Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg

Size: px
Start display at page:

Download "Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg"

Transcription

1 PHY celestal-mechancs - J. Hedberg Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The shell theorem. 3. Work and Energy 4. Potental Energy. Potental Plot 2. Escape Speed 5. Kepler's Laws. Cartesan & Polar Coordnates 2. st Law - Ellpses 6. The Vral Theorem Basc Orbts Why crcles? Coperncus was rght: the earth and the other planets do orbt around the sun. However, he was stll operatng under the assumpton that all the celestal bodes had to move n perfect crcles. Ths turned out to be a rather major flaw n the framework. Other astronomers of the era were unable to match the predctons of the Coperncan system wth observatons. More 'tweaks' were added to the Coperncan systems of crcular helocentrc orbts n order to 'save the apearances'. In order to make the model match wth observatons, they stll had to employ epcycles and so forth. However, the seed was planted. The sun should be at the center! Tycho Brahe Page

2 PHY celestal-mechancs - J. Hedberg Late 6th century. Hybrd system: geohelocentrc model had the planets gong around the sun, but the sun stll went around the Earth. Close... Fg. Dansh astronomer Tycho Brahe [546-60]. Made many very good measurements of the stars and planets. Kepler Kepler played a major role n the 7th-century scentfc revoluton. He s best known for hs laws of planetary moton, based on hs works Astronoma nova, Harmonces Mund, and Eptome of Coperncan Astronomy. These works also provded one of the foundatons for Newton's theory of unversal gravtaton. Fg. 2 German mathematcan, astronomer, and astrologer. [57-630] Kepler was Tycho's assstant and was beleved n the Coperncan system. 3 laws of orbtng bodes. A planet orbts the sun n an ellpse. The Sun s at one focus of that ellpse. 2. A lne connectng a planet to the Sun sweeps out equal areas n equal tmes 3. The sqaure of a planet's orbtal perod s proportonal to the cube of the average dstance between the planet and the sun: P 2 a 3. Ellpses An ellpse satsfes ths equaton: Page 2

3 F r r ae a F b r + a s the sem-major axs r and r are the dstances to the ellpse from the two focal ponts, F and F. e represents the eccentrcty of the ellpse ( 0 e ) r PHY celestal-mechancs - J. Hedberg = 2a The semmajor axs s one-half the length of the long (.e. major) axs of the ellpse. Conc Sectons The crcle s one of several conc sectons. (There's really nothng all that specal about crcles.) See appolonus - on concs. Ellptcal Orbts orbtng body aphelon central body prncple focus perhelon The frst law for Kepler holds that the orbtng body (.e. planet) wll trace out an ellptcal path as t orbts the central body (.e. the sun). The central body s located at the prncple focus. When the dstance between the planet and the sun s the shortest, the planet s sad to be at perhelon, or the pont of closes approach. When that dstance s greatest, the planet s located the aphelon. Polar Coordnates r = a ( e2) + e cos θ (2) Page 3

4 PHY celestal-mechancs - J. Hedberg r r F The polar coordnate equaton can be obtan by startng wth the basc ellpse equaton Eq. () Take the pont at the top of the sem-mnor axs, where r = r. Snce r + r = 2a we know that r = a. Usng the Pythagorean theorem, we can say that: F ae b a r 2 = b 2 + a 2 e 2. Puttng a n for r yelds: Fg. 3 Ellpse - the pont where r = r b 2 = a 2 ( e 2 ) For polar coordnates, we'll use r and θ, r beng the dstance from the prncple focus and θ the angle measured counterclockwse from major axs of the ellpse. Agan, from Pythagorus: r F r θ r 2 = r 2 sn 2 θ + (2ae + r cos θ) 2 ae Fg. 4 Ellpse - and polar coordnates r and θ. F Expandng the 2nd RHS term: r 2 = r 2 sn 2 θ + 4 a 2 e 2 + 2aer cos θ + r 2 cos 2 θ = r 2 + 4ae (ae + r cos θ) and usng the fact that r 2 = (2a r) 2, we can obtan the polar equaton for the ellpse shown above n eq (2). Devaton from a Crcles.0 e = e = Mars' orbt [ e = ] looks a lot lke a crcle. Page 4

