L y = ) and the same is true for [ˆL 2, ˆL x ] and [ˆL 2, ˆL y ]. In addition, it is the case that [ˆL 2, Ĥ] = 0, clearly, since the individual operators do. 4 of 8

5 26.3. RAISING AND LOWERING OPERATORS Lecture Raising and Lowering Operators We can make a particular algebraic combination of ˆL x and ˆL y that plays a role similar to the a ± operators from the harmonic oscillator example. Take then the commutator of these with L z is L ± L x ± i L y, 26.20) [L ±, L z ] = [L x, L z ] ± i [L y, L z ] = i L y L x = L x ± i L y ) = L ± ) For an eigenfunction of L z, call it f such that L z f = α f, the operator L + acting on f is also an eigenfunction, but with eigenvalue: L z L ± f) = L ± L z ± L ± ) f = α ± ) L ± f) 26.22) so acting on f with L ± increases or decreases) the eigenvalue by. Similarly, if we take the function f to be simultaneously an eigenfunction of L 2 which we know can be done), the L ± f is still an eigenfunction, with 2 L 2 L ± f) = L ± L 2 f = β L ± f 26.23) for eigenvalue β in other words, L ± f is an eigenfunction of L 2 with the same eigenvalue as f itself. The last observation we need is that there must be a minimal and maximal state for the L ± operators since the state L ± f has the same L 2 eigenvalue as f does, while its eigenvalue w.r.t. L z is going up or down, there will be a point at which the eigenvalue result of measurement) of L z is greater than the total magnitude of the eigenvalue w.r.t. L 2 the result of a measurement of total angular momentum) so we demand the existence of a top L + f t = 0 and, for the same reasons, a bottom L f b = 0 So what? So remember that for the harmonic oscillator, we wrote H in terms of the products a ± a, and that allowed us to build a lowest energy state from which we could define 0 as a wavefunction. The same type of game applies here, we will write L 2 in terms of L ± L : L ± L = L 2 x i L x L y ± i L y L x +L 2 }{{} y) = L 2 x + L 2 y ± L z 26.24) = i [L x,l y] 2 I m going to do a commutator down here too many in the main portion gets boring. Since [L 2, L i] = 0, we have [L 2, L x ± il y] = 0. 5 of 8

6 26.4. EIGENSTATES OF L 2 Lecture 26 so that we can write L 2 = L ± L + L 2 z L z ) Our first goal is to relate the spectrum of L 2 to that of L z consider the top state f t with eigenvalue L z f t = l f t the is in there just to make the eigenvalue under lowering a bit nicer), and L 2 f t = α f t. Now from the above factorization of L ), we have L 2 f t = L L + + L 2 z + L z ) f = l l) f = α f 26.26) so the maximum eigenvalue for L z is related to the eigenvalue α via α = 2 l l + 1). Similarly, if we take the minimum eigenvalue for L z corresponding to the state f b : L z f b = l f b, then we use the other factorization and get α = l l 1), which tells us that l = l. So L + takes us from f b with eigenvalue l to f t with eigenvalue l it does so in integer steps, since L z L + f b ) = l + 1) L + f b, so l itself must either be an integer, or, potentially, a half-integer. We have described the eigenstates of L 2 and L z, then, in terms of two numbers: l = 0, 1 2, 1, 3 2, 2,... and m which, for each l takes integer steps from m = l to m = l. The states can be labelled fl m, and, if we are lucky, these will be the simultaneous eigenstates of H Eigenstates of L 2 To find the eigenstates of L 2, let s first work out, carefully, the classical value then we will attempt to make scalar operators which will be easy to write down in spherical coordinates: L 2 = ɛ ijk r j p k ) ɛ imn r m p n ) = δ jm δ kn δ jn δ km ) r j p k r m p n = r j p k r j p k r j p k r k p j ) There are some obvious simplifications here, but remember that while it is true, classically, that r j p k = r k p j, this is not true when we move to operators, so let s keep the ordering as above, and input p k i k etc. We will introduce the test function f to keep track: L 2 f = 2 [r j k ) r j k f) r j k ) r k j f)] = 2 [r j δ jk k f + r j r j k k f r j k ) j r k f) δ jk f)] = 2 [ r f + r 2 2 f r j j k r k f) r k k f) ] = 2 [ r f + r 2 2 f r 3 f + r f) r f) ], 6 of )

