The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

Size: px
Start display at page:

Download "The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case"

Transcription

1 The Postulates of Quantum Mechanics Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time

2 Total energy = Hamiltonian To find out about the particle one solves the Schrödinger Equation: Suppose the potential does not depend on t. Thus H and E do not change with time. Whenever we have a function of multi variables we will attempt to separate them. In the wavefunction this works into a product:

3 Try this solution: because H only depends on x Divide by: Have now separated the variables into the two sides of the equation. Both sides have to be constant; otherwise changing x on the RHS would change the LHS which doesn t depend on x. Call the constant E

4 LHS: This leads to solutions of the form: RHS: This is the time-independent Schrodinger wave equation and it is an eigenvalue equation is a stationary state; i.e., solution of the timeindependent equation times f(t) because the energy does not change in time.

5 The magnitude of Ψ(x,t) does not change in time: The phase changes in time, not the magnitude The general solution of the Schrodinger wave equation is a linear combination of the separable solutions. The Schrodinger equation yields an infinite collection of solutions: Ψ 1 (x), Ψ 2 (x),, each with its own separation constant E n. For each E, there is an eigenfunction The general solution of the Schrodinger equation is a linear combination of these. We will do applications of these later on.

6 The postulates of Quantum Mechanics Postulate 1: The state of a QM system is completely specified by a wavefunction The probability that the particle will be found at time t 1 in a spatial interval of width dx centered at x 1 is given by Ψ(x 1,t 1 ) is assumed to be normalized. Why? This assumes: Ψ(x,t) and its first derivative must be single-valued, otherwise there would 2 or more values for the probability of the particle being at the same location. Ψ(x,t) must be continuous. The exception is that the first derivative can be discontinuous if the potential is infinite; otherwise the derivative in the Schrodinger equation would be infinite.

7 Ψ(x,t) cannot have an infinite amplitude over a finite interval otherwise it could not be normalized, We say that Ψ(x,t) must be square integrable: So solving the Schrodinger equations gives probabilities.

8 Postulate 2: For every measurable property of the system there exists a corresponding Hermitian operator: Postulate 3: In any single measurement of an observable that corresponds to an operator A the only values that will measured are the eigenvalues of that operator. Postulate 4: If the system is in a state described by the wavefunction ø(x,t) and the value of the observable a is measured ounce, each time on many identically prepared systems the average (expectation) value of all these measurements is: The denominator = 1 if ø is normalized

9 Postulate 5: The evolution in time of a QM system in governed by the time-dependent Schrodinger equation: There are 2 cases here: (i) If Ψ j is an eigenfunction of A then only a j will be measured. (ii) If Ψ is not an eigenfunction we can expand it in terms of functions {ø n } which are eigenfunctions of the operator

10 Recall: The eigenfunctions of a Hermitian operator are orthogonal

11 This implies that there is no way of knowing the result of an individual measurement and that outcomes of identically prepared systems are not the same. Think about the double slit experiment with electrons. Superposition states Consider an H-atom which is isolated in a box and the electronic wavefunction prepared such that the atom is in a superposition of the ground state (1s) and the excited 2p z state. We prepare a large # of these isolated atoms and carry out a measurement on the total energy.

12 Recap on the H atom (C101): E H = x J The measurement of energy levels will give either E 1 or E 2 with probabilities given by b 1 2 or b 2 2. There is no way of knowing a priori which of these two values we will get. Normalization of Ψ will link the coefficients.

13 Assuming that 1s and 2p z are normalized (they are orthogonal), then: Imagine a situation where b 1 = ½ and b 2 = (3) 1/2 /2. What does the time dependence of Ψ look like? What happens if one makes a measurement and find the H atom with E 1 then measure again? What if we don t know the wavefunction? By measuring many identically prepared systems we get eigenstates but also their probabilities b i 2.

14 Unfortunately this is done within a multiplication factor e iθ 0 θ 2π. We cannot construct the exact superposition state from experimental results = no-cloning theorem.