5 PHY celestal-mechancs - J. Hedberg Equal Areas n Equal Tmes t orbtng body area t 2 focus focus t 2 area t Fg. 5 The blue areas n these fgures wll be the same f t 2 t s the same. The other concs Parabolas: e = 2p r = + cos θ (5) Hyperbolas: e > a( ) r = e2 + e cos θ (6) Newtonan Mechancs Newton's Laws In words: In symbols:. No change n velocty f there s no net force actng. 2. The net force actng on a body wll cause a proportonal acceleraton nversely proportonal to the mass of that body. 3. Forces come n equal and opposte pars. Δv = 0 f F net = 0 2. F net = n = F = ma 3. = F AB F BA Law of Gravtaton 2 Fg. 6 Two masses and a Page 5

6 PHY celestal-mechancs - J. Hedberg The scalar form: gravtatonal nteracton F = G Mm r 2 (7) And n vector form: F 2 = G Mm r (8) r 2 Ths s Newton's Law of Unversal Gravtaton. It consders two masses: M and m and the dstance between them r. Also ncluded s G, the Unversal Gravtatonal Constant. ( G = m 3 kg - s -2 From nst The drecton of the force s always attractve and s along a lne connectng the centers of the two masses. F 2 s the force appled on object 2 by object. r s the dstance between the two objects ( r 2 2 ) And s the unt vector pontng from object to object to 2. r 2 r 2 = r 2 r r 2 r Example Problem #: The shell theorem. Show that at sphercal mass (of densty ρ(r) ) acts as a pont mass for objects outsde. Fg. 7 Consder a mass m a dstance r away from the center of a sphercal mass M. The radus of the sphercal mass s. Frst, the force from the rng whch a mass dm s: R 0 m dm rng d = G cos ϕ F rng We can re-express the mass of the rng n terms of ts densty ρ(r). (The densty s at most only a functon of the radus,.e. sphercally symmetrc) d M rng The volume of a rng s just t's thckness: dr, tmes t's wh: Rdθ, tmes t's crcumference: 2πR sn θ whch equals: s 2 = ρ(r) d V rng 2 d rng = ρ(r) 2π sn θ dr dθ Page 6

7 PHY celestal-mechancs - J. Hedberg d M rng = ρ(r) 2πR 2 sn θ dr dθ The cos ϕ can be expressed as: cos ϕ = r R cos θ s and s can be wrtten as the followng (from Pythagorus) s = (r R cos θ) 2 + R 2 sn 2 θ = r 2 2rR cos θ + R 2 Let's put all these back nto the force from the rng: m dm rng df rng = G cos ϕ s 2 = Gm [ρ(r) 2πR 2 r R cos θ sn θ dr dθ] [ ] [ ] s Then, we'll have to ntegrate over both varables. dr wll range from 0 to R 0 and dθ from 0 to π to get all the rngs that make up the entre sphere. s 2 F = 2πGm [ Integratng over θ yelds: 0 R 0 0 π ρ(r) (rr 2 sn θ R 3 sn θ cos θ) ( r 2 + R 2 3/2 2rR cos θ) dθ dr] (9) However, the mass of a shell of thckness dr s just: whch s just quanty nsde the ntegrand. Thus the force from on shell wll be, Ths force acts as f t s located at the center of the shell. We can then ntegrate over all the mass shells and the above becomes: whch s just the equaton for the force between two pont masses. R0 Gm F = 4πR 2 ρ(r) dr (0) r 2 O d M shell = 4πR 2 ρ(r)dr d F shell = Gm dm shell r 2 F = G mm r 2 () lttle g M F = G m (2) ( R + h) 2 Let's consder the gravtatonal force a dstance h above the surface of the earth. Snce F = ma, we can see that the acceleraton a wll be equal to: a = G M = g Page 7

8 PHY celestal-mechancs - J. Hedberg a = G We generally call ths value 'lttle g'. Work and Energy M R 2 = g (3) z r m dr U f U = ΔU = F dr r f r ( M F r f y x Fg. 8 The change n potental energy s gven by the negatve of the work done by gravty. Expressng t n the ntegral above allows for changng force as a functon of poston (n contrast to the elementary defnton: W = F d) Potental Energy Fg. 9 Fnd the work done on an object by gravty as t moves from pont P to nfnty, where the potental energy s defned as 0. W = The force s always aganst the dsplacement, so R F(r) dr GM m F(r) dr = E dr r 2 We can pull the constants out of the ntegral, and we are left wth somethng very smple to ntegrate: W = G Em dr = GM m [ E ] Page 8

