Eud! Mag! Chl! Cer! Mon! outgroup! g 88. Eud! Cer! <50. Chl! Mag! Mon! outgroup! Eud! Mon! Cer! Mag! Chl! outgroup!

Size: px
Start display at page:

Download "Eud! Mag! Chl! Cer! Mon! outgroup! g 88. Eud! Cer! <50. Chl! Mag! Mon! outgroup! Eud! Mon! Cer! Mag! Chl! outgroup!"

Transcription

1 a < Eud! Chl! Mag! Cer! Mon! outgroup! b Eud! Mag! Chl! Cer! Mon! outgroup! c *.73 Eud! Cer! Mon! Chl! Mag! outgroup! d < 5 Eud! Cer! Mag! Chl! Mon! outgroup! Barkman et al., 2! Zanis et al., 22! Qiu et al., 999, 25! Hilu et al., 23! Qiu et al., 25! Qiu et al., 25! e Qiu et al., 25! Eud! Mag! Cer! Chl! Mon! outgroup! f Qiu et al., 25! Eud! Cer! Chl! Mag! Mon! outgroup! g 88 <5 <5 Eud! Cer! Mon! Mag! Chl! outgroup! Qiu et al., 25,! Moore et al, 2! h < 5 < 5 < 5 Eud! Qiu et al., 26! Cer! Mag! Mon! Chl! outgroup! i.6 <.5 Eud! j Cer! Mon! Chl! Mag! outgroup! Eud! Mon! Cer! Mag! Chl! outgroup! Moore et al., 27! Goremykin et al., 22! Supplementary Fig.. Ten additional alternative topologies among eudicots (Eud), monocots (Mon), magnoliids (Mag), Ceratophyllaceae (Cer) and Chloranthaceae (Chl) modified from previous studies. An asterisk indicates that the bootstrap value or posterior probability reached % or., respectively. Other bootstrap values (<BS<) or posterior probabilities (<PP<.) are indicated.!

2 Raw reads of 26 transcriptome data Angiosperms phylogeny Trinity & TGICL Unigenes! (contigs + singletons)! HaMStR & OrthoMCL 3 Genomes and 5 EST data RAxML & MrBayes! Supermatrix concatenate! BLAST filter 93 Putative core OGs discard species specific inparalogs! coverage ( 8%)! & length ( 8%) 59 Optimal OGs 349 Candidate OGs MUSCLE! Aligned OGs trimal! Trimmed alignments 5 effective genes (SMC, SMC2, MCM5, MSH, MLH) discard spurious sequences! discard obviously mistranslated regions! discard genes with topologies conflicting with established relationships! Construct 349 Single gene trees with 2 representative species construct single gene trees! Manually evaluated alignments Supplementary Fig. 2. Flowchart of data analysis.!

3 a!! 46! 55! 57! 65!! Arabidopsis thaliana! 7! Thellungiella parvula! 77! Ricinus communis! 86! Medicago truncatula!! Mimulus guttatus! Solanum lycopersicum! Aquilegia coerulea! Magnolia denudata! Aristocochia tagala! Magnoliids! 85! 9! 96! 95! 8! 44!. substitution per site! Chimonanthus praecox!! Oryza sativa! Sorghum bicolor! Asparagus officinalis! Canna indica! Dioscorea opposita! Pinellia ternata! calamus! henryi! caroliniana! Ginkgo biloba! Monocots! Eudicots! b! 9! 36! 9! 52! 54! 68! 9!! A. thaliana! 99! T. parvula! 74! R. communis! M. truncatula! M. guttatus! 64! S. lycopersicum! A. coerulea! M. denudata! A. tagala! Magnoliids! C. praecox! 99! 88! 8! 99! 45! I. henryi! C. caroliniana! G. biloba!.5 substitution per site!! O. sativa! S. bicolor! C. indica! D. opposita! A. officinalis! P. ternata! A. calamus! Eudicots! Monocots! 3! c! 26! 32!!! 5! 44! 63! 38! 92! 94! 96! 9!! A. thaliana! T. parvula! R. communis! M. truncatula! M. guttatus! S. lycopersicum! A. coerulea! Eudicots! M. denudata! C. praecox! Magnoliids! A. tagala! A. officinalis! D. opposita!! O. sativa! S. bicolor! A. calamus! I. henryi! C. caroliniana! G. biloba! Monocots! 9! 58! 56! d!! 9! 64! 4! 74! 88! 86! 63!! 98! 5!!! A. thaliana! T. parvula! R. communis! M. truncatula! M. guttatus! S. lycopersicum! A. coerulea! O. sativa! S. bicolor! C. indica! D. opposita! A. officinalis! P. ternata! A. calamus! M. denudata! C. praecox! A. tagala! I. henryi! C. caroliniana! G. biloba! Magnoliids! Eudicots! Monocots!. substitution per site!. substitution per site! Supplementary Fig. 3 (a-d). Examples of single gene trees of selected marker genes in accordance with species trees of 2 representative species with established relationships. Taxa in different major groups of mesangiosperms are shown in different colors as indicated. Numbers in each nodes are ML bootstrap values obtained by RAxML.!

4 e!! Arabidopsis thaliana!! 26! Thellungiella parvula! 75! 28! Ricinus communis! 36! Magnolia denudata! 38! 52! Mimulus guttatus! 25! 26! Solanum lycopersicum! 22! 28! Medicago truncatula! 8!! 59! Aquilegia coerulea! Chimonanthus praecox! 33! henryi! 26! Aristocochia tagala! 69! Dioscorea opposita! 9! 53! Pinellia ternata! 69! 3! Canna indica! 86! 65! Asparagus officinalis! 46! calamus! caroliniana! 45! 8! 99! Sorghum bicolor! Oryza sativa! Ginkgo biloba! f! A. thaliana! T. parvula! S. lycopersicum! M. guttatus! R. communis! M.truncatula! 57! 58! 86! 88! C. praecox! M. denudata! I. henryi! A. coerulea! G. biloba!! S. bicolor! O. sativa! C. indica! D. opposita! A. officinalis! P. ternata! A. tagala! A. calamus! C. caroliniana!.5 substitution per site!. substitution per site! g! 53! G. biloba! 45! 58! 25! 27! 72! 64! 93! 46! 26! 6! 38! 58! 95! M.truncatula!! A. thaliana! T. parvula! M. guttatus! S. lycopersicum! A. coerulea! A. tagala! 98! O. sativa! S. bicolor! 6! C. indica! P. ternata! D. opposita! P. ternata! A. calamus! C. praecox! M. denudata! I. henryi! C. caroliniana! R. communis! 96! h!! T. parvula! 6! A. thaliana! 4! R. communis! 99! 75! M. guttatus! S. lycopersicum! 56! 49! A. coerulea! M.truncatula! A. calamus! 76! C. indica! 4! O. sativa! 52!! S. bicolor! 78! P. ternata! 97! 49! D. opposita! P. ternata! 64! A. tagala! C. praecox! M. denudata! I. henryi! C. caroliniana! G. biloba!.2 substitution per site!. substitution per site! Supplementary Fig. 3 (e-h). Examples of single gene trees for excluded candidate genes conflicting with species trees of 2 representative species with established relationships. Numbers in each nodes are ML bootstrap obtained by RAxML. Species in purple, green and red are from eudicots, monocots and magnoliids, respectively.!

5 / Mesodicots 5/ Mesangiospermae 98/ 93/ 6/ Carica papaya! Theobroma cacao! Malvales! Gossypium raimondii! Citrus sinensis! Sapindales! Citrus clementina! Manihot esculenta! Ricinus communis! Malpighiales! 84/ Populus trichocarpa! Glycine max! Phaseolus vulgaris! Fabales! Medicago truncatula! Prunus persica! Rosales! Fragaria vesca! 92/ Eucalyptus grandis! Myrtales! Solanum tuberosum! Solanales! Solanum lycopersicum! Mimulus guttatus! Lamiales! Lactuca sativa! Asterales! Artemisia annua! Vitis vinifera! Vitales! Buxus sinica! Buxales! x acerifolia! Proteales! Aquilegia coerulea! Ranunculales! glabra! japonicus! Chloranthaceae oryzetorum! demersum! Cinnamomum camphora! Persea americana! Laurales! Chimonanthus praecox! Magnolia denudata! Magnoliales! tulipifera! Saruma henryi! Aristolochia tagala! Piperales! Houttuynia cordata! Ceratophyllaceae Sorghum bicolor! Zea mays! Setaria italica! Panicum virgatum! Brachypodium distachyon! Canna indica! Musa acuminata! Zingiberales! 75/ Trachycarpus fortunei! Yucca filamentosa! Arecales! 97/ Asparagus officinalis! Iris japonica! Asparagales! 9/ Lilium brownii! Liliales! Pandanus utilis! Pandanales! Dioscorea opposita! Dioscoreales! Pinellia ternata! Alisma plantago-aquatica! Alismatales! calamus! Acorales! henryi! les! caroliniana! advenda! Nymphaeales! trichopoda! les! Ginkgo biloba! Arabidopsis lyrata! Arabidopsis thaliana! Capsella rubella! Thellungiella parvula! Brassicales! Magnoliids Poales! basal! angiosperms Eudicots Monocots.5 substitution per site! Supplementary Fig. 4. The ML tree reconstructed using 59 genes of 6 species without gene partition. Numbers associated with nodes are the bootstrap value (BS, on the left) obtained by RAxML and the posterior probability (PP, on the right) obtained by MrBayes based on concatenated 59 genes. Asterisks indicate BS of % or PP of.. Diamonds indicate BS of % and PP of..!

6 Mesodicots */*/97/94! 92/86/84/86! 92/98/96/84! 86/94/94/79! Mesangiospermae 98/*/99/99! 96/92/92//94! 93/89/85/86! */99/96/86! 82/77/79/57! 82/82/76/8! 84/86/82/67! */*/98/98! Arabidopsis lyrata! Arabidopsis thaliana! Capsella rubella! Thellungiella parvula! Carica papaya! Theobroma cacao! Gossypium raimondii! Citrus sinensis! Citrus clementina! Manihot esculenta! Ricinus communis! Populus trichocarpa! Glycine max! Phaseolus vulgaris! Medicago truncatula! Prunus persica! Fragaria vesca! Eucalyptus grandis! Solanum tuberosum! Solanum lycopersicum! Mimulus guttatus! Lactuca sativa! Artemisia annua! Vitis vinifera! Buxus sinica! x acerifolia! Aquilegia coerulea! Supplementary Fig. 5. Trees based on different evolutionary models. This cladogram was inferred by RAxML based on concatenated 59-gene amino acid sequences. Taxa in different major groups of mesangiosperms are shown in different colors as indicated. Numbers associated with branches are bootstrap values (BS) based on JTT + CAT, JTT + G, WAG + CAT, and DAYHOFF + CAT from left to right; BS of % is indicated by asterisk; a diamond indicates that all four BS values are %.! Eudicots! glabra! japonicus! Chloranthaceae! oryzetorum! demersum! Ceratophyllaceae! Cinnamomum camphora! Persea americana! Chimonanthus praecox! Magnolia denudata! tulipifera! Saruma henryi! Aristolochia tagala! Houttuynia cordata! Sorghum bicolor! Zea mays! Setaria italica! Panicum virgatum! Brachypodium distachyon! Canna indica! Musa acuminata! Trachycarpus fortunei! Yucca filamentosa! Asparagus officinalis! Iris japonica! Lilium brownii! Pandanus utilis! Dioscorea opposita! Pinellia ternata! Alisma plantago-aquatica! calamus! henryi! caroliniana! advenda! trichopoda! Ginkgo biloba! Magnoliids! Monocots! Early-diverging! angiosperms

