Quantum Physics II (8.05) Fall 2002 Assignment 11

Size: px
Start display at page:

Download "Quantum Physics II (8.05) Fall 2002 Assignment 11"

Transcription

1 Quantum Physics II (8.05) Fall 00 Assignment 11 Readings Most of the reading needed for this problem set was already given on Problem Set 9. The new readings are: Phase shifts are discussed in Cohen-Tannoudji on pages 91-93, However, this discussion is in a context which you will only fully appreciate in To see a description of the same physics at the level appropriate for this problem set, try Gasiorowicz (which you can get from the library or the physics reading room) pp The reading assignment on spin is Griffiths Ch. 4.4 and Cohen-Tannoudji Ch. IX. If you wish to read ahead, to prepare for the next problem set, read Griffiths Ch. 5.1, 5. and Cohen-Tannoudji Ch. X, not including any of the complements. Problem Set Infinite Spherical Well (15 points) In this example, you will work out work out the bound state energies for the lowest few values of l in the infinite spherical well potential, by which I mean V = 0 for r b and V = for r > b. You will discover that in this potential, unlike in the 1/r potential, there are no degeneracies between levels with different values of l. (a) Before we get to the infinite spherical well, lets consider the potential V = 0. I mean V = 0 everywhere. You know what solutions look like in the basis of eigenstates of p x, p y, p z : they are plane waves ψ(x, y, z) exp[i(xp x + yp y + zp z )/ h]. What we want to do here, though, is lay the groundwork for imposing the boundary condition ψ = 0 at r = b. With this goal in mind, it is much more convenient to think of V = 0 as an example of a central potential and then use as basis states wave functions which are eigenstates of the Hamiltonian, L and L z, rather than of p x, p y, p z. So, these states will be given by u l (r) ψ(r, θ, φ) = Y lm (θ, φ) r where u l (r) satisfies the radial wave equation with V = 0: h d h l(l + 1) u m dr l(r) + u mr l (r) = Eu l (r), 1

2 with u l (0) = 0. Show that if we introduce the wave number k via the change of variables k = me/ h and then introduce the dimensionless variable z = kr, the radial wave equation becomes d l(l + 1) dz u l(z) + z u l (z) = u l (z). (1) Solutions to this equation have the form u 0 l (z) = zj l (z) where ( 1 d ) l ( ) sin z j l (z) = ( z) l. () z dz z The function j l (z) is called the lth spherical Bessel function. Write the explicit expressions for zj 0 (z) and zj 1 (z) and zj (z). Verify that zj 0 (z) and zj 1 (z) solve the radial equation. [Challenge: Prove that zj l (z) solves the radial equation, for j l (z) given in (). Do not turn this in; it is not a required part of this problem set. However, some of you may enjoy constructing a proof. There are several ways of doing this. One of them is to apply the supersymmetric methods that you learned last week.] (b) Now, consider the spherically symmetric potential with V = 0 for r < b and V = for r > b. This means that now we must impose the boundary condition u(b) = 0. i. First, consider l = 0. Find the allowed values of k, and hence the allowed energies. ii. Now, consider l = 1. Determine the allowed values of k graphically. Show that the energy of the nth energy level with l = 1 is approximately E n,l=1 ( h π /mb )(n + 1/) when n is large. iii. You can find (and by now have found) the values of z for which j 0 (z) = 0 analytically. The zeros of j l (z) for l 1 have to be found numerically. The lowest few zeroes are: j 1 (z) = 0 at z = 4.49 and z = 7.73 and z = and... j (z) = 0 at z = 5.76 and z = 9.10 and... j 3 (z) = 0 at z = 6.99 and z = 10.4 and... j 4 (z) = 0 at z = 8.18 and... j 5 (z) = 0 at z = 9.36 and... j 6 (z) = 0 at z = and... (For each l, there are infinitely many zeroes at ever increasing values of z. I have listed all the zeroes that occur at z < 11. You might wish to check a few of these zeroes, given that you have explicit expressions for the j l s. I will not ask you turn in such checks.) Make a level diagram for the infinite spherical well that is organized like the one I made for hydrogen in lecture. That is, arrange the energy levels in side-by-side columns, one column for each value of l. [Aside: in the same way that the level diagram for hydrogen provides initial insight into atomic structure to construct an atom with Z electrons you think of filling