7 26.5. EIGENSTATES OF L Z Lecture 26 and combining terms, the final scalar form can be written: L 2 f = 2 [ r 2 2 f r f r ) r f) ] ) Now, think of the operator r f in spherical coordinates, that s just r f and we know the 2 operator, so in spherical coordinates, we can write the above trivially: L 2 f = 2 [ = 2 [ 1 sin θ r 2 f θ ) + 1 sin θ sin θ f θ sin θ f ) + 1 θ θ ) + 1 sin 2 θ 2 f φ 2 ]. sin 2 θ 2 f φ 2 r f r r f )] 26.30) But this is precisely the angular portion of the Laplacian itself and we know the solutions to this that have separation constant l l + 1), they are precisely the spherical harmonics, conveniently indexed appropriately. We have L 2 Y m l = 2 l l + 1) Y m l ) 26.5 Eigenstates of L z The fastest route to the operator expression for L z comes from the observation that classically, if we had a constant angular momentum pointing along the ẑ axis, then we have counter-clockwise rotation in the x y plane. If we use cylindrical coordinates with x = s cos φ, y = s sin φ), then the only motion is in the ˆφ direction. We might mimic this on the operator side by considering a test function that depends on φ only. Then L z fφ) =r x p y r y p x ) fφ) = i and from φ = tan 1 y/x), we have φ x = sin φ r [ r cos φ f φ f r sin φ φ x φ and φ y = cos φ r ] φ y, then 26.32) L z fφ) = i cos 2 φ + sin 2 φ ) f φ 26.33) or, to be blunt, L z = i φ ) 7 of 8

8 26.5. EIGENSTATES OF L Z Lecture 26 The eigenstates of L z are defined by L z f = m f for integer m now m is an integer aside from any periodicity concerns, it comes to us as an integer from the algebraic approach). The solution is f = e i m φ, and of course, this is the φ-dependent portion of the spherical harmonics, L z Y m l = i A m l φ P l m cos θ) ei m φ) = m Yl m 26.35) where we have written the ugly normalization as A m l. In the end, the Yl m θ, φ) are eigenstates of both the L 2 and L z operators. In addition, to the extent that they form the angular part of the full Hamiltonian, ψ nlm R n r) Yl m θ, φ) is an eigenstate of H: Hψ nlm = E n ψ nlm, and of course, the angular momentum operators do not see the radial function at all there being no radial derivatives in L 2 or L z ), so L 2 ψ nlm = 2 ll + 1) ψ L z ψ nlm = m ψ nlm, 26.36) and these separated wavefunctions spherical infinite well, Hydrogen, etc.) are eigenstates of all three H, L 2 and L z. Homework Reading: Griffiths, pp Problem 26.1 Griffiths Showing that L 2 and L z commute with H for central potentials, with V = V r)). Problem 26.2 Find the derivative of arctangent: d dx tan 1 x) =?, 26.37) show your work, don t just quote the result. Hint: Try using the chain rule on: tan tan 1 x) ) = x. 8 of 8

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

Harmonic Oscillator I

Harmonic Oscillator I Physics 34 Lecture 7 Harmonic Oscillator I Lecture 7 Physics 34 Quantum Mechanics I Monday, February th, 008 We can manipulate operators, to a certain extent, as we would algebraic expressions. By considering