7 86/93/96/97/79/94/-! */.92/.96/.96/*/*/.64! 85/86/8/88/86/7/82! */*/.93/.97/ 99/*/ Mesodicots 77/83/8/87/92/85/87! */.99/*/.97/.99/.93/ Mesangiospermae */*/*/*/*/*/99! */.99/*/*/*/*/ 99/*/*/*/*/*/96! */.98/*/*/*/*/ 88/8/82/77/89/6/74! */.97/*/*/*/.97/ */*/*/*/99/*/ */*/*/*/*/*/ 9/98/95/*/97/99/84! */*/*/*/*/*/ 96/93/99/96/98/9/56! */.98/*/*/*/*/*/ 94/*/89/94/87/88/89! */*/.93/.97/.99/*/ */*/*/*/*/99/99!.98/*/*/*/*/*/ 78/84/88/9/83/92/82! */*/*/*/*/*/ */*/98/96/93/79/48! */*/*/*/*/*/.99! */*/*/*/*/*/77! */*/*/*/*/*/ 95/93/*/*/96/95/97! */*/*/*/*/*/ 84/8/87/93/92/79/-! */*/*/*/*/*/.63! 84/74/85/82/63/-/-!.93/.9/.97/*/.78/-/.53! 99/94/*/99/94/95! */*/*/*/*/ Arabidopsis lyrata! Arabidopsis thaliana! Capsella rubella! Thellungiella parvula! Carica papaya! Theobroma cacao! Gossypium raimondii! Citrus sinensis! Citrus clementina! Manihot esculenta! Ricinus communis! Populus trichocarpa! Glycine max! Eudicots! Phaseolus vulgaris! Medicago truncatula! Prunus persica! Fragaria vesca! Eucalyptus grandis! Solanum tuberosum! Solanum lycopersicum! Mimulus guttatus! Lactuca sativa! Artemisia annua! Vitis vinifera! Buxus sinica! x acerifolia! Aquilegia coerulea! glabra! japonicus! Chloranthaceae! oryzetorum! demersum! Ceratophyllaceae! Cinnamomum camphora! Persea americana! Chimonanthus praecox! Magnolia denudata! tulipifera! Magnoliids! Saruma henryi! Aristolochia tagala! Houttuynia cordata! Sorghum bicolor! Zea mays! Setaria italica! Panicum virgatum! Brachypodium distachyon! Canna indica! Musa acuminata! Trachycarpus fortunei! Yucca filamentosa! Monocots! Asparagus officinalis! Iris japonica! Lilium brownii! Pandanus utilis! Dioscorea opposita! Pinellia ternata! Alisma plantago-aquatica! calamus! henryi! caroliniana! advenda! trichopoda! Ginkgo biloba! Early-diverging! angiosperms Supplementary Fig. 6. Trees based on different numbers of genes. A cladogram inferred using RAxML based on concatenated 59-gene amino acid sequences. Numbers associated with branches are bootstrap values (above) obtained by RAxML and posterior probability (below) obtained by MrBayes based on 55, 5, 46, 4, 33, 25 and 6 genes from left to right, respectively. A diamond indicates all seven bootstrap values and posterior possibilities on this node reaching % and.. A dash indicates different topology at this node when compared with the 59-gene tree.!

8 a Density Bandwidth: genes b Density genes Bandwidth: Mean value of upper quartile of LB scores Standard deviation of LB scores Supplementary Fig. 7. Density plots generated with R of different genespecific long-branch indices for the 59 genes. (a) Average of the upper quartile of LB scores representing the genes with the longest branches. (b) Standard deviation of LB scores measuring heterogeneity. Dashed line indicates starting shoulder value. Red areas in the right-hand side indicate deviations from the normal distribution and comprise genes might be long branches.

9 Mesodicots Mesangiospermae 95/8! 99/99! 85/89! 89/9! 94/95! 88/87! 96/97! 96/96! 8/7! 67/75! 96/98! 97/ Arabidopsis lyrata! Arabidopsis thaliana! Capsella rubella! Thellungiella parvula! Carica papaya! Theobroma cacao! Gossypium raimondii! Citrus sinensis! Citrus clementina! Manihot esculenta! Ricinus communis! Populus trichocarpa! Glycine max! Eudicots! Phaseolus vulgaris! Medicago truncatula! Prunus persica! Fragaria vesca! Eucalyptus grandis! Solanum tuberosum! Solanum lycopersicum! Mimulus guttatus! Lactuca sativa! Artemisia annua! Vitis vinifera! Buxus sinica! x acerifolia! Aquilegia coerulea! glabra! japonicus! Chloranthaceae! oryzetorum! demersum! Ceratophyllaceae Cinnamomum camphora! Persea americana! Chimonanthus praecox! Magnolia denudata! tulipifera! Magnoliids! Saruma henryi! Aristolochia tagala! Houttuynia cordata! Sorghum bicolor! Zea mays! Setaria italica! Panicum virgatum! Brachypodium distachyon! Canna indica! Musa acuminata! Trachycarpus fortunei! Yucca filamentosa! Monocots! Asparagus officinalis! Iris japonica! Lilium brownii! Pandanus utilis! Dioscorea opposita! Pinellia ternata! Alisma plantago-aquatica! calamus! henryi! caroliniana! advenda! trichopoda! Ginkgo biloba! Early-diverging! angiosperms Supplementary Fig. 8. ML Trees inferred by removing genes with high long branch scores. A cladogram inferred using RAxML based on concatenated 55-gene amino acid sequences. Numbers associated with branches are bootstrap (BS) values obtained by RAxML based on 55 and 5 genes, which excluded four (gene ID: , , and MCM5) and eight (gene ID: , , , MCM5, 4322, 43723, and 43486) genes according to gene-specific long-branch scores, from left to right, respectively. A diamond indicates both BS values of % at this node. An asterisk indicates one of the BS values at this node being %. Other BS values are indicated.!

10 8 8 Count Count Color Key Color key density andand Histogram LB scores Value MCM ! MCM MCM5! MSH 43273! MSH 4328 MSH! ! ! MLH ! MLH MLH! ! ! ! SMC ! SMC SMC2! ! SMC ! SMC SMC! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Zea Zea mays! Zea Sorghum Sorghum bicolor! Sorghum Panicum Panicum virgatum! Panicum Setaria Setaria italica Setaria! Brachypodium Brachypodium distachyon! Brachypodium caroliniana advenda Arath Arabidopsis Arath thaliana Araly Arabidopsis Araly lyrata Capsella Capsella rubella Capsella Thellungiella Thellungiella parvula Thellungiella Alisma Alisma plantago aquatica! Alisma Iris Iris japonica Iris Ceratophyory oryzetorum Ceratophyory Ceratophyde demersum Ceratophyde Artemisia Artemisia annua! Artemisia Lactuca Lactuca sativa! Lactuca Lilium Lilium brownii! Lilium Mimulus Mimulus guttatus! Mimulus Medicago Medicago Medicago truncatula calamus! Fragaria Fragaria Fragaria vesca Houttuynia Houttuynia Houttuynia cordata Aristolochia Aristolochia Aristolochia tagala Eucalyptus Eucalyptus Eucalyptus grandis Phaseolus Phaseolus Phaseolus vulgaris Glycine Glycine Glycine max Solly Sollylycopersicum Solanum Soltu Soltutuberosum Solanum Ginkgo Ginkgo Ginkgo biloba trichopoda Carica Carica Carica papaya Buxus Buxus Buxus sinica Citrsi Citrus sinensis Citrsi Citcl Citcl Citrus clementina Canna Canna indica Canna Musa Musa acuminata Musa Pinellia Pinellia ternata Pinellia Saruma Saruma Saruma henryi Asparagus Asparagus Asparagus officinalis Yucca Yucca filamentosa Yucca Dioscorea Dioscorea opposita Dioscorea Pandanus Pandanus utilis Pandanus henryi Persea Persea americana Persea Trachycarpus Trachycarpus fortunei Trachycarpus Gossypium Gossypium raimondii Gossypium Theobroma Theobroma cacao Theobroma Populus Populus trichocarpa Populus Prunus Prunus Prunus persica Aquilegia Aquilegia Aquilegia coerulea Ricinus Ricinus communis Ricinus Manihot Manihot Manihot esculenta Vitis Vitis Vitvi vinifera x acerifolia Chimonanthus Chimonanthus Chimonanthus praecox Cinnamomum Cinnamomum Cinnamomum camphora japonicus glabra Magnolia Magnolia Magnolia denudata tulipifera Supplementary Fig. 9. Heat map in combination with hierarchical clustering generated with R of the taxon-specific long-branch scores for 59 genes of 6 species. Row show taxa and columns genes. Color key and density plot of long-branch (LB) scores are shown in the upper left corner of the heat map. White cells in the map indicate that the taxon was lacking in that gene. Orange cells indicate that the taxon with low LB scores indicate that the taxon in that gene might be not affected by long-branch attraction. Dark green cells (genes with ID of in Carica papaya, in trichopoda and in Ginkgo biloba) with high LB scores indicate that the taxon in that gene might be a long-branch.

11 96/ Mesodicots 9/ Mesangiospermae 99/ 6/ 85/ 77/ 94/ 89/ 98/ Vitis vinifera! Buxus sinica! x acerifolia! Aquilegia coerulea! glabra! japonicus! Citrus clementina! Manihot esculenta! Ricinus communis! Populus trichocarpa! Glycine max! Phaseolus vulgaris! Medicago truncatula! Prunus persica! Fragaria vesca! Eucalyptus grandis! Solanum tuberosum! Solanum lycopersicum! Mimulus guttatus! Lactuca sativa! oryzetorum! demersum! Cinnamomum camphora! Persea americana! Chimonanthus praecox! Magnolia denudata! tulipifera! Saruma henryi! Aristolochia tagala! Houttuynia cordata! 84/ Arabidopsis lyrata! Arabidopsis thaliana! Capsella rubella! Thellungiella parvula! Carica papaya! Theobroma cacao! Gossypium raimondii! Malvales! Citrus sinensis! Canna indica! Artemisia annua! Vitales! Buxales! Proteales! Sapindales! Ceratophyllaceae Zingiberales! Musa acuminata! Trachycarpus fortunei! Arecales! Yucca filamentosa! Asparagus officinalis! Asparagales! Iris japonica! Lilium brownii! Liliales! Pandanus utilis! Pandanales! Dioscorea opposita! Dioscoreales! Pinellia ternata! Alisma plantago-aquatica! Alismatales! calamus! Acorales! henryi! les! caroliniana! advenda! Nymphaeales! trichopoda! les! Ginkgo biloba! Malpighiales! Rosales! Myrtales! Fabales! Solanales! Lamiales! Asterales! Ranunculales! Chloranthaceae Magnoliales! Laurales! Piperales! Brassicales! Magnoliids Sorghum bicolor! Zea mays! Setaria italica! Panicum virgatum! Brachypodium distachyon! Poales! Eudicots Monocots Early-diverging! angiosperms.5 substitution per site! Supplementary Fig.. A phylogram of the best ML tree inferred using RAxML based on concatenated 59- gene amino acid sequences from 6 species. Genes with ID of in Carica papaya, in trichopoda and in Ginkgo biloba with the highest LB scores according to Supplementary Fig 9 were excluded in this analysis. Numbers associated with branches are bootstrap value (BS) and posterior probability (PP) inferred by RAxML and MrBayes, respectively. An asterisk indicates PP of.. A diamond indicates BS of % and PP of. at the same time.!