9 PHY celestal-mechancs - J. Hedberg GM W = GM E m dr = [ E m ] r 2 r Evaluatng at the lmts of and R, we see that the work done s: From the orgnal defnton of work and potental energy: R GM W = [ E m GM ] = 0 E m GM = E m r R R R ΔU = U f U = W thus, snce U = 0 we can say: U = W And now we have a potental energy functon for masses at a dstance r from the center of the Earth: R U = G M e r m Potental Plot r U Escape Speed How fast to get somethng to reach nfnty, (and stop there)? Mm E = m G 2 v2 r (5) Ths s the total energy of a partcle: knetc plus potental. Snce the partcle wll be at r = and wll have stopped then the total energy must be zero. However, due to conservaton of energy, the total mechancal energy wll be the same. Thus, mv 2 Mm G = 0 at all tmes. Or: 2 Mm m = G 2 v2 r r Page 9

10 PHY celestal-mechancs - J. Hedberg whch leads to v escape 2GM = (6) r For Earth, v escape = 82.4 m/s. Apollo traveled at 0423 m/s [nasa ref]. It got a lttle help from the moons gravty too. Kepler's Laws Cartesan & Polar Coordnates z y θ r m x cartesan y θ polar x Fg. 0 The standard Cartesan Coordnates. In polar coordnates, we have dfferent unt vectors: θ and r. and r = cos θ + j sn θ (7) θ = sn θ + j cos θ (8) We can also express some dervates: dr^ = ^ sn θ + j^ cos θ = θ^ (9) dθ dθ^ = ^ cos θ j^ sn θ = r^ (20) dθ And usng the chan rule, we can also express tme dervatves: These wll be useful later. dr^ dr^ dθ = = dθ dθ^ θ^ dθ dθ^ dθ = = r^dθ dθ (2) (22) Page 0

11 PHY celestal-mechancs - J. Hedberg st Law - Ellpses The angular momentum per unt mass wll be gven by: L = m r2 dθ and the centrally drected gravtatonal force s gven by: F GMm dv = r = m t r 2 (23) (24) The acceleraton of the orbtng body s therefore: but dv GM a = = t r r (25) 2 dθ r = ( ) dθ (26) We can put eq (26) nto the acceleraton equaton (25) dv GM = t r ( dθ dθ^ ) 2 (27) Combnng ths wth (23) Integratng both sdes of ths equaton yelds: L dv = GMm dθ^ (28) L = + GMm v θ^ e (29) The e s a constant of ntegraton that depends on the ntal conons, whch we may choose. Page

12 PHY celestal-mechancs - J. Hedberg y sun x Fg. We'll say that at t = 0, the orbter s at perhelon and we can orent the axes so that t's moton s entrely n the +y drecton, n other words: e = ej where e s a constant. Now: L v = θ + ej (30) GMm We can take the dot product wth θ of both sdes: L v θ = θ θ + ej θ (3) GMm Smplfyng, usng the defntons above (.e. (8)): L = + e cos θ GMm v t (32) ( ) s the tangental velocty of the orbter. From the defnton of angular momentum: L = r p v t mr v t = L (33) whch when put back nto (32), yelds: or solvng for r: L 2 = + e cos θ (34) GMm 2 r r = L 2 (35) GM m 2 ( + e cos θ) Ths s just the polar coordnates expresson for a conc secton. The Vral Theorem Page 2

13 PHY celestal-mechancs - J. Hedberg The Vral theorem shows that for a gravtatonally bound system n equlbrum, the total energy s onehalf the tme averaged potental energy. Consder the quantty Q. Q p r (36) where p s the lnear momentum and r the poston of some partcle. The product rule gve the followng f we take the tme dervatve of the rght hand sde. dq dp = ( dr r + p ) (37) We could also say: dq d = = ( ) = dr m d r d 2 m r 2 d 2 I (38) 2 2 where I s the moment of nerta of the total number of partcles: I = m r 2 (39) d 2 I 2 2 dr p dp = r (40) Now, dr p = m v v = 2 = 2K 2 m v 2 (4) Thus: d 2 I 2 2 2K = F r (42) where we have used the 2nd law of Newton ( F = dp ) Let F j represent the force of nteracton between two partcles n the system. The force on due to j. If you have a partcle, then we need to add up the force contrbutons from every other partcle j where j. We can re-wrte the poston of the th partcle as: F r = F j r (43) j j whch leads to r = ( + ) + ( ) 2 r r j 2 r r j (44) = j ( + j ) + j ( j ) Page 3