More information

Statistical Interpretation

Statistical Interpretation Physics 342 Lecture 15 Statistical Interpretation Lecture 15 Physics 342 Quantum Mechanics I Friday, February 29th, 2008 Quantum mechanics is a theory of probability densities given that we now have an

More information

Physics 342 Lecture 27. Spin. Lecture 27. Physics 342 Quantum Mechanics I

Physics 342 Lecture 27. Spin. Lecture 27. Physics 342 Quantum Mechanics I Physics 342 Lecture 27 Spin Lecture 27 Physics 342 Quantum Mechanics I Monday, April 5th, 2010 There is an intrinsic characteristic of point particles that has an analogue in but no direct derivation from

More information

Quantum Physics II (8.05) Fall 2004 Assignment 3

Quantum Physics II (8.05) Fall 2004 Assignment 3 Quantum Physics II (8.5) Fall 24 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 3, 24 September 23, 24 7:pm This week we continue to study the basic principles of quantum

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

More information

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19 Page 404 Lecture : Simple Harmonic Oscillator: Energy Basis Date Given: 008/11/19 Date Revised: 008/11/19 Coordinate Basis Section 6. The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page

More information

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I Physics 342 Lecture 23 Radial Separation Lecture 23 Physics 342 Quantum Mechanics I Friday, March 26th, 2010 We begin our spherical solutions with the simplest possible case zero potential. Aside from

More information

Physics 70007, Fall 2009 Answers to Final Exam

Physics 70007, Fall 2009 Answers to Final Exam Physics 70007, Fall 009 Answers to Final Exam December 17, 009 1. Quantum mechanical pictures a Demonstrate that if the commutation relation [A, B] ic is valid in any of the three Schrodinger, Heisenberg,

More information

Rotations in Quantum Mechanics

Rotations in Quantum Mechanics Rotations in Quantum Mechanics We have seen that physical transformations are represented in quantum mechanics by unitary operators acting on the Hilbert space. In this section, we ll think about the specific

More information

Lecture 19 (Nov. 15, 2017)

Lecture 19 (Nov. 15, 2017) Lecture 19 8.31 Quantum Theory I, Fall 017 8 Lecture 19 Nov. 15, 017) 19.1 Rotations Recall that rotations are transformations of the form x i R ij x j using Einstein summation notation), where R is an

More information

Angular Momentum Algebra

Angular Momentum Algebra Angular Momentum Algebra Chris Clark August 1, 2006 1 Input We will be going through the derivation of the angular momentum operator algebra. The only inputs to this mathematical formalism are the basic

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Ch 125a Problem Set 1

Ch 125a Problem Set 1 Ch 5a Problem Set Due Monday, Oct 5, 05, am Problem : Bra-ket notation (Dirac notation) Bra-ket notation is a standard and convenient way to describe quantum state vectors For example, φ is an abstract

More information

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I Physics 342 Lecture 17 Midterm I Recap Lecture 17 Physics 342 Quantum Mechanics I Monday, March 1th, 28 17.1 Introduction In the context of the first midterm, there are a few points I d like to make about

More information

Quantum Physics II (8.05) Fall 2002 Assignment 11

Quantum Physics II (8.05) Fall 2002 Assignment 11 Quantum Physics II (8.05) Fall 00 Assignment 11 Readings Most of the reading needed for this problem set was already given on Problem Set 9. The new readings are: Phase shifts are discussed in Cohen-Tannoudji

More information

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Rotational motion of a rigid body spinning around a rotational axis ˆn; Physics 106a, Caltech 15 November, 2018 Lecture 14: Rotations The motion of solid bodies So far, we have been studying the motion of point particles, which are essentially just translational. Bodies with

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.32 Fall 2006 Quantum Theory I October 9, 2006 Assignment 6 Due October 20, 2006 Announcements There will be a makeup lecture on Friday,

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

1 Measurement and expectation values

1 Measurement and expectation values C/CS/Phys 191 Measurement and expectation values, Intro to Spin 2/15/05 Spring 2005 Lecture 9 1 Measurement and expectation values Last time we discussed how useful it is to work in the basis of energy

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

For example, in one dimension if we had two particles in a one-dimensional infinite potential well described by the following two wave functions.