3 levels with electrons one by one, from the bottom up the level diagram you have just constructed is a crude starting point for nuclear physics you think of filling levels with neutrons and protons one by one. The correct nuclear potential is not quite as simple as this, and there are also forces between neutrons and protons that depend on their spin which play an important role. However, this level diagram is a better starting point for nuclear physics than the level diagram for a 1/r potential would be because, unlike electrostatic forces, nuclear forces are short-ranged. You might be worried that this potential well is infinitely deep, whereas whatever potential it is that describes nuclei cannot be. You will see in the last part of the next problem that this is a good approximation to a deep, but not infinitely deep, spherical well.]. Bound States in a Finite Spherical Well (15 points) A finite spherical well is described by V (r) = V 0 for r b and V (r) = 0 for r > b. Throughout this problem, consider only states with l = 0. (a) Write the Schrödinger equation for the radial wave function u(r). (b) Find u(r) for r < b in terms of the momentum, q = m(e + V 0 )/ h. What condition on u(r) dictated your choice between the two linearly independent solutions to the Schrödinger equation? (c) Find u(r) for r > b for the case of a bound state, E < 0. [Let κ = me/ h.] What condition on u(r) dictated your choice between the two linearly independent solutions to the Schrödinger equation? (d) By demanding that u(r) and its derivative be continuous at r = b, find an eigenvalue equation for E. [It takes a simple form in terms of the variables qb and b mv 0 / h.] Explain how to solve this equation graphically. (e) What is the minimum value of V 0 for which there is a bound state? [Recall that in one dimension, a potential well always has at least one bound state. This is not the case in three dimensions.] (f) For very large values of V 0, what are the energies of the deeply bound states? [Make sure that your result agrees with what you found for l = 0 states in Problem 1.] 3. Phase Shifts (0 points) States with positive energy are not bound, and their energies are not quantized. They are important as solutions to the scattering problem. When we scatter a particle of momentum k from a central potential, we can observe the phase shifts δ l (k) for each l. (We will see how in 8.06.) This problem reviews the definition of the phase shift and then asks you to derive it in several simple cases. The radial equation for a solution with energy E and angular momentum l is d l(l + 1) m u dz l(z) + u z l (z) + h k V (z)u l(z) = u l (z) (3) where k = me/ h, z = kr and u l (0) = 0. 3

4 (a) First, consider the case V = 0. The solutions to the free Schrödinger equation with u l (0) = 0 are given by u 0 l (z) = zj l (z). Use () to show that ( ) 0 lπ u l (z) sin z as z. This explains why the phase shift for an arbitrary potential V is defined by ( ) lπ u l (z) sin z + δ l (k) as z. (b) Consider the potential V (r) = V 0 for r < b and V = 0 for r > b. Solve the Schrödinger equation for l = 0 and k > 0 for this potential. Remember that both u and u must be continuous at any discontinuity of V. Obtain an equation for the phase shift δ 0 (k) and plot your result for V 0 small enough that there is no bound state. Discuss the behavior of the phase shift in the limit of high energies (k mv 0 / h ) and low energies (k mv 0 / h ). In these limits, consider both the attractive potential given above, and repulsive potentials for which V (r) = +V 0 for r < b. [Answer: the equation obeyed by the phase shift is kcot(kb + δ 0 (k)) = qcot(qb), where q = m(e + V 0 )/ h. δ 0 (k) vanishes at k = 0, rises linearly (at first) with k, reaches a maximum, and then falls back to zero at large k. I leave to you deriving the answer, plotting it, and discussing its behavior.] (c) Consider the attractive potential given in (b). For l = 0 it is possible to expand the phase shift in powers of k as follows: kcotδ 0 (k) = 1 + r eff k + O(k 4 ). (4) a Relate the parameters a and r eff to the parameters of the potential b and V 0. [This is a straightforward, but rather grungy, exercise in Taylor expansion. I strongly recommend having Mathematica (or an equivalent program) do it for you...] You now have an expression for a in terms of b and V 0. a has units of length. For most values of b and V 0, a is of the same order of magnitude as b. Show, however, that (for a given, fixed, b) there are special values of V 0 for which a/b. [a and r eff are called the scattering length and effective range of the potential. Since an expansion of the form (4) holds for any well-behaved potential, low energy scattering can always be approximated by an effective square well.] (d) The potential whose scattering length a you have just analyzed is the same as the potential whose bound states you analyzed in Problem. Is there anything special about the energies of the bound states of this potential if V 0 has one of the special values for which a/b? If so, what? (e) Consider the potential V (r) = for r < b and V = 0 for r > b. Again, calculate the l = 0 phase shift. [This potential corresponds to an impenetrable sphere.] 4