15 More about measurements Consider an observable A with operator A The previous result shows that a measurement of observable A on a system in state Ψ leads to a result a i with a probability b i 2 where b i is the coefficient of ø i in the expansion: After the measurement the system is in the state ø i The coefficient is given by: which is the sum over the weighted average of the probability that a i will occur

16

17 Complete sets The eigenfunctions of a Hermitian operator form a complete set (no proof will be given). Thus any other function can be expanded in terms of a complete set. If f j is an eigenfunction of an operator A with eigenvalue a j. Any function g can therefore be written as: The advantage is this allows us to determine the effects of A on g more easily.

18 For vectors an example of such a complete set is the set of Cartesian unit vectors: i, j, k. Any other vector can be written as a linear combination if i, j, and k. A special case: When all eigenfunctions are degenerate, and linear combination is also an eigenfunction. Another example of the complete set and already discussed is a Fourier series where the functions sin(mu) and cos(nu), m, n = 0.1,, form a complete orthogonal set over [0,2π]. Any periodic function with a period of 2π can be expanded in a Fourier series.

19 e - spin Engel Chapter 6.2, 10.2 and 10.3 The (Otto) Stern (Walter) Gerlach experiment showed the splitting of a Ag beam into two discrete beams in a magnetic field. Ag has an unpaired electron. In an inhomogeneous B-field the atom acts as like a magnet with a magnetic moment Experimental result: measure 2 components of the magnetic moment along the z-axis: + μ z and - μ z This is because of electron spin.

20 Let the operator called: measure the z-component of the magnetic moment be A. Experiments tells us this operator has 2 eigenfunctions which we will call α and β which can be discerned by the atomic spatial deflection in the B-field Now do an experiment where we look at the wavefunction for the α atoms and deflect them through a magnetic which measures the x-component of the magnetic moment (which we will associate with operator B) Once again we see two deflections corresponding to + μ x and - μ x. Question: do A and B commute? Consider the experiment shown below:

21 A and B will commute if measuring μ x has no effect on the z- measurement which yielded α. Result: two beams still come out. Again quantum particles don t have well defined properties until you measure them. Each atom is in a superposition state of spin up and spin down. Conclusion: A and B do not commute; that is, we can not measure μ z and μ x (or μ y ) at the same time. S is the spin angular momentum Each electron has an intrinsic angular momentum

22 Nobel Prize on a postcard Postcard to Niels Bohr from Walter Gerlach congratulating him on the success of his quantum theory

23 S is not due to a physical rotation of the electron. Why? Let s say S had the value ~ Electrons are thought to be genuine point particles but let s say for argument sake that their radius is what is expected classically ~ m Predict Not physically possible S is an intrinsic property which does not depend at in any way on spatial coordinates. S has another unusual rotational property which won t be proven here: One must rotate an electron by 4π to return to its starting point.

24 S comes out naturally from relativistic QM. For this course we will introduce spin as a postulate in an ad hoc manner For electrons Let: α, β are normalized The same for the function β The spin eigenfunctions are also orthogonal as given by:

25 Many particles have intrinsic spins Particle electron proton neutron photon spin ½ ½ ½ ±1 (left and right handed circular polarization) 0 (linear polarization = linear combination of right and left handed circular polarized photons) Many nuclei of the elements have intrinsic nuclear spins; like H, they are amenable to techniques like NMR. Example: I( 13 C) = ½

26

27 The Pauli Exclusion Principle and Indistinguishability in multi-electron atoms Engel 10.3 p. 194 Because there is no difference between electrons in an atom we cannot tell them apart. The Hamiltonian eigenfunctions must have some symmetry with respect to the permutation (interchange) of electrons. Pauli Principle: There exists an intrinsic angular momentum called spin for each elementary particle. Particles with integer spins are called bosons and their wavefunctions are symmetric with respect to permutation. Particles with half-integer spins are called fermions and are antisymmetric with respect to permutation of electrons. Bosons: Fermions:

28 More on the Permutation operator P 12 The Hamiltonian is invariant to permutation; that is: This means they have the same eigenfunctions This means eigenfunctions of H have to be either symmetric or antisymmetric w.r.t. permutation of identical particles. Note: this is the exchange of particles, not even-odd behavior.