12 a Density Bandwidth: genes. b Density Bandwidth: genes Slope of linear regression R 2 of linear regression Supplementary Fig. Density plots (distribution) of different gene-specific saturation indices for the 59 genes generated with R. (A) Slopes of the linear regression between patristic and uncorrected pairwise distances. (B) R 2 of the linear regression between patristic and uncorrected pairwise distances. Dashed line indicates starting shoulder value. Red areas in the left-hand side comprise genes that might be saturated.

13 Mesodicots 94/92! Mesangiospermae 85/92! 9/! 88/87! /99! /88! 85/85! 79/62! 88/94! 94/98! /85! /99! 82/78! 94/97! Vitis vinifera! Buxus sinica! x acerifolia! Aquilegia coerulea! glabra! japonicus! Citrus clementina! Manihot esculenta! Ricinus communis! Populus trichocarpa! Glycine max! Phaseolus vulgaris! Medicago truncatula! Prunus persica! Fragaria vesca! Eucalyptus grandis! Solanum tuberosum! Solanum lycopersicum! Mimulus guttatus! Lactuca sativa! oryzetorum! demersum! Cinnamomum camphora! Persea americana! Chimonanthus praecox! Magnolia denudata! tulipifera! Saruma henryi! Aristolochia tagala! Houttuynia cordata! Arabidopsis lyrata! Arabidopsis thaliana! Capsella rubella! Thellungiella parvula! Carica papaya! Theobroma cacao! Gossypium raimondii! Malvales! Citrus sinensis! Canna indica! Artemisia annua! Vitales! Buxales! Proteales! Sapindales! Ceratophyllaceae Zingiberales! Musa acuminata! Trachycarpus fortunei! Arecales! Yucca filamentosa! Asparagus officinalis! Asparagales! Iris japonica! Lilium brownii! Liliales! Pandanus utilis! Pandanales! Dioscorea opposita! Dioscoreales! Pinellia ternata! Alisma plantago-aquatica! Alismatales! calamus! Acorales! henryi! les! caroliniana! advenda! Nymphaeales! trichopoda! les! Ginkgo biloba! Malpighiales! Rosales! Myrtales! Fabales! Solanales! Lamiales! Asterales! Ranunculales! Chloranthaceae Magnoliales! Laurales! Piperales! Brassicales! Magnoliids Sorghum bicolor! Zea mays! Setaria italica! Panicum virgatum! Brachypodium distachyon! Poales! Eudicots Monocots Early-diverging! angiosperms.5 substitution per site! Supplementary Fig. 2. A phylogram of the best ML tree inferred using RAxML based on unsaturated genes amino acid sequences from 6 species. Numbers associated with branches are bootstrap (BS) values obtained by RAxML based on 54 and 57 genes, which excluded five genes (gene ID: , MCM5, 43358, and MSH) with Slope. and two genes (gene ID: and MCM5) with R 2.5 according to Supplementary Fig, respectively, from 59-gene dataset. An asterisk indicates BS of % and a diamond indicates both two BS on this node of %.!

14 a! Vitis vinifera! Buxus sinica! x acerifolia! Carica papaya! Theobroma cacao! Gossypium raimondii! Citrus sinensis! Citrus clementina! Manihot esculenta! Ricinus communis! Arabidopsis lyrata! Arabidopsis thaliana! Capsella rubella! Thellungiella parvula! Populus trichocarpa! Glycine max! Phaseolus vulgaris! Medicago truncatula! Prunus persica! Fragaria vesca! Eucalyptus grandis! Solanum tuberosum! Solanum lycopersicum! Mimulus guttatus! Lactuca sativa! Artemisia annua! Eudicots! 65/.! Aquilegia coerulea! Mesodicots glabra! japonicus! Chloranthaceae! 95/.! 9/.99! demersum! oryzetorum! Ceratophyllaceae! Cinnamomum camphora! Persea americana! Chimonanthus praecox! Magnoliids! Magnolia denudata! tulipifera! Mesangiospermae Sorghum bicolor! Zea mays! Setaria italica! Panicum virgatum! Brachypodium distachyon! Canna indica! Musa acuminata! 79/.! Trachycarpus fortunei! Yucca filamentosa! Asparagus officinalis! /.97! 77/.96! Iris japonica! Lilium brownii! Pandanus utilis! Dioscorea opposita! 92/.7! Pinellia ternata! Alisma plantago-aquatica! calamus! 97/.!.5 substitution per site! 89/.! 95/.! henryi! advenda! caroliniana! trichopoda! Ginkgo biloba! Supplementary Fig. 3a. A phylogram of the best ML tree inferred using RAxML based on concatenated 59-gene amino acid sequences from 58 species. Three species from Piperales of magnoliids were excluded in this analysis; numbers associated with branches are bootstrap values (BS) and posterior probability (PP) inferred by RAxML and MrBayes, respectively; an asterisk indicates BS of % and PP of. at the same time.! Early-diverging! angiosperms Monocots!

15 b! /.98! 99/.9! 72/.99! Mesodicots 7/.99! Mesangiospermae 98/.! 94/.! 8/.96! 7/.99!.5 substitution per site! 96/.! 97/.! 88/.! 99/.! Vitis vinifera! Buxus sinica! xacerifolia! Carica papaya! Theobroma cacao! Gossypium raimondii! Citrus sinensis! Citrus clementina! Manihot esculenta! Ricinus communis! Arabidopsis lyrata! Arabidopsis thaliana! Capsella rubella! Thellungiella parvula! Populus trichocarpa! Glycine max! Phaseolus vulgaris! Medicago truncatula! Prunus persica! Fragaria vesca! Eucalyptus grandis! Solanum tuberosum! Solanum lycopersicum! Mimulus guttatus! Lactuca sativa! Artemisia annua! Supplementary Fig. 3b. A phylogram of the best ML tree inferred using RAxML based on concatenated 59-gene amino acid sequences from 58 species. Three species from basal monocots ( calamus, Alisma plantago-aquatica, and Pinellia ternata) were excluded in this analysis; numbers associated with branches are bootstrap values (BS) and posterior probability (PP) inferred by RAxML and MrBayes, respectively; an asterisk indicates BS of % and PP of. at the same time.! Eudicots! Aquilegia coerulea! glabra! Chloranthaceae! japonicus! demersum! Ceratophyllaceae! oryzetorum! Cinnamomum camphora! Persea americana! Chimonanthus praecox! Magnolia denudata! Magnoliids! tulipifera! Saruma henryi! Aristolochia tagala! Houttuynia cordata! 99/.! 85/.99! Canna indica! Musa acuminata! Trachycarpus fortunei! Yucca filamentosa! Asparagus officinalis! Iris japonica! Lilium brownii! Pandanus utilis! Dioscorea opposita! henryi! advenda! caroliniana! trichopoda! Ginkgo biloba! Sorghum bicolor! Zea mays! Setaria italica! Panicum virgatum! Brachypodium distachyon! Early-diverging! angiosperms Monocots!

16 c! Citrus clementina Citrus sinensis Ricinus commnis Manihot esculenta 85/. Populus trichocarpa Glycine max Phaseolus vulgaris Medicago truncatula Prunus persica Fragaria vesca 92/. Eucalyptus grandis Solanum tuberosum Solanum lycopersicum Mimulus guttatus Artemisia annua Lactuca sativa 97/. Vitis vinifera Buxus sinica x acerifolia 94/.99 Aquilegia formosa Mesodicots glabra japonicus 98/.99 demersum 89/.99 oryzetorum Cinnamomum camphora Persea americana Chimoanthus parecox Magnolia denudata tulipifera 85/.96 Mesangiospermae 94/.99 99/.5 substitution per site henryi advenda caroliniana trichopoda Picea sitchensis Picea glauca Pinus taeda Ginkgo biloba Arabidopsis thaliana Arabidopsis lyrata Capsella rubella Thellungiella parvula Carica papaya Gossypium raimondii Theobroma cacao Saruma henryi Aristolochia tagala Houttuynia cordata Supplementary Fig. 3c. A phylogram of the best ML tree inferred using RAxML based on concatenated 59- gene amino acid sequences from 64 species. Three Pinaceae species (Picea sitchensis, Picea glauca, and Pinus taeda) were included in this analysis; numbers associated with branches are bootstrap values (BS) and posterior probability (PP) inferred by RAxML and MrBayes, respectively; an asterisk indicates BS of % and PP of. at the same time.! Eudicots! Chloranthaceae! Ceratophyllaceae! Magnoliids! Setaria italica Panicum virgatum Zea mays Sorghum bicolor Brachypodium distachyon Musa acuminata Canna indica 8/. Trachycarpus fortunei Yucca filamentosa Asparagus officinalis 8/. Iris japonica Lilium brownii Pandanus utilis Dioscorea opposita Pinellia ternata Alisma plantago-aquatica calamus Early-diverging! angiosperms Monocots!

17 Arabidopsis lyrata d! Arabidopsis thaliana Capsella rubella Thellungiella parvula Carica papaya Theobroma cacao Gossypium raimondii Citrus clementina Citrus sinensis Manihot esculenta Ricinus communis! 89 Populus trichocarpa Glycine max Phaseolus vulgaris! Medicago truncatula Prunus persica Fragaria vesca 98 Eucalyptus grandis! Solanum tuberosum! Solanum lycopersicum Mimulus guttatus Artemisia annua Lactuca sativa Vitis vinifera Buxus sinica! 99 x acerifolia nucifera! 93 Meliosma parviflora! 92 Aquilegia coerulea! Eschscholzia californica! Mesodicots glabra! japonicus! 96 demersum 82 oryzetorum Cinnamomum camphora! Persea americana! Chimonanthus praecox! Magnolia denudata! 77 tulipifera! Saruma henryi! Magnoliids! Aristolochia tagala! Mesangiospermae Houttuynia cordata! Sorghum bicolor! Zea mays! Panicum virgatum! Setaria italica! Brachypodium distachyon! Musa acuminata! Canna indica! 9 Trachycarpus fortunei! Yucca filamentosa! Pinellia ternata! calamus! henryi advenda caroliniana trichopoda Ginkgo biloba! Eudicots! Chloranthaceae! Ceratophyllaceae! Asparagus officinalis! Iris japonica! Lilium brownii! Pandanus utilis! Dioscorea opposita! Alisma plantago-aquatica! Early-diverging! angiosperms Monocots!.5 substitution per site Supplementary Fig. 3d. An ML tree inferred by RAxML based on concatenated 59-gene amino acid sequences from 63 species. Three basal eudicot species ( nucifera, Meliosma parviflora and Eschscholzia californica) were included in this analysis; numbers associated with branches are bootstrap values inferred by RAxML; an asterisk indicates BS of %.!