14 PHY celestal-mechancs - J. Hedberg Snce the 3rd law of Newton says: zero. Thus: F r = ( + ) + ( ) 2 F j r r j 2 F j r r j (45) j j F j j = F j j, the frst term on the R.H.S. n the above equaton wll be F r = ( ) 2 F j r r j (46) j j Assumng only gravtatonal nteractons: we can wrte F j m m j = G r 2 j r^j (47) F r = 2 G m m j 2 j j j j r 3 j m m j G r j 2 ( r j r ) (48) (49) The potental energy U j between the and j partcles s just the term n the sums: Thus, U j m m j = G (50) r j F r = = U 2 U j (5) j j Now we can fll out eq: (42) d 2 I 2 K = U (52) 2 2 where we have replaced all the quanttes wth the tme averaged values. The average of d 2 I 2 s gong to be: d2i τ = 2 τ d 2 I 0 2 di di = ( ) τ τ 0 (53) (54) but for perodc motons lke orbts: di τ di = 0 (55) So 2 I = 0 Page 4

15 PHY celestal-mechancs - J. Hedberg d 2 I = 0 (56) 2 whch leads fnally to 2 K = U or n terms of the total energy E E = U 2 The Vral Theorem: Uses It allows for statstcal results for many body systems. Page 5

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

1. Review of Mechanics Newton s Laws

1. Review of Mechanics Newton s Laws . Revew of Mechancs.. Newton s Laws Moton of partcles. Let the poston of the partcle be gven by r. We can always express ths n Cartesan coordnates: r = xˆx + yŷ + zẑ, () where we wll always use ˆ (crcumflex)

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Chapter 11: Angular Momentum

Chapter 11: Angular Momentum Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

Spring 2002 Lecture #13

Spring 2002 Lecture #13 44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

Conservation of Angular Momentum = "Spin"

Conservation of Angular Momentum = Spin Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Physics 111: Mechanics Lecture 11

Physics 111: Mechanics Lecture 11 Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

One Dimension Again. Chapter Fourteen

One Dimension Again. Chapter Fourteen hapter Fourteen One Dmenson Agan 4 Scalar Lne Integrals Now we agan consder the dea of the ntegral n one dmenson When we were ntroduced to the ntegral back n elementary school, we consdered only functons

More information

CHAPTER 10 ROTATIONAL MOTION

CHAPTER 10 ROTATIONAL MOTION CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

MEASUREMENT OF MOMENT OF INERTIA

MEASUREMENT OF MOMENT OF INERTIA 1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m) 7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to

More information

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004 Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a

More information

PHYSICS 231 Review problems for midterm 2

PHYSICS 231 Review problems for midterm 2 PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October

More information

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force. Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy Comparatve Studes of Law of Conservaton of Energy and Law Clusters of Conservaton of Generalzed Energy No.3 of Comparatve Physcs Seres Papers Fu Yuhua (CNOOC Research Insttute, E-mal:fuyh1945@sna.com)

More information

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays

More information

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PES 1120 Spring 2014, Spendier Lecture 6/Page 1 PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons -> charged rod -> charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

10/9/2003 PHY Lecture 11 1

10/9/2003 PHY Lecture 11 1 Announcements 1. Physc Colloquum today --The Physcs and Analyss of Non-nvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system). EWTO S LAWS Consder two partcles. 1 1. If 1 0 then 0 wth p 1 m1v. 1 1 2. 1.. 3. 11 These laws only apply when vewed from an nertal coordnate system (unaccelerated system). consder a collecton of partcles

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Chapter 11 Torque and Angular Momentum

Chapter 11 Torque and Angular Momentum Chapter Torque and Angular Momentum I. Torque II. Angular momentum - Defnton III. Newton s second law n angular form IV. Angular momentum - System of partcles - Rgd body - Conservaton I. Torque - Vector

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Three views of mechanics

Three views of mechanics Three vews of mechancs John Hubbard, n L. Gross s course February 1, 211 1 Introducton A mechancal system s manfold wth a Remannan metrc K : T M R called knetc energy and a functon V : M R called potental

More information

Chapter 11 Angular Momentum

Chapter 11 Angular Momentum Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle

More information

. The kinetic energy of this system is T = T i. m i. Now let s consider how the kinetic energy of the system changes in time. Assuming each.