5 4. Spin Eigenfunctions and Spin Precession (10 points) This problem should be largely a review for you. (a) Consider a spin 1/ system. What are the eigenvalues and eigenvectors of the operator S x + S y? Suppose a measurement of this operator is made, and the system is found to be in the state corresponding to the larger eigenvalue. What is the probability that a subsequent measurement of S z yields h/? (b) Consider a spin 1/ particle in a magnetic field in the z-direction. The Hamiltonian is H = γs z B = ωs z where ω = γb. Suppose that at time zero the spin is in the state ψ(0) = c c. i. Find the state of the system ant time t > 0 and show that S x, S y, and S z evolve periodically in time. With what period? ii. The state itself also evolves periodically. With what period? Ie after what time is the state the same as it was at t = 0, where by the same I mean the same including any overall phase. iii. You may object: why should I care about an overall phase? It is not observable! This is correct if you only have one spin 1/ particle at your disposal. However, if you have two spin 1/ particles, you can design an experiment which shows that there are experimental consequences of the fact that the answers to (i) and (ii) differ. Outline such an experiment. [Hints: You can answer this with a simple sketch and a few lines of explanatory text. And, look in Sakurai.] 5

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I

Physics 342 Lecture 23. Radial Separation. Lecture 23. Physics 342 Quantum Mechanics I Physics 342 Lecture 23 Radial Separation Lecture 23 Physics 342 Quantum Mechanics I Friday, March 26th, 2010 We begin our spherical solutions with the simplest possible case zero potential. Aside from

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Quantum Physics III (8.06) Spring 2005 Assignment 10

Quantum Physics III (8.06) Spring 2005 Assignment 10 Quantum Physics III (8.06) Spring 2005 Assignment 10 April 29, 2005 Due FRIDAY May 6, 2005 Please remember to put your name and section time at the top of your paper. Prof. Rajagopal will give a review

More information

Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid

Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid Announcement This handout includes 9 problems. The first 5 are the problem set due. The last 4 cover material from the final few lectures

More information

Schrödinger equation for the nuclear potential

Schrödinger equation for the nuclear potential Schrödinger equation for the nuclear potential Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 24, 2011 NUCS 342 (Lecture 4) January 24, 2011 1 / 32 Outline 1 One-dimensional

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

More information

Quantum Mechanics Solutions

Quantum Mechanics Solutions Quantum Mechanics Solutions (a (i f A and B are Hermitian, since (AB = B A = BA, operator AB is Hermitian if and only if A and B commute So, we know that [A,B] = 0, which means that the Hilbert space H

More information

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems Chm 331 Fall 015, Exercise Set 4 NMR Review Problems Mr. Linck Version.0. Compiled December 1, 015 at 11:04:44 4.1 Diagonal Matrix Elements for the nmr H 0 Find the diagonal matrix elements for H 0 (the

More information

Physics 342 Lecture 26. Angular Momentum. Lecture 26. Physics 342 Quantum Mechanics I

Physics 342 Lecture 26. Angular Momentum. Lecture 26. Physics 342 Quantum Mechanics I Physics 342 Lecture 26 Angular Momentum Lecture 26 Physics 342 Quantum Mechanics I Friday, April 2nd, 2010 We know how to obtain the energy of Hydrogen using the Hamiltonian operator but given a particular

More information

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I Physics 342 Lecture 17 Midterm I Recap Lecture 17 Physics 342 Quantum Mechanics I Monday, March 1th, 28 17.1 Introduction In the context of the first midterm, there are a few points I d like to make about

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

Physics 580: Quantum Mechanics I Department of Physics, UIUC Fall Semester 2017 Professor Eduardo Fradkin

Physics 580: Quantum Mechanics I Department of Physics, UIUC Fall Semester 2017 Professor Eduardo Fradkin Physics 58: Quantum Mechanics I Department of Physics, UIUC Fall Semester 7 Professor Eduardo Fradkin Problem Set No. 5 Bound States and Scattering Theory Due Date: November 7, 7 Square Well in Three Dimensions

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8 CHAPTER 8 Hydrogen Atom 8.1 Spherical Coordinates 8.2 Schrödinger's Equation in Spherical Coordinate 8.3 Separation of Variables 8.4 Three Quantum Numbers 8.5 Hydrogen Atom Wave Function 8.6 Electron Spin