For example, in one dimension if we had two particles in a one-dimensional infinite potential well described by the following two wave functions. Identical particles In classical physics one can label particles in such a way as to leave the dynamics unaltered or follow the trajectory of the particles say by making a movie with a fast camera. Thus

More information

Summary: angular momentum derivation

Summary: angular momentum derivation Summary: angular momentum derivation L = r p L x = yp z zp y, etc. [x, p y ] = 0, etc. (-) (-) (-3) Angular momentum commutation relations [L x, L y ] = i hl z (-4) [L i, L j ] = i hɛ ijk L k (-5) Levi-Civita

More information

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Justin Campbell August 3, 2017 1 Representations of SU 2 and SO 3 (R) 1.1 The following observation is long overdue. Proposition

More information

3 Angular Momentum and Spin

3 Angular Momentum and Spin In this chapter we review the notions surrounding the different forms of angular momenta in quantum mechanics, including the spin angular momentum, which is entirely quantum mechanical in nature. Some

More information

9 Angular Momentum I. Classical analogy, take. 9.1 Orbital Angular Momentum

9 Angular Momentum I. Classical analogy, take. 9.1 Orbital Angular Momentum 9 Angular Momentum I So far we haven t examined QM s biggest success atomic structure and the explanation of atomic spectra in detail. To do this need better understanding of angular momentum. In brief:

More information

Lecture 45: The Eigenvalue Problem of L z and L 2 in Three Dimensions, ct d: Operator Method Date Revised: 2009/02/17 Date Given: 2009/02/11

Lecture 45: The Eigenvalue Problem of L z and L 2 in Three Dimensions, ct d: Operator Method Date Revised: 2009/02/17 Date Given: 2009/02/11 Page 757 Lecture 45: The Eigenvalue Problem of L z and L 2 in Three Dimensions, ct d: Operator Method Date Revised: 2009/02/17 Date Given: 2009/02/11 The Eigenvector-Eigenvalue Problem of L z and L 2 Section

More information

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

Quantum Mechanics Solutions. λ i λ j v j v j v i v i. Quantum Mechanics Solutions 1. (a) If H has an orthonormal basis consisting of the eigenvectors { v i } of A with eigenvalues λ i C, then A can be written in terms of its spectral decomposition as A =

More information

26 Group Theory Basics

26 Group Theory Basics 26 Group Theory Basics 1. Reference: Group Theory and Quantum Mechanics by Michael Tinkham. 2. We said earlier that we will go looking for the set of operators that commute with the molecular Hamiltonian.

More information

Generators for Continuous Coordinate Transformations

Generators for Continuous Coordinate Transformations Page 636 Lecture 37: Coordinate Transformations: Continuous Passive Coordinate Transformations Active Coordinate Transformations Date Revised: 2009/01/28 Date Given: 2009/01/26 Generators for Continuous

More information

Linear Algebra in Hilbert Space

Linear Algebra in Hilbert Space Physics 342 Lecture 16 Linear Algebra in Hilbert Space Lecture 16 Physics 342 Quantum Mechanics I Monday, March 1st, 2010 We have seen the importance of the plane wave solutions to the potentialfree Schrödinger

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx

Physics 741 Graduate Quantum Mechanics 1 Solutions to Midterm Exam, Fall x i x dx i x i x x i x dx Physics 74 Graduate Quantum Mechanics Solutions to Midterm Exam, Fall 4. [ points] Consider the wave function x Nexp x ix (a) [6] What is the correct normaliation N? The normaliation condition is. exp,

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/24//2017 Physics 5701 Lecture Commutation of Observables and First Consequences of the Postulates Outline 1 Commutation Relations 2 Uncertainty Relations