29 Must incorporate spin and antisymmetry into the treatment of the atom. For identical fermions (like e - s), antisymmetry implies ψ(1,2) = -ψ(2,1) Since e - s are identical (identical coordinates: x 1 = x 2 ; y 1 = y 2 ; z 1 = z 2, ms 1 = ms 2 ): then ψ(1,1) = -ψ(1,1). Only possible if ψ(1,1) = 0. 2 e - with the same spin have 0 probability of being found at the same coordinates. Pauli Exclusion Principle As ψ is continuous this is true for electrons close to each other in space as well Pauli repulsion

30 Magnitude of S: ex.php/electron_spin_resonance S obeys the following commutation relations:

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case:

The Schrodinger Equation and Postulates Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: The Schrodinger Equation and Postulates Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about

More information

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5) LECTURE 12 Maxwell Velocity Distribution Suppose we have a dilute gas of molecules, each with mass m. If the gas is dilute enough, we can ignore the interactions between the molecules and the energy will

More information

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in Lecture #3. Incorporating a vector potential into the Hamiltonian. Spin postulates 3. Description of spin states 4. Identical particles in classical and QM 5. Exchange degeneracy - the fundamental problem

More information

Identical Particles in Quantum Mechanics

Identical Particles in Quantum Mechanics Identical Particles in Quantum Mechanics Chapter 20 P. J. Grandinetti Chem. 4300 Nov 17, 2017 P. J. Grandinetti (Chem. 4300) Identical Particles in Quantum Mechanics Nov 17, 2017 1 / 20 Wolfgang Pauli

More information

Atomic Structure. Chapter 8

Atomic Structure. Chapter 8 Atomic Structure Chapter 8 Overview To understand atomic structure requires understanding a special aspect of the electron - spin and its related magnetism - and properties of a collection of identical

More information

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model Quantum Mechanics and Atomic Physics Lecture 20: Real Hydrogen Atom /Identical particles http://www.physics.rutgers.edu/ugrad/361 physics edu/ugrad/361 Prof. Sean Oh Last time Hydrogen atom: electron in

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

Atomic Systems (PART I)

Atomic Systems (PART I) Atomic Systems (PART I) Lecturer: Location: Recommended Text: Dr. D.J. Miller Room 535, Kelvin Building d.miller@physics.gla.ac.uk Joseph Black C407 (except 15/1/10 which is in Kelvin 312) Physics of Atoms

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

For example, in one dimension if we had two particles in a one-dimensional infinite potential well described by the following two wave functions.

For example, in one dimension if we had two particles in a one-dimensional infinite potential well described by the following two wave functions. Identical particles In classical physics one can label particles in such a way as to leave the dynamics unaltered or follow the trajectory of the particles say by making a movie with a fast camera. Thus

More information

Angular momentum and spin

Angular momentum and spin Luleå tekniska universitet Avdelningen för Fysik, 007 Hans Weber Angular momentum and spin Angular momentum is a measure of how much rotation there is in particle or in a rigid body. In quantum mechanics

More information

Physics-I. Dr. Anurag Srivastava. Web address: Visit me: Room-110, Block-E, IIITM Campus

Physics-I. Dr. Anurag Srivastava. Web address:    Visit me: Room-110, Block-E, IIITM Campus Physics-I Dr. Anurag Srivastava Web address: http://tiiciiitm.com/profanurag Email: profanurag@gmail.com Visit me: Room-110, Block-E, IIITM Campus Syllabus Electrodynamics: Maxwell s equations: differential

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

Quantum Mechanics: Postulates

Quantum Mechanics: Postulates Quantum Mechanics: Postulates 25th March 2008 I. Physical meaning of the Wavefunction Postulate 1: The wavefunction attempts to describe a quantum mechanical entity (photon, electron, x-ray, etc.) through

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 3 The Born-Oppenheimer approximation C.-K. Skylaris Learning outcomes Separate molecular Hamiltonians to electronic and nuclear parts according to the Born-Oppenheimer