18 a! substitution per site Supplementary Fig. 4a. The ML tree inferred by RAxML based on concatenated 83 plastid genes of 86 species. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.! 9 Aucuba japonica Gunnera manicata Buxus microphylla aralioides nucifera occidentalis 74 Meliosma cuneifolia Nandina domestica Ranunculus macranthus demersum 99 Drimys granadensis Calycanthus floridus tulipifera spicatus oligandrum Nymphaea alba advena trichopoda Arabidopsis thaliana Brassica rapa Gossypium hirsutum Citrus sinensis Staphylea colchica Oenothera elata Eucalyptus globulus Ficus sp. Morus indica Cucumis sativus Quercus nigra Pelargonium x hortorum Medicago truncatula Lotus corniculatus Phaseolus vulgaris Glycine max Passiflora biflora Polulus alba Manihot esculenta Euonymus americanus Oxalis latifolia Bulnesia arborea Heuchera sanguinea Liquidambar styraciflua Vitis vinifera Dillenia indica Ipomoea purpurea Solanum lycopersicum Atropa belladonna Nicotiana tabacum Nerium oleander Coffea arabica Ehretia acuminata Antirrhinum majus Jasminum nudiflorum Helianthus annuus Lactuca sativa Anethum graveolens Daucus carota Cuscuta exaltata Scaevola aemula Trachelium caeruleum Panax ginseng Lonicera japonica Ilex cornuta Rhododendron simsii Cornus florida Spinacia oleracea Plumbago auriculata Berberidopsis corallina Ximenia americana Typha latifolia Musa acuminata Elaeis oleifera Phalaenopsis aphrodite Yucca schidigera Dioscorea elephantipes Lemna minor americanus Piper cenocladum Epifagus virginiana Phoradendron leucarpum Oryza sativa Triticum aestivum Zea mays Cycas micronesica Ginkgo biloba Pinus thunbergii

19 b!. substitution per site Arabidopsis thaliana Brassica rapa Gossypium hirsutum Citrus sinensis Staphylea colchica Eucalyptus globulus Polulus alba Manihot esculenta Oxalis latifolia Euonymus americanus Oenothera elata Pelargonium x hortorum Passiflora biflora Lotus corniculatus Glycine max Phaseolus vulgaris Cucumis sativus Quercus nigra Ficus sp. Morus indica Heuchera sanguinea Liquidambar Vitis vinifera styraciflua Helianthus annuus Lactuca sativa Daucus carota Anethum graveolens Panax ginseng Lonicera japonica Bulnesia arborea Ilex cornuta Jasminum nudiflorum Epifagus virginiana Antirrhinum majus Nicotiana tabacum Atropa belladonna Solanum lycopersicum Ipomoea purpurea Cuscuta exaltata Nerium oleander Coffea arabica Ehretia acuminata Aucuba japonica Rhododendron simsii Cornus florida Berberidopsis corallina Spinacia oleracea Plumbago auriculata Ximenia americana Phoradendron leucarpum Dillenia indica Gunnera manicata aralioides Buxus microphylla nucifera occidentalis Meliosma cuneifolia Nandina domestica Ranunculus macranthus demersum spicatus Calycanthus floridus tulipifera Drimys granadensis Piper cenocladum Typha latifolia Musa acuminata Elaeis oleifera Phalaenopsis aphrodite Yucca schidigera Dioscorea elephantipes Lemna minor americanus oligandrum trichopoda Nymphaea alba advena Oryza sativa Triticum aestivum Zea mays Cycas micronesica Ginkgo biloba Medicago truncatula Scaevola aemula Trachelium caeruleum Pinus thunbergii Supplementary Fig. 4b. The ML tree inferred by RAxML based on 4 concatenated plastid inverted repeat genes of 86 species. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.!

20 c! Aucuba japonica Berberidopsis corallina Dillenia indica Gunnera manicata aralioides 99 Buxus microphylla occidentalis nucifera Meliosma cuneifolia 47 Ranunculus macranthus Nandina domestica demersum Typha latifolia Musa acuminata 9 Elaeis oleifera Phalaenopsis aphrodite 37 Yucca schidigera 95 Dioscorea elephantipes Lemna minor americanus 84 tulipifera Calycanthus floridus Piper cenocladum Drimys granadensis spicatus oligandrum Nymphaea alba advena trichopoda Ginkgo biloba Cycas micronesica Pinus thunbergii.2 substitution per site Supplementary Fig. 4c. The ML tree inferred by RAxML based on concatenated 34 plastid genes of 86 species with percentage of parsimony informative sites less than 4%. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.!! Arabidopsis thaliana Brassica rapa Gossypium hirsutum Citrus sinensis Staphylea colchica Oenothera elata Eucalyptus globulus Pelargonium x hortorum Medicago truncatula Lotus corniculatus Phaseolus vulgaris Glycine max Ficus sp. Morus indica Cucumis sativus Quercus nigra Passiflora biflora Polulus alba Manihot esculenta Euonymus americanus Oxalis latifolia Bulnesia arborea Vitis vinifera Heuchera sanguinea Liquidambar styraciflua Ehretia acuminata 62 Cuscuta exaltata Ipomoea purpurea Solanum lycopersicum Atropa belladonna Nicotiana tabacum Coffea arabica Nerium oleander Antirrhinum majus Jasminum nudiflorum Helianthus annuus Lactuca sativa Scaevola aemula Trachelium caeruleum Anethum graveolens Daucus carota Panax ginseng Lonicera japonica Ilex cornuta Rhododendron simsii Cornus florida Spinacia oleracea Plumbago auriculata Ximenia americana Phoradendron leucarpum Triticum aestivum Oryza sativa Zea mays Epifagus virginiana

21 d!.2 substitution per site Arabidopsis thaliana Brassica rapa Gossypium hirsutum Citrus sinensis Staphylea colchica Oenothera elata Eucalyptus globulus Heuchera sanguinea Liquidambar styraciflua Vitis vinifera Ehretia acuminata Pelargonium x hortorum Medicago truncatula Lotus corniculatus Phaseolus vulgaris Glycine max Quercus nigra Cucumis sativus Ficus sp. Morus indica Passiflora biflora Polulus alba Manihot esculenta Euonymus americanus Oxalis latifolia Bulnesia arborea Dillenia indica Ipomoea purpurea Cuscuta exaltata 99 Solanum lycopersicum Atropa belladonna Nicotiana tabacum Coffea arabica Nerium oleander Aucuba japonica Antirrhinum majus Jasminum nudiflorum Helianthus annuus Lactuca sativa Scaevola aemula Trachelium caeruleum Anethum graveolens Daucus carota Panax ginseng Lonicera japonica Ilex cornuta Rhododendron simsii Cornus florida Spinacia oleracea Plumbago auriculata Ximenia americana Berberidopsis corallina Gunnera manicata aralioides Buxus microphylla occidentalis nucifera Meliosma cuneifolia Nandina domestica Ranunculus macranthus demersum Typha latifolia Musa acuminata Elaeis oleifera Phalaenopsis aphrodite Yucca schidigera Dioscorea elephantipes Lemna minor americanus tulipifera Calycanthus floridus Piper cenocladum Drimys granadensis spicatus oligandrum Nymphaea alba advena trichopoda Ginkgo biloba Cycas micronesica Pinus thunbergii Phoradendron leucarpum Triticum aestivum Oryza sativa Zea mays Epifagus virginiana Supplementary Fig. 4d. The ML tree inferred by RAxML based on concatenated 46 plastid genes of 86 species with percentage of parsimony informative sites less than 5%. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.!

22 Supplementary Fig. 4e. The ML tree inferred by RAxML based on concatenated 66 plastid genes of 86 species with percentage of parsimony informative sites less than 6%. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.!! e!.2 substitution per site Berberidopsis corallina Ximenia americana 43 Aucuba japonica Arabidopsis thaliana Brassica rapa Gossypium hirsutum Citrus sinensis Staphylea colchica Oenothera elata Eucalyptus globulus Ficus sp. Morus indica Cucumis sativus Quercus nigra Pelargonium x hortorum Medicago truncatula Lotus corniculatus Phaseolus vulgaris Glycine max Passiflora biflora Polulus alba Manihot esculenta Euonymus americanus Oxalis latifolia Bulnesia arborea Heuchera sanguinea Liquidambar styraciflua Vitis vinifera Dillenia indica Ipomoea purpurea Solanum lycopersicum Atropa belladonna Nicotiana tabacum Antirrhinum majus Jasminum nudiflorum Coffea arabica Nerium oleander Ehretia acuminata Helianthus annuus Lactuca sativa Anethum graveolens Daucus carota Panax ginseng Lonicera japonica Ilex cornuta Rhododendron simsii Cornus florida Spinacia oleracea Gunnera manicata aralioides Buxus microphylla occidentalis nucifera Meliosma cuneifolia Ranunculus macranthus Nandina domestica demersum Typha latifolia Musa acuminata Elaeis oleifera Phalaenopsis aphrodite Yucca schidigera Dioscorea elephantipes Lemna minor americanus tulipifera Calycanthus floridus Drimys granadensis Piper cenocladum spicatus oligandrum Nymphaea alba advena trichopoda Cuscuta exaltata Scaevola aemula Trachelium caeruleum Plumbago auriculata Phoradendron leucarpum Triticum aestivum Oryza sativa Zea mays Epifagus virginiana Ginkgo biloba Cycas micronesica Pinus thunbergii

23 Supplementary Fig. 4f. The ML tree inferred by RAxML based on concatenated 7 plastid genes of 86 species with percentage of parsimony informative sites greater than 6%. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.!! f! substitution per site Aucuba japonica Arabidopsis thaliana Brassica rapa Gossypium hirsutum Citrus sinensis Staphylea colchica Oenothera elata Eucalyptus globulus Ficus sp. Morus indica Quercus nigra Cucumis sativus Heuchera sanguinea Liquidambar styraciflua Vitis vinifera Dillenia indica Polulus alba Manihot esculenta Euonymus americanus Oxalis latifolia Solanum lycopersicum Atropa belladonna Nicotiana tabacum Nerium oleander Coffea arabica Ehretia acuminata Pelargonium x hortorum Medicago truncatula Lotus corniculatus Phaseolus vulgaris Glycine max Bulnesia arborea Passiflora biflora Ipomoea purpurea Cuscuta exaltata Antirrhinum majus Jasminum nudiflorum Helianthus annuus Lactuca sativa Epifagus virginiana Scaevola aemula Trachelium caeruleum Anethum graveolens Daucus carota Panax ginseng Lonicera japonica Ilex cornuta Cornus florida Rhododendron simsii Spinacia oleracea Plumbago auriculata 97 Berberidopsis corallina Phoradendron leucarpum Ximenia americana Gunnera manicata 92 Buxus microphylla aralioides nucifera occidentalis Meliosma cuneifolia Nandina domestica Ranunculus macranthus Oryza sativa 45 Triticum aestivum 67 Zea mays Typha latifolia 96 Musa acuminata Elaeis oleifera Yucca schidigera Phalaenopsis aphrodite 9 Dioscorea elephantipes Lemna minor americanus tulipifera Calycanthus floridus Piper cenocladum Drimys granadensis demersum spicatus oligandrum advena Nymphaea alba trichopoda Cycas micronesica Ginkgo biloba Pinus thunbergii