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

Physics 342 Lecture 22. The Hydrogen Atom. Lecture 22. Physics 342 Quantum Mechanics I

Physics 342 Lecture 22. The Hydrogen Atom. Lecture 22. Physics 342 Quantum Mechanics I Physics 342 Lecture 22 The Hydrogen Atom Lecture 22 Physics 342 Quantum Mechanics I Friday, March 28th, 2008 We now begin our discussion of the Hydrogen atom. Operationally, this is just another choice

More information

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2 One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information

Chemistry 532 Practice Final Exam Fall 2012 Solutions

Chemistry 532 Practice Final Exam Fall 2012 Solutions Chemistry 53 Practice Final Exam Fall Solutions x e ax dx π a 3/ ; π sin 3 xdx 4 3 π cos nx dx π; sin θ cos θ + K x n e ax dx n! a n+ ; r r r r ˆL h r ˆL z h i φ ˆL x i hsin φ + cot θ cos φ θ φ ) ˆLy i

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

1 Commutators (10 pts)

1 Commutators (10 pts) Final Exam Solutions 37A Fall 0 I. Siddiqi / E. Dodds Commutators 0 pts) ) Consider the operator  = Ĵx Ĵ y + ĴyĴx where J i represents the total angular momentum in the ith direction. a) Express both

More information

P3317 HW from Lecture and Recitation 7

P3317 HW from Lecture and Recitation 7 P3317 HW from Lecture 1+13 and Recitation 7 Due Oct 16, 018 Problem 1. Separation of variables Suppose we have two masses that can move in 1D. They are attached by a spring, yielding a Hamiltonian where

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics We now consider the spatial degrees of freedom of a particle moving in 3-dimensional space, which of course is an important

More information

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows:

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: H ˆ! = "!2 d 2! + 1 2µ dx 2 2 kx 2! = E! T ˆ = "! 2 2µ d 2 dx 2 V ˆ = 1 2 kx 2 H ˆ = ˆ T + ˆ V (1) where µ is

More information

Computational Spectroscopy III. Spectroscopic Hamiltonians

Computational Spectroscopy III. Spectroscopic Hamiltonians Computational Spectroscopy III. Spectroscopic Hamiltonians (e) Elementary operators for the harmonic oscillator (f) Elementary operators for the asymmetric rotor (g) Implementation of complex Hamiltonians

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m. PHY464 Introduction to Quantum Mechanics Fall 4 Final Eam SOLUTIONS December 7, 4, 7:3 a.m.- 9:3 a.m. No other materials allowed. If you can t do one part of a problem, solve subsequent parts in terms

More information

QM and Angular Momentum

QM and Angular Momentum Chapter 5 QM and Angular Momentum 5. Angular Momentum Operators In your Introductory Quantum Mechanics (QM) course you learned about the basic properties of low spin systems. Here we want to review that

More information

Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom.

Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom. Chemistry 356 017: Problem set No. 6; Reading: Mathchapters F and G, MQ - Ch. 7-8, Lecture notes on hydrogen atom. The H atom involves spherical coordinates and angular momentum, which leads to the shapes

More information

Physics 115C Homework 3

Physics 115C Homework 3 Physics 115C Homework 3 Problem 1 In this problem, it will be convenient to introduce the Einstein summation convention. Note that we can write S = i S i i where the sum is over i = x,y,z. In the Einstein

More information

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours. 8.05 Quantum Physics II, Fall 0 FINAL EXAM Thursday December, 9:00 am -:00 You have 3 hours. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books. There

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

Chapter 4. Q. A hydrogen atom starts out in the following linear combination of the stationary. (ψ ψ 21 1 ). (1)

Chapter 4. Q. A hydrogen atom starts out in the following linear combination of the stationary. (ψ ψ 21 1 ). (1) Tor Kjellsson Stockholm University Chapter 4 4.5 Q. A hydrogen atom starts out in the following linear combination of the stationary states n, l, m =,, and n, l, m =,, : Ψr, 0 = ψ + ψ. a Q. Construct Ψr,