More information

Outline Spherical symmetry Free particle Coulomb problem Keywords and References. Central potentials. Sourendu Gupta. TIFR, Mumbai, India

Outline Spherical symmetry Free particle Coulomb problem Keywords and References. Central potentials. Sourendu Gupta. TIFR, Mumbai, India Central potentials Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 2013 3 October, 2013 Outline 1 Outline 2 Rotationally invariant potentials 3 The free particle 4 The Coulomb problem 5 Keywords

More information

Physics 115C Homework 2

Physics 115C Homework 2 Physics 5C Homework Problem Our full Hamiltonian is H = p m + mω x +βx 4 = H +H where the unperturbed Hamiltonian is our usual and the perturbation is H = p m + mω x H = βx 4 Assuming β is small, the perturbation

More information

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m.

PHY4604 Introduction to Quantum Mechanics Fall 2004 Final Exam SOLUTIONS December 17, 2004, 7:30 a.m.- 9:30 a.m. PHY464 Introduction to Quantum Mechanics Fall 4 Final Eam SOLUTIONS December 7, 4, 7:3 a.m.- 9:3 a.m. No other materials allowed. If you can t do one part of a problem, solve subsequent parts in terms

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

Spring /2/ pts 1 point per minute

Spring /2/ pts 1 point per minute Physics 519 MIDTERM Name: Spring 014 6//14 80 pts 1 point per minute Exam procedures. Please write your name above. Please sit away from other students. If you have a question about the exam, please ask.

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

Lecture 10. Central potential

Lecture 10. Central potential Lecture 10 Central potential 89 90 LECTURE 10. CENTRAL POTENTIAL 10.1 Introduction We are now ready to study a generic class of three-dimensional physical systems. They are the systems that have a central

More information

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1 L1.P1 Lecture #1 Review Postulates of quantum mechanics (1-3) Postulate 1 The state of a system at any instant of time may be represented by a wave function which is continuous and differentiable. Specifically,

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

22.02 Intro to Applied Nuclear Physics

22.02 Intro to Applied Nuclear Physics 22.02 Intro to Applied Nuclear Physics Mid-Term Exam Solution Problem 1: Short Questions 24 points These short questions require only short answers (but even for yes/no questions give a brief explanation)

More information

Harmonic Oscillator I

Harmonic Oscillator I Physics 34 Lecture 7 Harmonic Oscillator I Lecture 7 Physics 34 Quantum Mechanics I Monday, February th, 008 We can manipulate operators, to a certain extent, as we would algebraic expressions. By considering

More information

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214

Oh, the humanity! David J. Starling Penn State Hazleton PHYS 214 Oh, the humanity! -Herbert Morrison, radio reporter of the Hindenburg disaster David J. Starling Penn State Hazleton PHYS 24 The hydrogen atom is composed of a proton and an electron with potential energy:

More information

Angular momentum & spin

Angular momentum & spin Angular momentum & spin January 8, 2002 1 Angular momentum Angular momentum appears as a very important aspect of almost any quantum mechanical system, so we need to briefly review some basic properties

More information

The quantum state as a vector

The quantum state as a vector The quantum state as a vector February 6, 27 Wave mechanics In our review of the development of wave mechanics, we have established several basic properties of the quantum description of nature:. A particle

More information

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q.

1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. 1. Electricity and Magnetism (Fall 1995, Part 1) A metal sphere has a radius R and a charge Q. (a) Compute the electric part of the Maxwell stress tensor T ij (r) = 1 {E i E j 12 } 4π E2 δ ij both inside

More information

Deformed (Nilsson) shell model

Deformed (Nilsson) shell model Deformed (Nilsson) shell model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 31, 2011 NUCS 342 (Lecture 9) January 31, 2011 1 / 35 Outline 1 Infinitely deep potential

More information

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2 PHYS 4 3. The momentum operator in three dimensions is p = i Therefore the momentum-squared operator is [ p 2 = 2 2 = 2 r 2 ) + r 2 r r r 2 sin θ We notice that this can be written as sin θ ) + θ θ r 2

More information

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I

Physics 342 Lecture 30. Solids. Lecture 30. Physics 342 Quantum Mechanics I Physics 342 Lecture 30 Solids Lecture 30 Physics 342 Quantum Mechanics I Friday, April 18th, 2008 We can consider simple models of solids these highlight some special techniques. 30.1 An Electron in a