24 g!.2 substitution per site americanus tulipifera Calycanthus floridus Piper cenocladum Drimys granadensis demersum spicatus oligandrum advena Nymphaea alba trichopoda Supplementary Fig. 4g. The ML tree inferred by RAxML based on concatenated 37 plastid genes of 86 species with percentage of parsimony informative sites greater than 5%. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.!! Solanum lycopersicum Atropa belladonna Nicotiana tabacum Coffea arabica Nerium oleander Ehretia acuminata Aucuba japonica Arabidopsis thaliana Brassica rapa Gossypium hirsutum Citrus sinensis Staphylea colchica Oenothera elata Eucalyptus globulus Heuchera sanguinea Liquidambar styraciflua Vitis vinifera Dillenia indica Pelargonium x hortorum Medicago truncatula Lotus corniculatus Phaseolus vulgaris Glycine max Ficus sp. Morus indica Cucumis sativus Quercus nigra Euonymus americanus Oxalis latifolia Passiflora biflora Polulus alba Manihot esculenta Bulnesia arborea Ipomoea purpurea Cuscuta exaltata Antirrhinum majus Jasminum nudiflorum Helianthus annuus Lactuca sativa Anethum graveolens Daucus carota Epifagus virginiana Scaevola aemula Trachelium caeruleum Panax ginseng Lonicera japonica Ilex cornuta Rhododendron simsii Cornus florida Plumbago auriculata Spinacia oleracea Berberidopsis corallina Ximenia americana Gunnera manicata Buxus microphylla aralioides occidentalis nucifera 67 Meliosma cuneifolia Nandina domestica Ranunculus macranthus Typha latifolia Musa acuminata Elaeis oleifera Phalaenopsis aphrodite Yucca schidigera Dioscorea elephantipes Lemna minor Ginkgo biloba Cycas micronesica Phoradendron leucarpum Triticum aestivum Oryza sativa Zea mays Pinus thunbergii

25 h!.2 substitution per site Supplementary Fig. 4h. The ML tree inferred by RAxML based on concatenated 49 plastid genes of 86 species with percentage of parsimony informative sites greater than 4%. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.!! Arabidopsis thaliana Brassica rapa Gossypium hirsutum Citrus sinensis Staphylea colchica Oenothera elata Eucalyptus globulus Quercus nigra Cucumis sativus Ficus sp. Morus indica Pelargonium x hortorum Medicago truncatula Lotus corniculatus Phaseolus vulgaris Glycine max Passiflora biflora Polulus alba Manihot esculenta 9 99 Euonymus americanus 83 Oxalis latifolia Bulnesia arborea Heuchera sanguinea Liquidambar styraciflua Vitis vinifera 66 Dillenia indica Ipomoea purpurea Cuscuta exaltata Atropa belladonna Solanum lycopersicum Nicotiana tabacum Antirrhinum majus Jasminum nudiflorum Coffea arabica Nerium oleander Ehretia acuminata Aucuba japonica Helianthus annuus Lactuca sativa Anethum graveolens Daucus carota Epifagus virginiana Scaevola aemula Trachelium caeruleum Panax ginseng Lonicera japonica Ilex cornuta Rhododendron simsii Cornus florida Spinacia oleracea Plumbago auriculata Berberidopsis corallina Ximenia americana Phoradendron leucarpum Gunnera manicata Buxus microphylla aralioides occidentalis nucifera 45 7 Meliosma cuneifolia Ranunculus macranthus Nandina domestica demersum Triticum aestivum Oryza sativa 45 Zea mays Typha latifolia Musa acuminata Elaeis oleifera Phalaenopsis aphrodite Yucca schidigera Dioscorea elephantipes Lemna minor americanus tulipifera Calycanthus floridus Piper cenocladum 5 Drimys granadensis spicatus oligandrum Nymphaea alba advena trichopoda Cycas micronesica Ginkgo biloba Pinus thunbergii

26 i! 94.2 substitution per site Aucuba japonica Supplementary Fig. 4i. The ML tree inferred by RAxML based on concatenated 3 plastid genes of 86 species with percentage of parsimony informative sites ranging from 4% to 5%. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.!! Gossypium hirsutum Citrus sinensis Staphylea colchica Oenothera elata Eucalyptus globulus Arabidopsis thaliana Brassica rapa Pelargonium x hortorum Medicago truncatula Lotus corniculatus Phaseolus vulgaris Glycine max Quercus nigra Cucumis sativus Ficus sp. Morus indica Passiflora biflora Polulus alba Manihot esculenta Euonymus americanus Oxalis latifolia Bulnesia arborea Heuchera sanguinea Liquidambar styraciflua Vitis vinifera Dillenia indica Ipomoea purpurea Cuscuta exaltata 48 Atropa belladonna Nicotiana tabacum Solanum lycopersicum 9 Antirrhinum majus Jasminum nudiflorum Nerium oleander Coffea arabica Ehretia acuminata Helianthus annuus Lactuca sativa Scaevola aemula Trachelium caeruleum Anethum graveolens Daucus carota Panax ginseng Lonicera japonica Ilex cornuta Rhododendron simsii Cornus florida Plumbago auriculata Ximenia americana Spinacia oleracea Plumbago auriculata Berberidopsis corallina 36 Gunnera manicata aralioides Buxus microphylla Meliosma cuneifolia nucifera occidentalis Ranunculus macranthus Nandina domestica demersum Typha latifolia Musa acuminata Elaeis oleifera Yucca schidigera Phalaenopsis aphrodite Dioscorea elephantipes Lemna minor americanus Piper cenocladum 73 Drimys granadensis Calycanthus floridus 56 tulipifera spicatus oligandrum advena Nymphaea alba trichopoda 2 Cycas micronesica Ginkgo biloba Oryza sativa Triticum aestivum Zea mays Pinus thunbergii Epifagus virginiana

27 j! Ranunculus macranthus Arabidopsis thaliana Brassica rapa Gossypium hirsutum Citrus sinensis Staphylea colchica Oenothera elata Eucalyptus globulus Pelargonium x hortorum Medicago truncatula Lotus corniculatus Phaseolus vulgaris Glycine max Ficus sp Morus indica Cucumis sativus 7 Quercus nigra 88 Passiflora biflora Polulus alba Manihot esculenta 79 Euonymus americanus 79 Oxalis latifolia 57 Bulnesia arborea Liquidambar styraciflua Heuchera sanguinea Vitis vinifera Dillenia indica Ipomoea purpurea Cuscuta exaltata 96 Solanum lycopersicum 52 Atropa belladonna Nicotiana tabacum Ehretia acuminata Epifagus virginiana Antirrhinum majus Jasminum nudiflorum 4 Nerium oleander Coffea arabica Aucuba japonica Helianthus annuus Lactuca sativa Anethum graveolens Daucus carota Scaevola aemula Trachelium caeruleum Panax ginseng Lonicera japonica Ilex cornuta Rhododendron simsii Cornus florida Spinacia oleracea Plumbago auriculata Berberidopsis corallina Ximenia americana Gunnera manicata aralioides Buxus microphylla Meliosma cuneifolia nucifera occidentalis Nandina domestica 8 93 Typha latifolia Musa acuminata Elaeis oleifera Yucca schidigera Phalaenopsis aphrodite Dioscorea elephantipes Lemna minor 99 americanus tulipifera 4 Calycanthus floridus 99 Piper cenocladum 98 Drimys granadensis demersum spicatus oligandrum advena Nymphaea alba trichopoda Phoradendron leucarpum Triticum aestivum Oryza sativa Zea mays Ginkgo biloba Cycas micronesica Pinus thunbergii.2 substitution per site Supplementary Fig. 4j. The ML tree inferred by RAxML based on concatenated 2 plastid genes of 86 species with percentage of parsimony informative sites ranging from 5% to 6%. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.!!

28 k! substitution per site Supplementary Fig. 4k. The ML tree inferred by RAxML based on concatenated 2 plastid genes of 86 species. Numbers associated with branches are bootstrap values; an asterisk indicates bootstrap of %. Species from eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae are in purple, green, orange, violet and blue, respectively.!! Arabidopsis thaliana Brassica rapa Gossypium hirsutum Citrus sinensis Staphylea colchica Oenothera elata Eucalyptus globulus Polulus alba Manihot esculenta Euonymus americanus Oxalis latifolia Cucumis sativus Quercus nigra Morus indica Ficus sp. Liquidambar styraciflua Heuchera sanguinea Vitis vinifera Dillenia indica Helianthus annuus Lactuca sativa Pelargonium x hortorum Passiflora biflora Medicago truncatula Lotus corniculatus Glycine max Phaseolus vulgaris Bulnesia arborea Scaevola aemula Trachelium caeruleum Anethum graveolens Daucus carota Panax ginseng Lonicera japonica Ilex cornuta Ipomoea purpurea Cuscuta exaltata Atropa belladonna Solanum lycopersicum Nicotiana tabacum Nerium oleander Coffea arabica Ehretia acuminata 99 Antirrhinum majus Aucuba japonica Cornus florida Jasminum nudiflorum Rhododendron simsii Spinacia oleracea Plumbago auriculata Berberidopsis corallina Ximenia americana Gunnera manicata Buxus microphylla aralioides nucifera occidentalis Meliosma cuneifolia Nandina domestica Ranunculus macranthus demersum Typha latifolia Musa acuminata Elaeis oleifera Phalaenopsis aphrodite Yucca schidigera Dioscorea elephantipes Lemna minor americanus Calycanthus floridus tulipifera Drimys granadensis spicatus oligandrum advena Nymphaea alba trichopoda Piper cenocladum Phoradendron leucarpum Oryza sativa Triticum aestivum Zea mays Epifagus virginiana Ginkgo biloba Cycas micronesica Pinus thunbergii

Supplementary Figure 3

Supplementary Figure 3 Supplementary Figure 3 7.0 Col Kas-1 Line FTH1A 8.4 F3PII3 8.9 F26H11 ATQ1 T9I22 PLS8 F26B6-B 9.6 F27L4 9.81 F27D4 9.92 9.96 10.12 10.14 10.2 11.1 0.5 Mb T1D16 Col % RGR 83.3 101 227 93.5 75.9 132 90 375

More information

Supplementary Figure 1. Number of CC- and TIR- type NBS- LRR genes and presence of mir482/2118 on sequenced plant genomes.

Supplementary Figure 1. Number of CC- and TIR- type NBS- LRR genes and presence of mir482/2118 on sequenced plant genomes. Number of CC- NBS and CC- NBS- LRR R- genes Number of TIR- NBS and TIR- NBS- LRR R- genes 0 50 100 150 200 250 0 50 100 150 200 250 300 350 400 450 mir482 and mir2118 Cajanus cajan Glycine max Hevea brasiliensis

More information

Supplemental Figure 1. Comparisons of GC3 distribution computed with raw EST data, bi-beta fits and complete genome sequences for 6 species.