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

Lecture 01. Introduction to Elementary Particle Physics

Lecture 01. Introduction to Elementary Particle Physics Introduction to Elementary Particle Physics Particle Astrophysics Particle physics Fundamental constituents of nature Most basic building blocks Describe all particles and interactions Shortest length

More information

22.02 Intro to Applied Nuclear Physics

22.02 Intro to Applied Nuclear Physics 22.02 Intro to Applied Nuclear Physics Mid-Term Exam Solution Problem 1: Short Questions 24 points These short questions require only short answers (but even for yes/no questions give a brief explanation)

More information

1 The postulates of quantum mechanics

1 The postulates of quantum mechanics 1 The postulates of quantum mechanics The postulates of quantum mechanics were derived after a long process of trial and error. These postulates provide a connection between the physical world and the

More information

Properties of Elementary Particles

Properties of Elementary Particles and of Elementary s 01/11/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 Consider the world at different scales... Cosmology - only gravity matters XXXXX Input: Mass distributions

More information

Basic Physical Chemistry Lecture 2. Keisuke Goda Summer Semester 2015

Basic Physical Chemistry Lecture 2. Keisuke Goda Summer Semester 2015 Basic Physical Chemistry Lecture 2 Keisuke Goda Summer Semester 2015 Lecture schedule Since we only have three lectures, let s focus on a few important topics of quantum chemistry and structural chemistry

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory Introduction to Electronic Structure Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2002 Last Revised: June 2003 1 Introduction The purpose of these

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 20, March 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 20, March 8, 2006 Solved Homework We determined that the two coefficients in our two-gaussian

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems Chm 331 Fall 015, Exercise Set 4 NMR Review Problems Mr. Linck Version.0. Compiled December 1, 015 at 11:04:44 4.1 Diagonal Matrix Elements for the nmr H 0 Find the diagonal matrix elements for H 0 (the

More information

QFT. Unit 1: Relativistic Quantum Mechanics

QFT. Unit 1: Relativistic Quantum Mechanics QFT Unit 1: Relativistic Quantum Mechanics What s QFT? Relativity deals with things that are fast Quantum mechanics deals with things that are small QFT deals with things that are both small and fast What

More information

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving:

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving: When do we use Quantum Mechanics? (Engel 2.1) Basically, when λ is close in magnitude to the dimensions of the problem, and to the degree that the system has a discrete energy spectrum The Schrodinger

More information

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators

Lecture 11 Spin, orbital, and total angular momentum Mechanics. 1 Very brief background. 2 General properties of angular momentum operators Lecture Spin, orbital, and total angular momentum 70.00 Mechanics Very brief background MATH-GA In 9, a famous experiment conducted by Otto Stern and Walther Gerlach, involving particles subject to a nonuniform

More information

Time part of the equation can be separated by substituting independent equation

Time part of the equation can be separated by substituting independent equation Lecture 9 Schrödinger Equation in 3D and Angular Momentum Operator In this section we will construct 3D Schrödinger equation and we give some simple examples. In this course we will consider problems where

More information

An operator is a transformation that takes a function as an input and produces another function (usually).

An operator is a transformation that takes a function as an input and produces another function (usually). Formalism of Quantum Mechanics Operators Engel 3.2 An operator is a transformation that takes a function as an input and produces another function (usually). Example: In QM, most operators are linear:

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or "Second Quantization"

Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or Second Quantization Next topic: Quantum Field Theories for Quantum Many-Particle Systems; or "Second Quantization" Outline 1 Bosons and Fermions 2 N-particle wave functions ("first quantization" 3 The method of quantized

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

CHEM-UA 127: Advanced General Chemistry

CHEM-UA 127: Advanced General Chemistry 1 CHEM-UA 17: Advanced General Chemistry I. ELECTRON SPIN The quantum numbers n,l,m are not sufficient to fully characterize the physical state of the electrons in an atom. In 196, Otto Stern and Walther

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

Continuous quantum states, Particle on a line and Uncertainty relations

Continuous quantum states, Particle on a line and Uncertainty relations Continuous quantum states, Particle on a line and Uncertainty relations So far we have considered k-level (discrete) quantum systems. Now we turn our attention to continuous quantum systems, such as a