More information

16.1. PROBLEM SET I 197

16.1. PROBLEM SET I 197 6.. PROBLEM SET I 97 Answers: Problem set I. a In one dimension, the current operator is specified by ĵ = m ψ ˆpψ + ψˆpψ. Applied to the left hand side of the system outside the region of the potential,

More information

Problems and Multiple Choice Questions

Problems and Multiple Choice Questions Problems and Multiple Choice Questions 1. A momentum operator in one dimension is 2. A position operator in 3 dimensions is 3. A kinetic energy operator in 1 dimension is 4. If two operator commute, a)

More information

Time part of the equation can be separated by substituting independent equation

Time part of the equation can be separated by substituting independent equation Lecture 9 Schrödinger Equation in 3D and Angular Momentum Operator In this section we will construct 3D Schrödinger equation and we give some simple examples. In this course we will consider problems where

More information

1. Matrix multiplication and Pauli Matrices: Pauli matrices are the 2 2 matrices. 1 0 i 0. 0 i

1. Matrix multiplication and Pauli Matrices: Pauli matrices are the 2 2 matrices. 1 0 i 0. 0 i Problems in basic linear algebra Science Academies Lecture Workshop at PSGRK College Coimbatore, June 22-24, 2016 Govind S. Krishnaswami, Chennai Mathematical Institute http://www.cmi.ac.in/~govind/teaching,

More information

Particle in a 3 Dimensional Box just extending our model from 1D to 3D

Particle in a 3 Dimensional Box just extending our model from 1D to 3D CHEM 2060 Lecture 20: Particle in a 3D Box; H atom L20-1 Particle in a 3 Dimensional Box just extending our model from 1D to 3D A 3D model is a step closer to reality than a 1D model. Let s increase the

More information

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04 Page 71 Lecture 4: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 009/0/04 Date Given: 009/0/04 Plan of Attack Section 14.1 Rotations and Orbital Angular Momentum: Plan of Attack

More information

Physics 828 Problem Set 7 Due Wednesday 02/24/2010

Physics 828 Problem Set 7 Due Wednesday 02/24/2010 Physics 88 Problem Set 7 Due Wednesday /4/ 7)a)Consider the proton to be a uniformly charged sphere of radius f m Determine the correction to the s ground state energy 4 points) This is a standard problem

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

Appendix: SU(2) spin angular momentum and single spin dynamics

Appendix: SU(2) spin angular momentum and single spin dynamics Phys 7 Topics in Particles & Fields Spring 03 Lecture v0 Appendix: SU spin angular momentum and single spin dynamics Jeffrey Yepez Department of Physics and Astronomy University of Hawai i at Manoa Watanabe

More information

( ) = 9φ 1, ( ) = 4φ 2.

( ) = 9φ 1, ( ) = 4φ 2. Chemistry 46 Dr Jean M Standard Homework Problem Set 6 Solutions The Hermitian operator A ˆ is associated with the physical observable A Two of the eigenfunctions of A ˆ are and These eigenfunctions are

More information

P3317 HW from Lecture 7+8 and Recitation 4

P3317 HW from Lecture 7+8 and Recitation 4 P3317 HW from Lecture 7+8 and Recitation 4 Due Friday Tuesday September 25 Problem 1. In class we argued that an ammonia atom in an electric field can be modeled by a two-level system, described by a Schrodinger

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work.