Supplemental Figure 1. Comparisons of GC3 distribution computed with raw EST data, bi-beta fits and complete genome sequences for 6 species. Supplemental Figure 1. Comparisons of GC3 distribution computed with raw EST data, bi-beta fits and complete genome sequences for 6 species. Filled distributions: GC3 computed with raw EST data. Dashed

More information

Bioinformatics tools to analyze complex genomes. Yves Van de Peer Ghent University/VIB

Bioinformatics tools to analyze complex genomes. Yves Van de Peer Ghent University/VIB Bioinformatics tools to analyze complex genomes Yves Van de Peer Ghent University/VIB Detecting colinearity and large-scale gene duplications A 1 2 3 4 5 6 7 8 9 10 11 Speciation/Duplicatio n S1 S2 1

More information

Evaluation of Genome Sequencing Quality in Selected Plant Species Using Expressed Sequence Tags

Evaluation of Genome Sequencing Quality in Selected Plant Species Using Expressed Sequence Tags Evaluation of Genome Sequencing Quality in Selected Plant Species Using Expressed Sequence Tags Lingfei Shangguan 1, Jian Han 1, Emrul Kayesh 1, Xin Sun 1, Changqing Zhang 2, Tariq Pervaiz 1, Xicheng Wen

More information

Cao, J, K Schneeberger, S Ossowski, et al Whole genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43:

Cao, J, K Schneeberger, S Ossowski, et al Whole genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43: Figure S1. Syntenic map of SAE1B duplication. We have used the nucleotide sequences of Arabidopsis thaliana Col-0 gene tandem duplicates AT5G50580 and AT5G506800 as queries in independent BLASTN searches

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature13082 Supplementary Table 1. Examination of nectar production in wild-type and atsweet9 flowers. No. of flowers with detectable nectar out of the total observed

More information

Jill M Duarte 1, P Kerr Wall 1,5, Patrick P Edger 2, Lena L Landherr 1, Hong Ma 1,4, J Chris Pires 2, Jim Leebens-Mack 3, Claude W depamphilis 1*

Jill M Duarte 1, P Kerr Wall 1,5, Patrick P Edger 2, Lena L Landherr 1, Hong Ma 1,4, J Chris Pires 2, Jim Leebens-Mack 3, Claude W depamphilis 1* RESEARCH ARTICLE Open Access Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels Jill M Duarte 1,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature11394 Supplementary Note Our study is based on two different tracriptome indices. Both combine tracriptional information with an important evolutionary parameter. For the tracriptome age

More information

gi (NCBI databse: ES frame +2 (NCBI: databse

gi (NCBI databse:   ES frame +2 (NCBI: databse Figure legend for supplemental tables (S1-S6). The predicted and annotated amino acid sequences for the different LEA proteins found in the available databases (378) were analyzed using MEME software (Bailey

More information

Coalescent versus Concatenation Methods and the Placement of Amborella as Sister to Water Lilies

Coalescent versus Concatenation Methods and the Placement of Amborella as Sister to Water Lilies Syst. Biol. 63(6):919 932, 2014 The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com

More information

Supplementary Material

Supplementary Material Supplementary Material Supplementary Table S1. Genomes available in build 47 Supplementary Table S2. Counts of putative contiguous gene split models in 39 plant reference genomes in build 47 Supplementary

More information

Cryopreservation of syn seeds

Cryopreservation of syn seeds COST Action FA1104 Sustainable production of high-quality cherries for the European market Long Term Preservation of Woody Species by Cryo Techniques, March 2015, Firenze Cryopreservation of syn seeds

More information

Another Look at the Root of the Angiosperms Reveals a Familiar Tale

Another Look at the Root of the Angiosperms Reveals a Familiar Tale Syst. Biol. 63(3):368 382, 2014 The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com

More information

Supplementary Information for: The genome of the extremophile crucifer Thellungiella parvula

Supplementary Information for: The genome of the extremophile crucifer Thellungiella parvula Supplementary Information for: The genome of the extremophile crucifer Thellungiella parvula Maheshi Dassanayake 1,9, Dong-Ha Oh 1,9, Jeffrey S. Haas 1,2, Alvaro Hernandez 3, Hyewon Hong 1,4, Shahjahan

More information

Supplemental Table 1. Primers used for cloning and PCR amplification in this study

Supplemental Table 1. Primers used for cloning and PCR amplification in this study Supplemental Table 1. Primers used for cloning and PCR amplification in this study Target Gene Primer sequence NATA1 (At2g393) forward GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT CAT GGC GCC TCC AAC CGC AGC

More information

AtTIL-P91V. AtTIL-P92V. AtTIL-P95V. AtTIL-P98V YFP-HPR

AtTIL-P91V. AtTIL-P92V. AtTIL-P95V. AtTIL-P98V YFP-HPR Online Resource 1. Primers used to generate constructs AtTIL-P91V, AtTIL-P92V, AtTIL-P95V and AtTIL-P98V and YFP(HPR) using overlapping PCR. pentr/d- TOPO-AtTIL was used as template to generate the constructs

More information

Third-codon transversion rate-based Nymphaea basal angiosperm phylogeny -- concordance with developmental evidence

Third-codon transversion rate-based Nymphaea basal angiosperm phylogeny -- concordance with developmental evidence Third-codon transversion rate-based Nymphaea basal angiosperm phylogeny -- concordance with developmental evidence Xiaohan Yang*, Gerald A. Tuskan*, Timothy J. Tschaplinski, (Max) Zong-Ming Cheng* *Department

More information

Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets

Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets Research Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets Liping Zeng 1,2, Ning Zhang 1,3, Qiang Zhang 4, Peter K. Endress

More information

Supplemental Figure 1. Comparison of Tiller Bud Formation between the Wild Type and d27. (A) and (B) Longitudinal sections of shoot apex in wild-type

Supplemental Figure 1. Comparison of Tiller Bud Formation between the Wild Type and d27. (A) and (B) Longitudinal sections of shoot apex in wild-type A B 2 3 3 2 1 1 Supplemental Figure 1. Comparison of Tiller Bud Formation between the Wild Type and d27. (A) and (B) Longitudinal sections of shoot apex in wild-type (A) and d27 (B) seedlings at the four

More information

Miloš Duchoslav and Lukáš Fischer *

Miloš Duchoslav and Lukáš Fischer * Duchoslav and Fischer BMC Plant Biology (2015) 15:133 DOI 10.1186/s12870-015-0523-4 RESEARCH ARTICLE Open Access Parallel subfunctionalisation of PsbO protein isoforms in angiosperms revealed by phylogenetic

More information

Order. GLO-like sequences

Order. GLO-like sequences Table S1. DEF and GLO-like sequences employed in this study. This manuscript describes the isolation and characterization of those sequences with names in bold type. DEF-like sequences Species GenBank

More information

Whole-genome duplications and paleopolyploidy

Whole-genome duplications and paleopolyploidy Whole-genome duplications and paleopolyploidy Whole-genome duplications in protozoa Aury et al. (2006) analyzed the unicellular eukaryote Paramecium tetraurelia most of 40,000 genes arose through at least

More information

Plant Genome Sequencing

Plant Genome Sequencing Plant Genome Sequencing Traditional Sanger Sequencing Genome Sequencing Approach 1. Create sequencing libraries of different insert sizes 2kb o Bulk of sequencing is performed on these libraries 10kb o

More information

Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors

Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors Gao et al. BMC Plant Biology (2018) 18:256 https://doi.org/10.1186/s12870-018-1437-8 RESEARCH ARTICLE Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary

More information

Supplemental Data. Yang et al. (2012). Plant Cell /tpc

Supplemental Data. Yang et al. (2012). Plant Cell /tpc Supplemental Figure 1. Mature flowers of P. heterotricha. (A) An inflorescence of P. heterotricha showing the front view of a zygomorphic flower characterized by two small dorsal petals and only two fertile

More information

Effects of Genotype and Environment on the Plant Ionome

Effects of Genotype and Environment on the Plant Ionome Effects of Genotype and Environment on the Plant Ionome Philip J. White Martin R. Broadley and many others FertBio2014 18 th September 2014 Ionomics is the Study of the Elemental Composition of Plants

More information

Stage 1: Karyotype Stage 2: Gene content & order Step 3

Stage 1: Karyotype Stage 2: Gene content & order Step 3 Supplementary Figure Method used for ancestral genome reconstruction. MRCA (Most Recent Common Ancestor), AMK (Ancestral Monocot Karyotype), AEK (Ancestral Eudicot Karyotype), AGK (Ancestral Grass Karyotype)

More information

Supporting Information

Supporting Information Supporting Information Fawcett et al. 10.1073/pnas.0900906106 SI Text Estimating the Age of Gene Duplication Events: The Use of K S Values. One of the most common methods used to study and visualize gene

More information

DNA and Floristics. DNA Barcoding. DNA Barcoding. DNA Barcoding - the History. DNA Barcoding 4/19/18

DNA and Floristics. DNA Barcoding. DNA Barcoding. DNA Barcoding - the History. DNA Barcoding 4/19/18 DNA and Floristics DNA Barcoding DNA Barcoding The use of DNA sequences to identify specimens across all of life in a manner analogous to the commercially ubiquitous Universal Product Codes (UPC) A C G

More information

Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants

Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants Mohanta et al. BMC Genomics (2015) 16:58 DOI 10.1186/s12864-015-1244-7 RESEARCH ARTICLE Open Access Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature111 cytosol Model: PILS function in cellular auxin homeostasis ER nucleus IAA degradation? sequestration? conjugation? storage? signalling? PILS IAA ER cytosol Supplemental Figure 1 Model

More information

Genome-wide discovery of G-quadruplex forming sequences and their functional

Genome-wide discovery of G-quadruplex forming sequences and their functional *Correspondence and requests for materials should be addressed to R.G. (rohini@nipgr.ac.in) Genome-wide discovery of G-quadruplex forming sequences and their functional relevance in plants Rohini Garg*,

More information

Integrating Phylogenetic and Network Approaches to Study Gene Family Evolution: The Case of the AGAMOUS Family of Floral Genes

Integrating Phylogenetic and Network Approaches to Study Gene Family Evolution: The Case of the AGAMOUS Family of Floral Genes University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Center for Plant Science Innovation Plant Science Innovation, Center for 2018 Integrating

More information

Potato Genome Analysis

Potato Genome Analysis Potato Genome Analysis Xin Liu Deputy director BGI research 2016.1.21 WCRTC 2016 @ Nanning Reference genome construction???????????????????????????????????????? Sequencing HELL RIEND WELCOME BGI ZHEN LLOFRI

More information

Aaron O Richardson 1, Danny W Rice 1, Gregory J Young 1,2, Andrew J Alverson 3 and Jeffrey D Palmer 1*

Aaron O Richardson 1, Danny W Rice 1, Gregory J Young 1,2, Andrew J Alverson 3 and Jeffrey D Palmer 1* Richardson et al. BMC Biology 2013, 11:29 RESEARCH ARTICLE Open Access The fossilized mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily

More information

Multigene analyses identify the three earliest lineages of extant flowering plants Christopher L. Parkinson, Keith L. Adams and Jeffrey D.