More information

Solution Set of Homework # 6 Monday, December 12, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second Volume

Solution Set of Homework # 6 Monday, December 12, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second Volume Department of Physics Quantum II, 570 Temple University Instructor: Z.-E. Meziani Solution Set of Homework # 6 Monday, December, 06 Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second

More information

1 Commutators (10 pts)

1 Commutators (10 pts) Final Exam Solutions 37A Fall 0 I. Siddiqi / E. Dodds Commutators 0 pts) ) Consider the operator  = Ĵx Ĵ y + ĴyĴx where J i represents the total angular momentum in the ith direction. a) Express both

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments

Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments PHYS85 Quantum Mechanics I, Fall 9 HOMEWORK ASSIGNMENT Topics Covered: Motion in a central potential, spherical harmonic oscillator, hydrogen atom, orbital electric and magnetic dipole moments. [ pts]

More information

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Justin Campbell August 3, 2017 1 Representations of SU 2 and SO 3 (R) 1.1 The following observation is long overdue. Proposition

More information

P3317 HW from Lecture 15 and Recitation 8

P3317 HW from Lecture 15 and Recitation 8 P3317 HW from Lecture 15 and Recitation 8 Due Oct 23, 218 Problem 1. Variational Energy of Helium Here we will estimate the ground state energy of Helium. Helium has two electrons circling around a nucleus

More information

For example, in one dimension if we had two particles in a one-dimensional infinite potential well described by the following two wave functions.

For example, in one dimension if we had two particles in a one-dimensional infinite potential well described by the following two wave functions. Identical particles In classical physics one can label particles in such a way as to leave the dynamics unaltered or follow the trajectory of the particles say by making a movie with a fast camera. Thus

More information

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom

Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Physics 228 Today: Ch 41: 1-3: 3D quantum mechanics, hydrogen atom Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Happy April Fools Day Example / Worked Problems What is the ratio of the

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 5 I. REPRESENTING STATES IN THE FULL HILBERT SPACE Given a representation of the states that span the spin Hilbert space, we now need to consider the problem

More information

PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 8: Solutions. Topics covered: hydrogen fine structure

PHYS852 Quantum Mechanics II, Spring 2010 HOMEWORK ASSIGNMENT 8: Solutions. Topics covered: hydrogen fine structure PHYS85 Quantum Mechanics II, Spring HOMEWORK ASSIGNMENT 8: Solutions Topics covered: hydrogen fine structure. [ pts] Let the Hamiltonian H depend on the parameter λ, so that H = H(λ). The eigenstates and

More information

2m r2 (~r )+V (~r ) (~r )=E (~r )

2m r2 (~r )+V (~r ) (~r )=E (~r ) Review of the Hydrogen Atom The Schrodinger equation (for 1D, 2D, or 3D) can be expressed as: ~ 2 2m r2 (~r, t )+V (~r ) (~r, t )=i~ @ @t The Laplacian is the divergence of the gradient: r 2 =r r The time-independent

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 27st Page 1 Lecture 27 L27.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Chapter 4 (Lecture 6-7) Schrodinger equation for some simple systems Table: List of various one dimensional potentials System Physical correspondence

Chapter 4 (Lecture 6-7) Schrodinger equation for some simple systems Table: List of various one dimensional potentials System Physical correspondence V, E, Chapter (Lecture 6-7) Schrodinger equation for some simple systems Table: List of various one dimensional potentials System Physical correspondence Potential Total Energies and Probability density

More information

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep

PHY 407 QUANTUM MECHANICS Fall 05 Problem set 1 Due Sep Problem set 1 Due Sep 15 2005 1. Let V be the set of all complex valued functions of a real variable θ, that are periodic with period 2π. That is u(θ + 2π) = u(θ), for all u V. (1) (i) Show that this V

More information

1 Reduced Mass Coordinates

1 Reduced Mass Coordinates Coulomb Potential Radial Wavefunctions R. M. Suter April 4, 205 Reduced Mass Coordinates In classical mechanics (and quantum) problems involving several particles, it is convenient to separate the motion

More information

Physics 113!!!!! Spring 2009!! Quantum Theory Seminar #9

Physics 113!!!!! Spring 2009!! Quantum Theory Seminar #9 Physics 113!!!!! Spring 2009!! Quantum Theory Seminar #9 Readings:!! Zettili - Chapter - 6!! Boccio - Chapter - 9 - Sections 9.6.1-9.6.13 Presentations: 3D Finite Well!!!!! _Sarah_ (Section 9.6.3)! 2D

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential Lecture 3 Last lecture we were in the middle of deriving the energies of the bound states of the Λ in the nucleus. We will continue with solving the non-relativistic Schroedinger equation for a spherically

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

Angular Momentum. Classically the orbital angular momentum with respect to a fixed origin is. L = r p. = yp z. L x. zp y L y. = zp x. xpz L z.