QMI PRELIM Problem 1. All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work. QMI PRELIM 013 All problems have the same point value. If a problem is divided in parts, each part has equal value. Show all your work. Problem 1 L = r p, p = i h ( ) (a) Show that L z = i h y x ; (cyclic

More information

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R

20 The Hydrogen Atom. Ze2 r R (20.1) H( r, R) = h2 2m 2 r h2 2M 2 R 20 The Hydrogen Atom 1. We want to solve the time independent Schrödinger Equation for the hydrogen atom. 2. There are two particles in the system, an electron and a nucleus, and so we can write the Hamiltonian

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

Addition of Angular Momenta

Addition of Angular Momenta Addition of Angular Momenta What we have so far considered to be an exact solution for the many electron problem, should really be called exact non-relativistic solution. A relativistic treatment is needed

More information

Physics 505 Homework No. 1 Solutions S1-1

Physics 505 Homework No. 1 Solutions S1-1 Physics 505 Homework No s S- Some Preliminaries Assume A and B are Hermitian operators (a) Show that (AB) B A dx φ ABψ dx (A φ) Bψ dx (B (A φ)) ψ dx (B A φ) ψ End (b) Show that AB [A, B]/2+{A, B}/2 where

More information

Waves and the Schroedinger Equation

Waves and the Schroedinger Equation Waves and the Schroedinger Equation 5 april 010 1 The Wave Equation We have seen from previous discussions that the wave-particle duality of matter requires we describe entities through some wave-form

More information

Quantum Mechanics in 3-Dimensions

Quantum Mechanics in 3-Dimensions Quantum Mechanics in 3-Dimensions Pavithran S Iyer, 2nd yr BSc Physics, Chennai Mathematical Institute Email: pavithra@cmi.ac.in August 28 th, 2009 1 Schrodinger equation in Spherical Coordinates 1.1 Transforming

More information

Physics 557 Lecture 5

Physics 557 Lecture 5 Physics 557 Lecture 5 Group heory: Since symmetries and the use of group theory is so much a part of recent progress in particle physics we will take a small detour to introduce the basic structure (as

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x = 0,

More information

Homework assignment 3: due Thursday, 10/26/2017

Homework assignment 3: due Thursday, 10/26/2017 Homework assignment 3: due Thursday, 10/6/017 Physics 6315: Quantum Mechanics 1, Fall 017 Problem 1 (0 points The spin Hilbert space is defined by three non-commuting observables, S x, S y, S z. These

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

Quantum Theory and Group Representations

Quantum Theory and Group Representations Quantum Theory and Group Representations Peter Woit Columbia University LaGuardia Community College, November 1, 2017 Queensborough Community College, November 15, 2017 Peter Woit (Columbia University)

More information

Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012

Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012 PHYS 20602 Handout 1 Vector Spaces for Quantum Mechanics J. P. Leahy January 30, 2012 Handout Contents Examples Classes Examples for Lectures 1 to 4 (with hints at end) Definitions of groups and vector

More information

PY 351 Modern Physics - Lecture notes, 3

PY 351 Modern Physics - Lecture notes, 3 PY 351 Modern Physics - Lecture notes, 3 Copyright by Claudio Rebbi, Boston University, October 2016. These notes cannot be duplicated and distributed without explicit permission of the author. Time dependence

More information

9 Electron orbits in atoms

9 Electron orbits in atoms Physics 129b Lecture 15 Caltech, 02/22/18 Reference: Wu-Ki-Tung, Group Theory in physics, Chapter 7. 9 Electron orbits in atoms Now let s see how our understanding of the irreps of SO(3) (SU(2)) can help

More information

Isotropic harmonic oscillator

Isotropic harmonic oscillator Isotropic harmonic oscillator 1 Isotropic harmonic oscillator The hamiltonian of the isotropic harmonic oscillator is H = h m + 1 mω r (1) = [ h d m dρ + 1 ] m ω ρ, () ρ=x,y,z a sum of three one-dimensional

More information

Physics 411 Lecture 7. Tensors. Lecture 7. Physics 411 Classical Mechanics II

Physics 411 Lecture 7. Tensors. Lecture 7. Physics 411 Classical Mechanics II Physics 411 Lecture 7 Tensors Lecture 7 Physics 411 Classical Mechanics II September 12th 2007 In Electrodynamics, the implicit law governing the motion of particles is F α = m ẍ α. This is also true,