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r ψ even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline:

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: Time-Dependent Schrödinger Equation Solutions to thetime-dependent Schrödinger Equation Expansion of Energy Eigenstates Things you

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

Basic Quantum Mechanics

Basic Quantum Mechanics Frederick Lanni 10feb'12 Basic Quantum Mechanics Part I. Where Schrodinger's equation comes from. A. Planck's quantum hypothesis, formulated in 1900, was that exchange of energy between an electromagnetic

More information

221B Lecture Notes Many-Body Problems I (Quantum Statistics)

221B Lecture Notes Many-Body Problems I (Quantum Statistics) 221B Lecture Notes Many-Body Problems I (Quantum Statistics) 1 Quantum Statistics of Identical Particles If two particles are identical, their exchange must not change physical quantities. Therefore, a

More information

Atomic Structure Ch , 9.6, 9.7

Atomic Structure Ch , 9.6, 9.7 Ch. 9.2-4, 9.6, 9.7 Magnetic moment of an orbiting electron: An electron orbiting a nucleus creates a current loop. A current loop behaves like a magnet with a magnetic moment µ:! µ =! µ B " L Bohr magneton:

More information

1 Measurement and expectation values

1 Measurement and expectation values C/CS/Phys 191 Measurement and expectation values, Intro to Spin 2/15/05 Spring 2005 Lecture 9 1 Measurement and expectation values Last time we discussed how useful it is to work in the basis of energy

More information

QUANTUM MECHANICS Intro to Basic Features

QUANTUM MECHANICS Intro to Basic Features PCES 4.21 QUANTUM MECHANICS Intro to Basic Features 1. QUANTUM INTERFERENCE & QUANTUM PATHS Rather than explain the rules of quantum mechanics as they were devised, we first look at a more modern formulation

More information

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision)

Particle Physics. Michaelmas Term 2011 Prof. Mark Thomson. Handout 2 : The Dirac Equation. Non-Relativistic QM (Revision) Particle Physics Michaelmas Term 2011 Prof. Mark Thomson + e - e + - + e - e + - + e - e + - + e - e + - Handout 2 : The Dirac Equation Prof. M.A. Thomson Michaelmas 2011 45 Non-Relativistic QM (Revision)

More information

L z L L. Think of it as also affecting the angle

L z L L. Think of it as also affecting the angle Quantum Mechanics and Atomic Physics Lecture 19: Quantized Angular Momentum and Electron Spin http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Last time Raising/Lowering angular momentum

More information

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet Mathematical Tripos Part IB Michaelmas Term 2015 Quantum Mechanics Dr. J.M. Evans Example Sheet 1 Values of some physical constants are given on the supplementary sheet 1. Whenasampleofpotassiumisilluminatedwithlightofwavelength3

More information

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split Electron Spin Electron spin hypothesis Solution to H atom problem gave three quantum numbers, n,, m. These apply to all atoms. Experiments show not complete description. Something missing. Alkali metals

More information

Chapter Electron Spin. * Fine structure:many spectral lines consist of two separate. lines that are very close to each other.

Chapter Electron Spin. * Fine structure:many spectral lines consist of two separate. lines that are very close to each other. Chapter 7 7. Electron Spin * Fine structure:many spectral lines consist of two separate lines that are very close to each other. ex. H atom, first line of Balmer series n = 3 n = => 656.3nm in reality,

More information

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

More information

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom PHYS 34 Modern Physics Atom III: Angular Momentum and Spin Roadmap for Exploring Hydrogen Atom Today Contents: a) Orbital Angular Momentum and Magnetic Dipole Moment b) Electric Dipole Moment c) Stern

More information

HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8. From Last Time

HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8. From Last Time HW posted on web page HW10: Chap 14 Concept 8,20,24,26 Prob. 4,8 From Last Time Philosophical effects in quantum mechanics Interpretation of the wave function: Calculation using the basic premises of quantum