Angular Momentum. Classically the orbital angular momentum with respect to a fixed origin is. L = r p. = yp z. L x. zp y L y. = zp x. xpz L z. Angular momentum is an important concept in quantum theory, necessary for analyzing motion in 3D as well as intrinsic properties such as spin Classically the orbital angular momentum with respect to a

More information

Quantum Physics III (8.06) Spring 2005 Assignment 8

Quantum Physics III (8.06) Spring 2005 Assignment 8 Quantum Physics III (8.06) Spring 2005 Assignment 8 April 5, 2005 Due WEDNESDAY April 20, 2005 Readings Griffiths Chapter 8 on the semiclassical approximation. Griffiths Chapter 10 on the adiabatic approximation.

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

Massachusetts Institute of Technology Physics Department

Massachusetts Institute of Technology Physics Department Massachusetts Institute of Technology Physics Department Physics 8.32 Fall 2006 Quantum Theory I October 9, 2006 Assignment 6 Due October 20, 2006 Announcements There will be a makeup lecture on Friday,

More information

3. Quantum Mechanics in 3D

3. Quantum Mechanics in 3D 3. Quantum Mechanics in 3D 3.1 Introduction Last time, we derived the time dependent Schrödinger equation, starting from three basic postulates: 1) The time evolution of a state can be expressed as a unitary

More information

CHAPTER 6: AN APPLICATION OF PERTURBATION THEORY THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM. (From Cohen-Tannoudji, Chapter XII)

CHAPTER 6: AN APPLICATION OF PERTURBATION THEORY THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM. (From Cohen-Tannoudji, Chapter XII) CHAPTER 6: AN APPLICATION OF PERTURBATION THEORY THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM (From Cohen-Tannoudji, Chapter XII) We will now incorporate a weak relativistic effects as perturbation

More information

Time part of the equation can be separated by substituting independent equation

Time part of the equation can be separated by substituting independent equation Lecture 9 Schrödinger Equation in 3D and Angular Momentum Operator In this section we will construct 3D Schrödinger equation and we give some simple examples. In this course we will consider problems where

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

Physics 828 Problem Set 7 Due Wednesday 02/24/2010

Physics 828 Problem Set 7 Due Wednesday 02/24/2010 Physics 88 Problem Set 7 Due Wednesday /4/ 7)a)Consider the proton to be a uniformly charged sphere of radius f m Determine the correction to the s ground state energy 4 points) This is a standard problem

More information

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet Mathematical Tripos Part IB Michaelmas Term 2015 Quantum Mechanics Dr. J.M. Evans Example Sheet 1 Values of some physical constants are given on the supplementary sheet 1. Whenasampleofpotassiumisilluminatedwithlightofwavelength3

More information

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4 Variational calculations for Hydrogen and Helium Recall the variational principle See Chapter 16 of the textbook The variational theorem states that for a Hermitian operator H with the smallest eigenvalue

More information

Section 6: Measurements, Uncertainty and Spherical Symmetry Solutions

Section 6: Measurements, Uncertainty and Spherical Symmetry Solutions Physics 143a: Quantum Mechanics I Spring 015, Harvard Section 6: Measurements, Uncertainty and Spherical Symmetry Solutions Here is a summary of the most important points from the recent lectures, relevant

More information

Quantum Physics II (8.05) Fall 2002 Assignment 7

Quantum Physics II (8.05) Fall 2002 Assignment 7 Quantum Physics II (8.05) Fall 2002 Assignment 7 Readings for the next two weeks The ammonia molecule and the ammonia maser are presented in The Feynman Letures, Volume 3, Chapters 8 and 9. They are also

More information

Plane wave solutions of the Dirac equation

Plane wave solutions of the Dirac equation Lecture #3 Spherical spinors Hydrogen-like systems again (Relativistic version) irac energy levels Chapter, pages 48-53, Lectures on Atomic Physics Chapter 5, pages 696-76, Bransden & Joachain,, Quantum