Multigene analyses identify the three earliest lineages of extant flowering plants Christopher L. Parkinson, Keith L. Adams and Jeffrey D. Brief Communication 1485 Multigene analyses identify the three earliest lineages of extant flowering plants Christopher L. Parkinson, Keith L. Adams and Jeffrey D. Palmer Flowering plants (angiosperms)

More information

From algae to angiosperms inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes

From algae to angiosperms inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 RESEARCH ARTICLE Open Access From algae to angiosperms inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes Brad R Ruhfel

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/10/e1600393/dc1 Supplementary Materials for Monolignol ferulate conjugates are naturally incorporated into plant lignins Steven D. Karlen, Chengcheng Zhang, Matthew

More information

PART 1 Plant Structure. CHAPTER 1 Introduction to Plant Taxonomy 3

PART 1 Plant Structure. CHAPTER 1 Introduction to Plant Taxonomy 3 Contents Preface Acknowledgments About the Author xxi xxiii xxiv PART 1 Plant Structure CHAPTER 1 Introduction to Plant Taxonomy 3 Relationship of Taxonomy to Other Areas of Biology 4 Why Should You Study

More information

A NGIOSPERM DIVERSIFICATION THROUGH TIME 1

A NGIOSPERM DIVERSIFICATION THROUGH TIME 1 American Journal of Botany 96(1): 349 365. 2009. A NGIOSPERM DIVERSIFICATION THROUGH TIME 1 Susana Magallón2 and Amanda Castillo Departamento de Bot á nica, Instituto de Biolog í a, Universidad Nacional

More information

Impact of recurrent gene duplication on adaptation of plant genomes

Impact of recurrent gene duplication on adaptation of plant genomes Fischer et al. BMC Plant Biology 2014, 14:151 RESEARCH ARTICLE Open Access Impact of recurrent gene duplication on adaptation of plant genomes Iris Fischer 1,2*, Jacques Dainat 3,6, Vincent Ranwez 3, Sylvain

More information

Genome-wide Identification of Lineage Specific Genes in Arabidopsis, Oryza and Populus

Genome-wide Identification of Lineage Specific Genes in Arabidopsis, Oryza and Populus Genome-wide Identification of Lineage Specific Genes in Arabidopsis, Oryza and Populus Xiaohan Yang Sara Jawdy Timothy Tschaplinski Gerald Tuskan Environmental Sciences Division Oak Ridge National Laboratory

More information

FORTHCOMING THIS FALL

FORTHCOMING THIS FALL FORTHCOMING THIS FALL Key Updates Include: Full integration of molecular systematics into Chapter 2, Methods and Principles of Biological Systematics. Extensively revised treatments of 13 families that

More information

SUPPLEMENTARY MATERIAL SUPPLEMENTARY TABLES

SUPPLEMENTARY MATERIAL SUPPLEMENTARY TABLES SUPPLEMENTARY MATERIAL SUPPLEMENTARY TABLES Supplementary Table 1. Genomes available in Gramene build 38 Supplementary Table 2. Ontology associations in Gramene build 38 Supplementary Table 3. Synteny

More information

Onion Plant as an Educational Tool for Phylogenetic Studies: Molecular Analysis and a New Phylogeny? Introduction'

Onion Plant as an Educational Tool for Phylogenetic Studies: Molecular Analysis and a New Phylogeny? Introduction' Shilpa Pathak, Amita Akolkar and Bakhtaver S Mahajan Homi Bhabha Centre for Science Education Tata Institute of Fundamental Research Mumbai 400 088, India. Email: bsm@hbcse.tifr.res.in Keywords Onion plant,

More information

Browsing Genomic Information with Ensembl Plants

Browsing Genomic Information with Ensembl Plants Browsing Genomic Information with Ensembl Plants Etienne de Villiers, PhD (Adapted from slides by Bert Overduin EMBL-EBI) Outline of workshop Brief introduction to Ensembl Plants History Content Tutorial

More information

Scientific Names of Common Plants/Trees Scientific Names - Fruits and Vegetables

Scientific Names of Common Plants/Trees Scientific Names - Fruits and Vegetables OUR OWN HIGH SCHOOL, Al WARQA A, DUBAI BIOLOGY Grade 11 Unit 1 Diversity in the living world Name : Chapter The Living World Class and Section: Topic Binomial Nomenclature Date: s of Common Plants/Trees

More information

Other Supplemenary Materials for this manuscript includes the following:

Other Supplemenary Materials for this manuscript includes the following: Supplemental Materials: Suppmentary Text S1.1-S1.6 Figures S1.1 to S1.3 Tables S1.1 to S1.7 Supplementary Text S2.1-S2.4 Figures S2.1 to S2.5 Tables S2.1 to S2.3 Supplementary Text S3.1-S3.2 Figures S3.1

More information

A (short) introduction to phylogenetics

A (short) introduction to phylogenetics A (short) introduction to phylogenetics Thibaut Jombart, Marie-Pauline Beugin MRC Centre for Outbreak Analysis and Modelling Imperial College London Genetic data analysis with PR Statistics, Millport Field

More information

Arthur Monrad Johnson colletion of botanical drawings No online items

Arthur Monrad Johnson colletion of botanical drawings No online items http://oac.cdlib.org/findaid/ark:/13030/kt7489r5rb No online items Processed by Pat L. Walter. Louise M. Darling Biomedical Library History and Special Collections Division History and Special Collections

More information

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut

Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic analysis Phylogenetic Basics: Biological

More information

Phylogenetic Comparison of F-Box (FBX) Gene Superfamily within the Plant Kingdom Reveals Divergent Evolutionary Histories Indicative of Genomic Drift

Phylogenetic Comparison of F-Box (FBX) Gene Superfamily within the Plant Kingdom Reveals Divergent Evolutionary Histories Indicative of Genomic Drift Phylogenetic Comparison of F-Box (FBX) Gene Superfamily within the Plant Kingdom Reveals Divergent Evolutionary Histories Indicative of Genomic Drift Zhihua Hua 1, Cheng Zou 2, Shin-Han Shiu 2, Richard

More information

L. H. Bailey Hortorium and Department of Plant Biology, Cornell University, Ithaca, New York 14853; 2

L. H. Bailey Hortorium and Department of Plant Biology, Cornell University, Ithaca, New York 14853; 2 Systematic Botany (2004), 29(3): pp. 467 510 Copyright 2004 by the American Society of Plant Taxonomists A Phylogeny of the Monocots, as Inferred from rbcl and atpa Sequence Variation, and a Comparison

More information

Official Journal of the European Union L 45/29

Official Journal of the European Union L 45/29 15.2.2014 Official Journal of the European Union L 45/29 COMMISSION IMPLEMENTING DECISION of 13 February 2014 as regards measures to prevent the spread within the Union of Xylella fastidiosa (Well and

More information

CHAPTER 35:02 - PLANT PROTECTION: SUBSIDIARY LEGISLATION INDEX TO SUBSIDIARY LEGISLATION

CHAPTER 35:02 - PLANT PROTECTION: SUBSIDIARY LEGISLATION INDEX TO SUBSIDIARY LEGISLATION CHAPTER 35:02 - PLANT PROTECTION: SUBSIDIARY LEGISLATION INDEX TO SUBSIDIARY LEGISLATION Plant Protection Regulations PLANT PROTECTION REGULATIONS (section 29) (17th July, 2009) ARRANGEMENT OF REGULATIONS

More information

Dr. Amira A. AL-Hosary

Dr. Amira A. AL-Hosary Phylogenetic analysis Amira A. AL-Hosary PhD of infectious diseases Department of Animal Medicine (Infectious Diseases) Faculty of Veterinary Medicine Assiut University-Egypt Phylogenetic Basics: Biological

More information

Supplemental Data. Perea-Resa et al. Plant Cell. (2012) /tpc

Supplemental Data. Perea-Resa et al. Plant Cell. (2012) /tpc Supplemental Data. Perea-Resa et al. Plant Cell. (22)..5/tpc.2.3697 Sm Sm2 Supplemental Figure. Sequence alignment of Arabidopsis LSM proteins. Alignment of the eleven Arabidopsis LSM proteins. Sm and

More information

South Green Bioinformatics activities at CIRAD

South Green Bioinformatics activities at CIRAD South Green Bioinformatics activities at CIRAD Data Integration Team of the research unit DAP Manuel Ruiz, CIP, Lima, 23rd january The Joint Research Unit DAP (Développement et Amélioration des Plantes

More information

Genome-Wide Identification of NBS-Encoding Resistance Genes in Sunflower (Helianthus annuus L.)

Genome-Wide Identification of NBS-Encoding Resistance Genes in Sunflower (Helianthus annuus L.) Article Genome-Wide Identification of NBS-Encoding Resistance Genes in Sunflower (Helianthus annuus L.) Surendra Neupane, Ethan J. Andersen, Achal Neupane and Madhav P. Nepal * Department of Biology and

More information

Removal of Noisy Characters from Chloroplast Genome-Scale Data Suggests Revision of Phylogenetic Placements of Amborella and Ceratophyllum

Removal of Noisy Characters from Chloroplast Genome-Scale Data Suggests Revision of Phylogenetic Placements of Amborella and Ceratophyllum J Mol Evol (29) 68:197 24 DOI 1.17/s239-9-926-9 Removal of Noisy Characters from Chloroplast Genome-Scale Data Suggests Revision of Phylogenetic Placements of Amborella and Ceratophyllum Vadim V. Goremykin

More information

MBE Advance Access published August 11, Article

MBE Advance Access published August 11, Article MBE Advance Access published August 11, 2013 RH: SEP gene evolution in Zingiberales Article Discoveries section Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales:

More information

Host_microbe_PPI - R package to analyse intra-species and interspecies protein-protein interactions in the model plant Arabidopsis thaliana

Host_microbe_PPI - R package to analyse intra-species and interspecies protein-protein interactions in the model plant Arabidopsis thaliana Host_microbe_PPI - R package to analyse intra-species and interspecies protein-protein interactions in the model plant Arabidopsis thaliana Thomas Nussbaumer 1,2 1 Institute of Network Biology (INET),

More information

DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms

DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms Blackwell Science, LtdOxford, UKBOJBotanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2002 140 Original Article I. J. LEITCH and L. HANSONDNA AMOUNTS IN BASAL ANGIOSPERM FAMILIES

More information

Powdery scab management in South Africa

Powdery scab management in South Africa Powdery scab management in South Africa Prof Jacquie van der Waals, University of Pretoria Spongospora subterranea f. sp. subterranea (Sss) is an increasingly important pathogen of potatoes globally. Infection

More information

Larval Hosts: plant these -- and feed baby birds! Common name Scientific name Growth form Leaf type Soil type Flower & fruit dates

Larval Hosts: plant these -- and feed baby birds! Common name Scientific name Growth form Leaf type Soil type Flower & fruit dates Larval Hosts: plant these -- and feed baby birds! Oaks Quercus velutina, t d w, m, d Spring; Fall Q. rubra, Q. coccinea, Q. falcata Birches Betula nigra, B. lenta t d w, m Mar-Apr; May-Jun Ironwood, American

More information

Genomics and Bioinformatics Resources for Crop Improvement

Genomics and Bioinformatics Resources for Crop Improvement Genomics and Bioinformatics Resources for Crop Improvement Keiichi Mochida and Kazuo Shinozaki RIKEN Plant Science Center, Yokohama, 230-0045 Japan Corresponding author: E-mail, sinozaki@rtc.riken.jp ;

More information

Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification

Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification Research Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification Yanbang Li 1,2 *, Sofia Provenzano 1,3 *, Mattijs Bliek 1,2 *, Cornelis Spelt 1,2, Ingo Appelhagen 4, Laura Machado