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 20, March 8, 2006 Solved Homework We determined that the two coefficients in our two-gaussian

More information

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Wednesday April Exam 2

8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Wednesday April Exam 2 8.04: Quantum Mechanics Professor Allan Adams Massachusetts Institute of Technology Wednesday April 18 2012 Exam 2 Last Name: First Name: Check Recitation Instructor Time R01 Barton Zwiebach 10:00 R02

More information

Coordinate systems and vectors in three spatial dimensions

Coordinate systems and vectors in three spatial dimensions PHYS2796 Introduction to Modern Physics (Spring 2015) Notes on Mathematics Prerequisites Jim Napolitano, Department of Physics, Temple University January 7, 2015 This is a brief summary of material on

More information

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet Mathematical Tripos Part IB Michaelmas Term 2015 Quantum Mechanics Dr. J.M. Evans Example Sheet 1 Values of some physical constants are given on the supplementary sheet 1. Whenasampleofpotassiumisilluminatedwithlightofwavelength3

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x ] =

More information

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x.

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x. Section 5.1 Simple One-Dimensional Problems: The Free Particle Page 9 The Free Particle Gaussian Wave Packets The Gaussian wave packet initial state is one of the few states for which both the { x } and

More information

which implies that we can take solutions which are simultaneous eigen functions of

which implies that we can take solutions which are simultaneous eigen functions of Module 1 : Quantum Mechanics Chapter 6 : Quantum mechanics in 3-D Quantum mechanics in 3-D For most physical systems, the dynamics is in 3-D. The solutions to the general 3-d problem are quite complicated,

More information

Problem 1: A 3-D Spherical Well(10 Points)

Problem 1: A 3-D Spherical Well(10 Points) Problem : A 3-D Spherical Well( Points) For this problem, consider a particle of mass m in a three-dimensional spherical potential well, V (r), given as, V = r a/2 V = W r > a/2. with W >. All of the following

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

Quantum Physics 130A. April 1, 2006

Quantum Physics 130A. April 1, 2006 Quantum Physics 130A April 1, 2006 2 1 HOMEWORK 1: Due Friday, Apr. 14 1. A polished silver plate is hit by beams of photons of known energy. It is measured that the maximum electron energy is 3.1 ± 0.11

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

The energy of the emitted light (photons) is given by the difference in energy between the initial and final states of hydrogen atom.

The energy of the emitted light (photons) is given by the difference in energy between the initial and final states of hydrogen atom. Lecture 20-21 Page 1 Lectures 20-21 Transitions between hydrogen stationary states The energy of the emitted light (photons) is given by the difference in energy between the initial and final states of

More information

Mathematical Physics Homework 10

Mathematical Physics Homework 10 Georgia Institute of Technology Mathematical Physics Homework Conner Herndon November, 5 Several types of orthogonal polynomials frequently occur in various physics problems. For instance, Hermite polynomials

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 27th, 21 From separation of variables, we move to linear algebra Roughly speaking, this is the study

More information

2. Griffith s 4.19 a. The commutator of the z-component of the angular momentum with the coordinates are: [L z. + xyp x. x xxp y.

2. Griffith s 4.19 a. The commutator of the z-component of the angular momentum with the coordinates are: [L z. + xyp x. x xxp y. Physics Homework #8 Spring 6 Due Friday 5/7/6. Download the Mathematica notebook from the notes page of the website (http://minerva.union.edu/labrakes/physics_notes_s5.htm) or the homework page of the

More information

Angular Momentum set II

Angular Momentum set II Angular Momentum set II PH - QM II Sem, 7-8 Problem : Using the commutation relations for the angular momentum operators, prove the Jacobi identity Problem : [ˆL x, [ˆL y, ˆL z ]] + [ˆL y, [ˆL z, ˆL x

More information