More information

conventions and notation

conventions and notation Ph95a lecture notes, //0 The Bloch Equations A quick review of spin- conventions and notation The quantum state of a spin- particle is represented by a vector in a two-dimensional complex Hilbert space

More information

1 Measurement and expectation values

1 Measurement and expectation values C/CS/Phys 191 Measurement and expectation values, Intro to Spin 2/15/05 Spring 2005 Lecture 9 1 Measurement and expectation values Last time we discussed how useful it is to work in the basis of energy

More information

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case The Postulates of Quantum Mechanics Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about the

More information

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II

UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland. PHYSICS Ph.D. QUALIFYING EXAMINATION PART II UNIVERSITY OF MARYLAND Department of Physics College Park, Maryland PHYSICS Ph.D. QUALIFYING EXAMINATION PART II January 22, 2016 9:00 a.m. 1:00 p.m. Do any four problems. Each problem is worth 25 points.

More information

Problem 1: A 3-D Spherical Well(10 Points)

Problem 1: A 3-D Spherical Well(10 Points) Problem : A 3-D Spherical Well( Points) For this problem, consider a particle of mass m in a three-dimensional spherical potential well, V (r), given as, V = r a/2 V = W r > a/2. with W >. All of the following

More information

PHY413 Quantum Mechanics B Duration: 2 hours 30 minutes

PHY413 Quantum Mechanics B Duration: 2 hours 30 minutes BSc/MSci Examination by Course Unit Thursday nd May 4 : - :3 PHY43 Quantum Mechanics B Duration: hours 3 minutes YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED TO DO

More information

Ch 125a Problem Set 1

Ch 125a Problem Set 1 Ch 5a Problem Set Due Monday, Oct 5, 05, am Problem : Bra-ket notation (Dirac notation) Bra-ket notation is a standard and convenient way to describe quantum state vectors For example, φ is an abstract

More information

Problems and Multiple Choice Questions

Problems and Multiple Choice Questions Problems and Multiple Choice Questions 1. A momentum operator in one dimension is 2. A position operator in 3 dimensions is 3. A kinetic energy operator in 1 dimension is 4. If two operator commute, a)

More information

Physics 401: Quantum Mechanics I Chapter 4

Physics 401: Quantum Mechanics I Chapter 4 Physics 401: Quantum Mechanics I Chapter 4 Are you here today? A. Yes B. No C. After than midterm? 3-D Schroedinger Equation The ground state energy of the particle in a 3D box is ( 1 2 +1 2 +1 2 ) π2

More information

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation

VANDERBILT UNIVERSITY. MATH 3120 INTRO DO PDES The Schrödinger equation VANDERBILT UNIVERSITY MATH 31 INTRO DO PDES The Schrödinger equation 1. Introduction Our goal is to investigate solutions to the Schrödinger equation, i Ψ t = Ψ + V Ψ, 1.1 µ where i is the imaginary number

More information

The Bohr Correspondence Principle

The Bohr Correspondence Principle The Bohr Correspondence Principle Kepler Orbits of the Electron in a Hydrogen Atom Deepak Dhar We consider the quantum-mechanical non-relativistic hydrogen atom. We show that for bound states with size

More information

Time Independent Perturbation Theory Contd.

Time Independent Perturbation Theory Contd. Time Independent Perturbation Theory Contd. A summary of the machinery for the Perturbation theory: H = H o + H p ; H 0 n >= E n n >; H Ψ n >= E n Ψ n > E n = E n + E n ; E n = < n H p n > + < m H p n

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

Quantum Mechanics: The Hydrogen Atom

Quantum Mechanics: The Hydrogen Atom Quantum Mechanics: The Hydrogen Atom 4th April 9 I. The Hydrogen Atom In this next section, we will tie together the elements of the last several sections to arrive at a complete description of the hydrogen

More information

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation:

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation: One-electron Atom The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's

More information

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline:

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: Time-Dependent Schrödinger Equation Solutions to thetime-dependent Schrödinger Equation Expansion of Energy Eigenstates Things you

More information

Quantum Physics III (8.06) Spring 2008 Assignment 8

Quantum Physics III (8.06) Spring 2008 Assignment 8 Quantum Physics III (8.06) Spring 2008 Assignment 8 April 8, 2008 Due Friday April 18, 2008 Please remember to put your name and section time at the top of your paper. Readings Griffiths Chapter 8 on the