More information

Announcements. Chapter. 8 Spin & Atomic Physics SPIN. For and electron: s = 1/2. s the quantum number of SPIN. Intrinsic property of a particle

Announcements. Chapter. 8 Spin & Atomic Physics SPIN. For and electron: s = 1/2. s the quantum number of SPIN. Intrinsic property of a particle Announcements! HW8 : Chap.8 30, 31, 35, 41, 49! Physics Colloquium: Development in Electron Nuclear Dynamics Theory on Thursday @ 3:40pm! Quiz3: 4/19 (Chap. 6,7,8) *** Course Web Page ** http://highenergy.phys.ttu.edu/~slee/2402/

More information

Particle Physics Dr. Alexander Mitov Handout 2 : The Dirac Equation

Particle Physics Dr. Alexander Mitov Handout 2 : The Dirac Equation Dr. A. Mitov Particle Physics 45 Particle Physics Dr. Alexander Mitov µ + e - e + µ - µ + e - e + µ - µ + e - e + µ - µ + e - e + µ - Handout 2 : The Dirac Equation Dr. A. Mitov Particle Physics 46 Non-Relativistic

More information

1 Recall what is Spin

1 Recall what is Spin C/CS/Phys C191 Spin measurement, initialization, manipulation by precession10/07/08 Fall 2008 Lecture 10 1 Recall what is Spin Elementary particles and composite particles carry an intrinsic angular momentum

More information

Quantum Mechanics of Atoms

Quantum Mechanics of Atoms Quantum Mechanics of Atoms Your theory is crazy, but it's not crazy enough to be true N. Bohr to W. Pauli Quantum Mechanics of Atoms 2 Limitations of the Bohr Model The model was a great break-through,

More information

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function:

Atoms, Molecules and Solids. From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation of the wave function: Essay outline and Ref to main article due next Wed. HW 9: M Chap 5: Exercise 4 M Chap 7: Question A M Chap 8: Question A From Last Time Superposition of quantum states Philosophy of quantum mechanics Interpretation

More information

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number:

Sommerfeld (1920) noted energy levels of Li deduced from spectroscopy looked like H, with slight adjustment of principal quantum number: Spin. Historical Spectroscopy of Alkali atoms First expt. to suggest need for electron spin: observation of splitting of expected spectral lines for alkali atoms: i.e. expect one line based on analogy

More information

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form Lecture 6 Page 1 Atoms L6.P1 Review of hydrogen atom Heavy proton (put at the origin), charge e and much lighter electron, charge -e. Potential energy, from Coulomb's law Potential is spherically symmetric.

More information

1 Quantum field theory and Green s function

1 Quantum field theory and Green s function 1 Quantum field theory and Green s function Condensed matter physics studies systems with large numbers of identical particles (e.g. electrons, phonons, photons) at finite temperature. Quantum field theory

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I Physics 342 Lecture 17 Midterm I Recap Lecture 17 Physics 342 Quantum Mechanics I Monday, March 1th, 28 17.1 Introduction In the context of the first midterm, there are a few points I d like to make about

More information

1.6. Quantum mechanical description of the hydrogen atom

1.6. Quantum mechanical description of the hydrogen atom 29.6. Quantum mechanical description of the hydrogen atom.6.. Hamiltonian for the hydrogen atom Atomic units To avoid dealing with very small numbers, let us introduce the so called atomic units : Quantity

More information

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep Problem set 1 Due Sep 15 2005 1. Let V be the set of all complex valued functions of a real variable θ, that are periodic with period 2π. That is u(θ + 2π) = u(θ), for all u V. (1) (i) Show that this V

More information

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 4 Postulates of Quantum Mechanics I In today s lecture I will essentially be talking

More information

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 8 Notes

3.024 Electrical, Optical, and Magnetic Properties of Materials Spring 2012 Recitation 8 Notes Overview 1. Electronic Band Diagram Review 2. Spin Review 3. Density of States 4. Fermi-Dirac Distribution 1. Electronic Band Diagram Review Considering 1D crystals with periodic potentials of the form:

More information

221B Lecture Notes Many-Body Problems I

221B Lecture Notes Many-Body Problems I 221B Lecture Notes Many-Body Problems I 1 Quantum Statistics of Identical Particles If two particles are identical, their exchange must not change physical quantities. Therefore, a wave function ψ( x 1,

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

The Klein Gordon Equation

The Klein Gordon Equation December 30, 2016 7:35 PM 1. Derivation Let s try to write down the correct relativistic equation of motion for a single particle and then quantize as usual. a. So take (canonical momentum) The Schrödinger

More information

Momentum expectation Momentum expectation value value for for infinite square well

Momentum expectation Momentum expectation value value for for infinite square well Quantum Mechanics and Atomic Physics Lecture 9: The Uncertainty Principle and Commutators http://www.physics.rutgers.edu/ugrad/361 Prof. Sean Oh Announcement Quiz in next class (Oct. 5): will cover Reed

More information

P3317 HW from Lecture 15 and Recitation 8

P3317 HW from Lecture 15 and Recitation 8 P3317 HW from Lecture 15 and Recitation 8 Due Oct 23, 218 Problem 1. Variational Energy of Helium Here we will estimate the ground state energy of Helium. Helium has two electrons circling around a nucleus

More information

Spin ½ (Pages 1-12 are needed)

Spin ½ (Pages 1-12 are needed) Prof. Dr. I. Nasser Phs- 55 (T-) October 3, 03 Spin3.doc Spin ½ (Pages - are needed) Recall that in the H-atom solution, we showed that the fact that the wavefunction ψ (r) is singlevalued requires that

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011 Fermi gas model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 34 Outline 1 Bosons and fermions NUCS 342 (Lecture

More information

Rotations in Quantum Mechanics

Rotations in Quantum Mechanics Rotations in Quantum Mechanics We have seen that physical transformations are represented in quantum mechanics by unitary operators acting on the Hilbert space. In this section, we ll think about the specific

More information

The Stern-Gerlach experiment and spin

The Stern-Gerlach experiment and spin The Stern-Gerlach experiment and spin Experiments in the early 1920s discovered a new aspect of nature, and at the same time found the simplest quantum system in existence. In the Stern-Gerlach experiment,

More information

Lecture-XXVI. Time-Independent Schrodinger Equation

Lecture-XXVI. Time-Independent Schrodinger Equation Lecture-XXVI Time-Independent Schrodinger Equation Time Independent Schrodinger Equation: The time-dependent Schrodinger equation: Assume that V is independent of time t. In that case the Schrodinger equation

More information

QM and Angular Momentum

QM and Angular Momentum Chapter 5 QM and Angular Momentum 5. Angular Momentum Operators In your Introductory Quantum Mechanics (QM) course you learned about the basic properties of low spin systems. Here we want to review that

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

Intermission: Let s review the essentials of the Helium Atom

Intermission: Let s review the essentials of the Helium Atom PHYS3022 Applied Quantum Mechanics Problem Set 4 Due Date: 6 March 2018 (Tuesday) T+2 = 8 March 2018 All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

PHYSICS 721/821 - Spring Semester ODU. Graduate Quantum Mechanics II Midterm Exam - Solution

PHYSICS 721/821 - Spring Semester ODU. Graduate Quantum Mechanics II Midterm Exam - Solution PHYSICS 72/82 - Spring Semester 2 - ODU Graduate Quantum Mechanics II Midterm Exam - Solution Problem ) An electron (mass 5, ev/c 2 ) is in a one-dimensional potential well as sketched to the right (the

More information

Quantum mechanics of many-fermion systems

Quantum mechanics of many-fermion systems Quantum mechanics of many-fermion systems Kouichi Hagino Tohoku University, Sendai, Japan 1. Identical particles: Fermions and Bosons 2. Simple examples: systems with two identical particles 3. Pauli principle

More information

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals ECE44 Nanoelectronics Lecture 7 Atomic Orbitals Atoms and atomic orbitals It is instructive to compare the simple model of a spherically symmetrical potential for r R V ( r) for r R and the simplest hydrogen