More information

P OLYPLOIDY AND ANGIOSPERM DIVERSIFICATION 1

P OLYPLOIDY AND ANGIOSPERM DIVERSIFICATION 1 American Journal of Botany 96(1): 336 348. 2009. P OLYPLOIDY AND ANGIOSPERM DIVERSIFICATION 1 Douglas E. Soltis,2,11 Victor A. Albert, 3 Jim Leebens-Mack,4 Charles D. Bell, 5 Andrew H. Paterson, 4,6 Chunfang

More information

Taxonomic Identification of Traces using Non-human DNA

Taxonomic Identification of Traces using Non-human DNA Taxonomic Identification of Traces using Non-human DNA David A. Stoney Stoney Forensic, Inc. 14101-G Willard Road, Chantilly, VA 20151 1 Taxonomic Identification of Traces using Non-human DNA Differences

More information

ANGIOSPERM PHYLOGENY BASED ON MATK

ANGIOSPERM PHYLOGENY BASED ON MATK American Journal of Botany 90(12): 1758 1776. 2003. ANGIOSPERM PHYLOGENY BASED ON MATK SEQUENCE INFORMATION 1 KHIDIR W. HILU, 2,14 THOMAS BORSCH, 3 KAI MÜLLER, 3 DOUGLAS E. SOLTIS, 4 PAMELA S. SOLTIS,

More information

Evolutionary Bioinformatics

Evolutionary Bioinformatics Open Access: Full open access to this and thousands of other papers at http://www.la-press.com. Evolutionary Bioinformatics TreSpEx Detection of Misleading Signal in Phylogenetic Reconstructions Based

More information

Changing Flora of the Stockton College Campus Jamie Cromartie PINELANDS RESEARCH SERIES 14 August 2012

Changing Flora of the Stockton College Campus Jamie Cromartie PINELANDS RESEARCH SERIES 14 August 2012 Changing Flora of the Stockton College Campus 1970-2012 Jamie Cromartie PINELANDS RESEARCH SERIES 14 August 2012 Richard Stockton College Exotic Species Sites 1971 Map Genus species common name

More information

BMC Evolutionary Biology

BMC Evolutionary Biology BMC Evolutionary Biology BioMed Central Research article The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates Skip R McCoy 1, Jennifer

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Schematic pipeline for single-cell genome assembly, cleaning and annotation. a. The assembly process was optimized to account for multiple cells putatively

More information

A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus

A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus Plant Molecular Biology 56: 811 820, 2004. Ó 2004 Springer. Printed in the Netherlands. 811 A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome

More information

Anatomy of a species tree

Anatomy of a species tree Anatomy of a species tree T 1 Size of current and ancestral Populations (N) N Confidence in branches of species tree t/2n = 1 coalescent unit T 2 Branch lengths and divergence times of species & populations

More information

Agave Genomics in Support

Agave Genomics in Support Agave Genomics in Support of CAM Engineering cambiodesign.org Xiaohan Yang Biosciences Division Oak Ridge National Laboratory C4-CAM Conference August 09, 2013 Acknowledgements Oak Ridge National Laboratory

More information

BASAL ANGIOSPERM PHYLOGENY INFERRED FROM DUPLICATE PHYTOCHROMES A AND C

BASAL ANGIOSPERM PHYLOGENY INFERRED FROM DUPLICATE PHYTOCHROMES A AND C Int. J. Plant Sci. 161(6 Suppl.):S41 S55. 2000. 2000 by The University of Chicago. All rights reserved. 1058-5893/2000/16106S-0004$03.00 BASAL ANGIOSPERM PHYLOGENY INFERRED FROM DUPLICATE PHYTOCHROMES

More information

PaleoGenomics & Evolution (group PaleoEVO). UMR1095 INRA UBP Génétique, Diversité & Ecophysiologie des Céréales

PaleoGenomics & Evolution (group PaleoEVO). UMR1095 INRA UBP Génétique, Diversité & Ecophysiologie des Céréales TranscriptomePartitioning Following Polyploidization Events in Grasses Journée Transcriptome URGV 1 Mai 13 Plant and Animal Genomes SPECIES COMMON NAME CHROMOSOMES GENOME (MB) ANNOTATED GENES SYNTENY DUPLICATION

More information

The evolution of WRKY transcription factors

The evolution of WRKY transcription factors Rinerson et al. BMC Plant Biology (2015) 15:66 DOI 10.1186/s12870-015-0456-y RESEARCH ARTICLE Open Access The evolution of WRKY transcription factors Charles I Rinerson 1, Roel C Rabara 1, Prateek Tripathi

More information

Supplemental Data. Vanneste et al. (2015). Plant Cell /tpc

Supplemental Data. Vanneste et al. (2015). Plant Cell /tpc Supplemental Figure 1: Representation of the structure of an orthogroup. Each orthogroup consists out of a paralogous pair representing the WGD (denoted by Equisetum 1 and Equisetum 2) supplemented with

More information

A Phylogenomic Assessment of Ancient Polyploidy and Genome Evolution Across the Poales

A Phylogenomic Assessment of Ancient Polyploidy and Genome Evolution Across the Poales Kennesaw State University DigitalCommons@Kennesaw State University Faculty Publications 3-7-2016 A Phylogenomic Assessment of Ancient Polyploidy and Genome Evolution Across the Poales Michael R. McKain

More information

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types Exp 11- THEORY Sequence Alignment is a process of aligning two sequences to achieve maximum levels of identity between them. This help to derive functional, structural and evolutionary relationships between

More information

Bioinformatics tools for phylogeny and visualization. Yanbin Yin

Bioinformatics tools for phylogeny and visualization. Yanbin Yin Bioinformatics tools for phylogeny and visualization Yanbin Yin 1 Homework assignment 5 1. Take the MAFFT alignment http://cys.bios.niu.edu/yyin/teach/pbb/purdue.cellwall.list.lignin.f a.aln as input and

More information

Slovene Plant Gene Bank (SPGB) and Genetic Resources Programme

Slovene Plant Gene Bank (SPGB) and Genetic Resources Programme Slovene Plant Gene Bank (SPGB) and Genetic Resources Programme Second Meeting of the ECPGR Working Group on Leafy Vegetables 8 9 October, Ljubljana, Slovenia Vladimir MEGLIČ, Jelka ŠUŠTAR VOZLIČ Slovene

More information

Symmetric Tree, ClustalW. Divergence x 0.5 Divergence x 1 Divergence x 2. Alignment length

Symmetric Tree, ClustalW. Divergence x 0.5 Divergence x 1 Divergence x 2. Alignment length ONLINE APPENDIX Talavera, G., and Castresana, J. (). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, -. Symmetric

More information

C3020 Molecular Evolution. Exercises #3: Phylogenetics

C3020 Molecular Evolution. Exercises #3: Phylogenetics C3020 Molecular Evolution Exercises #3: Phylogenetics Consider the following sequences for five taxa 1-5 and the known outgroup O, which has the ancestral states (note that sequence 3 has changed from

More information

Elements of Bioinformatics 14F01 TP5 -Phylogenetic analysis

Elements of Bioinformatics 14F01 TP5 -Phylogenetic analysis Elements of Bioinformatics 14F01 TP5 -Phylogenetic analysis 10 December 2012 - Corrections - Exercise 1 Non-vertebrate chordates generally possess 2 homologs, vertebrates 3 or more gene copies; a Drosophila

More information

Phylogenetic relationship among S. castellii, S. cerevisiae and C. glabrata.

Phylogenetic relationship among S. castellii, S. cerevisiae and C. glabrata. Supplementary Note S2 Phylogenetic relationship among S. castellii, S. cerevisiae and C. glabrata. Phylogenetic trees reconstructed by a variety of methods from either single-copy orthologous loci (Class

More information

Molecular Dating, Evolutionary Rates, and the Age of the Grasses

Molecular Dating, Evolutionary Rates, and the Age of the Grasses Systematic Biology Advance Access published January 11, 2014 Syst. Biol. 0(0):1 13, 2013 The Author(s) 2013. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All

More information

Heterotrimeric G proteins in Picea abies and their regulation in response to Heterobasidion annosum s.l. infection

Heterotrimeric G proteins in Picea abies and their regulation in response to Heterobasidion annosum s.l. infection de Vries et al. BMC Plant Biology (2015) 15:287 DOI 10.1186/s12870-015-0676-1 RESEARCH ARTICLE Open Access Heterotrimeric G proteins in Picea abies and their regulation in response to Heterobasidion annosum

More information

Concerted divergence after gene duplication in Polycomb Repressor. complexes

Concerted divergence after gene duplication in Polycomb Repressor. complexes Plant Physiology Preview. Published on April 28, 2017, as DOI:10.1104/pp.16.01983 1 Short title: Concerted divergence of duplicated genes 2 3 4 Concerted divergence after gene duplication in Polycomb Repressor

More information

** LCA LCN PCA

** LCA LCN PCA % of wild type value % of wild type value a 12 1 8 2 b 12 1 8 2 LCA LCN PCA Col- sod3-1 Supplementary Figure 1 sod3-1 influences cell proliferation. (a) Fifth leaf cell area (LCA) and leaf cell number

More information

Biodiversity Laboratory. Measuring Impacts on Soil Biodiversity in Agroecosystems

Biodiversity Laboratory. Measuring Impacts on Soil Biodiversity in Agroecosystems Biodiversity Laboratory Measuring Impacts on Soil Biodiversity in Agroecosystems Objectives: 1) To compare processes occurring in natural ecosystems with those of agroecosystems; 2) To become familiar

More information

The origin of flowering plants and characteristics of angiosperm

The origin of flowering plants and characteristics of angiosperm Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny Todd J. Barkman, Gordon Chenery, Joel R. McNeal, James Lyons-Weiler,

More information

Paleo-evolutionary plasticity of plant disease resistance genes

Paleo-evolutionary plasticity of plant disease resistance genes Zhang et al. BMC Genomics 2014, 15:187 RESEARCH ARTICLE Paleo-evolutionary plasticity of plant disease resistance genes Rongzhi Zhang 1,2, Florent Murat 1, Caroline Pont 1, Thierry Langin 1 and Jerome

More information

ASSESSING AMONG-LOCUS VARIATION IN THE INFERENCE OF SEED PLANT PHYLOGENY

ASSESSING AMONG-LOCUS VARIATION IN THE INFERENCE OF SEED PLANT PHYLOGENY Int. J. Plant Sci. 168(2):111 124. 2007. Ó 2007 by The University of Chicago. All rights reserved. 1058-5893/2007/16802-0001$15.00 ASSESSING AMONG-LOCUS VARIATION IN THE INFERENCE OF SEED PLANT PHYLOGENY

More information

Supplemental data. Vos et al. (2008). The plant TPX2 protein regulates pro-spindle assembly before nuclear envelope breakdown.

Supplemental data. Vos et al. (2008). The plant TPX2 protein regulates pro-spindle assembly before nuclear envelope breakdown. Supplemental data. Vos et al. (2008). The plant TPX2 protein regulates pro-spindle assembly before nuclear envelope breakdown. SUPPLEMENTAL FIGURE 1 ONLINE Xenopus laevis! Xenopus tropicalis! Danio rerio!

More information

California Native Plant Society Riparian & Wetland Plant Identification Workshop

California Native Plant Society Riparian & Wetland Plant Identification Workshop California Native Plant Society Riparian & Wetland Plant Identification Workshop Instructors: David L. Magney with assistance from David Torfeh Introductions Josie Crawford CNPS Education Program Director

More information