More information

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6

Lecture 4. 1 de Broglie wavelength and Galilean transformations 1. 2 Phase and Group Velocities 4. 3 Choosing the wavefunction for a free particle 6 Lecture 4 B. Zwiebach February 18, 2016 Contents 1 de Broglie wavelength and Galilean transformations 1 2 Phase and Group Velocities 4 3 Choosing the wavefunction for a free particle 6 1 de Broglie wavelength

More information

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension In these notes we examine Bloch s theorem and band structure in problems with periodic potentials, as a part of our survey

More information

Quantum Theory of Angular Momentum and Atomic Structure

Quantum Theory of Angular Momentum and Atomic Structure Quantum Theory of Angular Momentum and Atomic Structure VBS/MRC Angular Momentum 0 Motivation...the questions Whence the periodic table? Concepts in Materials Science I VBS/MRC Angular Momentum 1 Motivation...the

More information

Chapter 4. Q. A hydrogen atom starts out in the following linear combination of the stationary. (ψ ψ 21 1 ). (1)

Chapter 4. Q. A hydrogen atom starts out in the following linear combination of the stationary. (ψ ψ 21 1 ). (1) Tor Kjellsson Stockholm University Chapter 4 4.5 Q. A hydrogen atom starts out in the following linear combination of the stationary states n, l, m =,, and n, l, m =,, : Ψr, 0 = ψ + ψ. a Q. Construct Ψr,

More information

Physics 220. Exam #2. May 23 May 30, 2014

Physics 220. Exam #2. May 23 May 30, 2014 Physics 0 Exam # May 3 May 30, 014 Name Please read and follow these instructions carefully: Read all problems carefully before attempting to solve them. Your work must be legible, with clear organization,

More information

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum

The Hydrogen atom. Chapter The Schrödinger Equation. 2.2 Angular momentum Chapter 2 The Hydrogen atom In the previous chapter we gave a quick overview of the Bohr model, which is only really valid in the semiclassical limit. cf. section 1.7.) We now begin our task in earnest

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation

The general solution of Schrödinger equation in three dimensions (if V does not depend on time) are solutions of time-independent Schrödinger equation Lecture 17 Page 1 Lecture 17 L17.P1 Review Schrödinger equation The general solution of Schrödinger equation in three dimensions (if V does not depend on time) is where functions are solutions of time-independent

More information

Quantum Physics III (8.06) Spring 2005 Assignment 9

Quantum Physics III (8.06) Spring 2005 Assignment 9 Quantum Physics III (8.06) Spring 2005 Assignment 9 April 21, 2005 Due FRIDAY April 29, 2005 Readings Your reading assignment on scattering, which is the subject of this Problem Set and much of Problem

More information

PHYS 3313 Section 001 Lecture # 22

PHYS 3313 Section 001 Lecture # 22 PHYS 3313 Section 001 Lecture # 22 Dr. Barry Spurlock Simple Harmonic Oscillator Barriers and Tunneling Alpha Particle Decay Schrodinger Equation on Hydrogen Atom Solutions for Schrodinger Equation for

More information

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant,

does not change the dynamics of the system, i.e. that it leaves the Schrödinger equation invariant, FYST5 Quantum Mechanics II 9..212 1. intermediate eam (1. välikoe): 4 problems, 4 hours 1. As you remember, the Hamilton operator for a charged particle interacting with an electromagentic field can be

More information

1 Schroenger s Equation for the Hydrogen Atom

1 Schroenger s Equation for the Hydrogen Atom Schroenger s Equation for the Hydrogen Atom Here is the Schroedinger equation in D in spherical polar coordinates. Note that the definitions of θ and φ are the exact reverse of what they are in mathematics.

More information

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial:

St Hugh s 2 nd Year: Quantum Mechanics II. Reading. Topics. The following sources are recommended for this tutorial: St Hugh s 2 nd Year: Quantum Mechanics II Reading The following sources are recommended for this tutorial: The key text (especially here in Oxford) is Molecular Quantum Mechanics, P. W. Atkins and R. S.

More information

Problem Set 5: Solutions

Problem Set 5: Solutions University of Alabama Department of Physics and Astronomy PH 53 / eclair Spring 1 Problem Set 5: Solutions 1. Solve one of the exam problems that you did not choose.. The Thompson model of the atom. Show

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information