More information

Quantum Physics in the Nanoworld

Quantum Physics in the Nanoworld Hans Lüth Quantum Physics in the Nanoworld Schrödinger's Cat and the Dwarfs 4) Springer Contents 1 Introduction 1 1.1 General and Historical Remarks 1 1.2 Importance for Science and Technology 3 1.3 Philosophical

More information

Section 10: Many Particle Quantum Mechanics Solutions

Section 10: Many Particle Quantum Mechanics Solutions Physics 143a: Quantum Mechanics I Section 10: Many Particle Quantum Mechanics Solutions Spring 015, Harvard Here is a summary of the most important points from this week (with a few of my own tidbits),

More information

ψ(t) = U(t) ψ(0). (6.1.1)

ψ(t) = U(t) ψ(0). (6.1.1) Chapter 6 Symmetries 6.1 Quantum dynamics The state, or ket, vector ψ of a physical system completely characterizes the system at a given instant. The corresponding bra vector ψ is the Hermitian conjugate

More information

International Physics Course Entrance Examination Questions

International Physics Course Entrance Examination Questions International Physics Course Entrance Examination Questions (May 2010) Please answer the four questions from Problem 1 to Problem 4. You can use as many answer sheets you need. Your name, question numbers

More information

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction

Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction Lecture 5 Coupling of Angular Momenta Isospin Nucleon-Nucleon Interaction WS0/3: Introduction to Nuclear and Particle Physics,, Part I I. Angular Momentum Operator Rotation R(θ): in polar coordinates the

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics University of York Lecturer: Rex Godby Notes by Victor Naden Robinson Lecture 1: TDSE Lecture 2: TDSE Lecture 3: FMG Lecture 4: FMG Lecture 5: Ehrenfest s Theorem and the Classical

More information

C/CS/Phys 191 Uncertainty principle, Spin Algebra 10/11/05 Fall 2005 Lecture 13

C/CS/Phys 191 Uncertainty principle, Spin Algebra 10/11/05 Fall 2005 Lecture 13 C/CS/Phys 191 Uncertainty principle, Spin Algebra 10/11/05 Fall 2005 Lecture 13 1 Readings Uncertainty principle: Griffiths, Introduction to QM, Ch. 3.4. Spin: Griffiths, Introduction to QM, Ch. 4.4; Liboff,

More information

2 Electronic structure theory

2 Electronic structure theory Electronic structure theory. Generalities.. Born-Oppenheimer approximation revisited In Sec..3 (lecture 3) the Born-Oppenheimer approximation was introduced (see also, for instance, [Tannor.]). We are

More information

Announcements. Lecture 20 Chapter. 7 QM in 3-dims & Hydrogen Atom. The Radial Part of Schrodinger Equation for Hydrogen Atom

Announcements. Lecture 20 Chapter. 7 QM in 3-dims & Hydrogen Atom. The Radial Part of Schrodinger Equation for Hydrogen Atom Announcements! HW7 : Chap.7 18, 20, 23, 32, 37, 38, 45, 47, 53, 57, 60! Physics Colloquium: Development in Electron Nuclear Dynamics Theory on Thursday @ 3:40pm! Quiz 2 (average: 9), Quiz 3: 4/19 *** Course

More information

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

Students are required to pass a minimum of 15 AU of PAP courses including the following courses: School of Physical and Mathematical Sciences Division of Physics and Applied Physics Minor in Physics Curriculum - Minor in Physics Requirements for the Minor: Students are required to pass a minimum of

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Time Independent Perturbation Theory Contd.

Time Independent Perturbation Theory Contd. Time Independent Perturbation Theory Contd. A summary of the machinery for the Perturbation theory: H = H o + H p ; H 0 n >= E n n >; H Ψ n >= E n Ψ n > E n = E n + E n ; E n = < n H p n > + < m H p n

More information

3 Quantization of the Dirac equation

3 Quantization of the Dirac equation 3 Quantization of the Dirac equation 3.1 Identical particles As is well known, quantum mechanics implies that no measurement can be performed to distinguish particles in the same quantum state. Elementary

More information