. The kinetic energy of this system is T = T i. m i. Now let s consider how the kinetic energy of the system changes in time. Assuming each. Chapter 2 Systems of Partcles 2. Work-Energy Theorem Consder a system of many partcles, wth postons r and veloctes ṙ. The knetc energy of ths system s T = T = 2 mṙ2. 2. Now let s consder how the knetc

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

Physics 106a, Caltech 11 October, Lecture 4: Constraints, Virtual Work, etc. Constraints

Physics 106a, Caltech 11 October, Lecture 4: Constraints, Virtual Work, etc. Constraints Physcs 106a, Caltech 11 October, 2018 Lecture 4: Constrants, Vrtual Work, etc. Many, f not all, dynamcal problems we want to solve are constraned: not all of the possble 3 coordnates for M partcles (or

More information

How Differential Equations Arise. Newton s Second Law of Motion

How Differential Equations Arise. Newton s Second Law of Motion page 1 CHAPTER 1 Frst-Order Dfferental Equatons Among all of the mathematcal dscplnes the theory of dfferental equatons s the most mportant. It furnshes the explanaton of all those elementary manfestatons

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta

More information

r i r j 3. (2) Gm j m i r i (r i r j ) r i r j 3. (3)

r i r j 3. (2) Gm j m i r i (r i r j ) r i r j 3. (3) N-body problem There s a lot of nterestng physcs related to the nteractons of a few bodes, but there are also many systems that can be well-approxmated by a large number of bodes that nteract exclusvely

More information

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

Electricity and Magnetism - Physics 121 Lecture 10 - Sources of Magnetic Fields (Currents) Y&F Chapter 28, Sec. 1-7

Electricity and Magnetism - Physics 121 Lecture 10 - Sources of Magnetic Fields (Currents) Y&F Chapter 28, Sec. 1-7 Electrcty and Magnetsm - Physcs 11 Lecture 10 - Sources of Magnetc Felds (Currents) Y&F Chapter 8, Sec. 1-7 Magnetc felds are due to currents The Bot-Savart Law Calculatng feld at the centers of current

More information

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3. r r. Position, Velocity, and Acceleration Revisited Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

Lecture 20: Noether s Theorem

Lecture 20: Noether s Theorem Lecture 20: Noether s Theorem In our revew of Newtonan Mechancs, we were remnded that some quanttes (energy, lnear momentum, and angular momentum) are conserved That s, they are constant f no external

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

The classical spin-rotation coupling

The classical spin-rotation coupling LOUAI H. ELZEIN 2018 All Rghts Reserved The classcal spn-rotaton couplng Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 louaelzen@gmal.com Abstract Ths paper s prepared to show that a rgd

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

PHYS 1443 Section 003 Lecture #17

PHYS 1443 Section 003 Lecture #17 PHYS 144 Secton 00 ecture #17 Wednesda, Oct. 9, 00 1. Rollng oton of a Rgd od. Torque. oment of Inerta 4. Rotatonal Knetc Energ 5. Torque and Vector Products Remember the nd term eam (ch 6 11), onda, Nov.!

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

Section 8.3 Polar Form of Complex Numbers

Section 8.3 Polar Form of Complex Numbers 80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the

More information

Classical Mechanics ( Particles and Biparticles )

Classical Mechanics ( Particles and Biparticles ) Classcal Mechancs ( Partcles and Bpartcles ) Alejandro A. Torassa Creatve Commons Attrbuton 3.0 Lcense (0) Buenos Ares, Argentna atorassa@gmal.com Abstract Ths paper consders the exstence of bpartcles

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

10. Canonical Transformations Michael Fowler

10. Canonical Transformations Michael Fowler 10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst

More information

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m

π e ax2 dx = x 2 e ax2 dx or x 3 e ax2 dx = 1 x 4 e ax2 dx = 3 π 8a 5/2 (a) We are considering the Maxwell velocity distribution function: 2πτ/m Homework Solutons Problem In solvng ths problem, we wll need to calculate some moments of the Gaussan dstrbuton. The brute-force method s to ntegrate by parts but there s a nce trck. The followng ntegrals

More information

Chapter 20 Rigid Body: Translation and Rotational Motion Kinematics for Fixed Axis Rotation

Chapter 20 Rigid Body: Translation and Rotational Motion Kinematics for Fixed Axis Rotation Chapter 20 Rgd Body: Translaton and Rotatonal Moton Knematcs for Fxed Axs Rotaton 20.1 Introducton... 1 20.2 Constraned Moton: Translaton and Rotaton... 1 20.2.1 Rollng wthout slppng... 5 Example 20.1

More information

Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation 1 PHYS 705: Classcal Mechancs Hamlton-Jacob Equaton Hamlton-Jacob Equaton There s also a very elegant relaton between the Hamltonan Formulaton of Mechancs and Quantum Mechancs. To do that, we need to derve

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

Mechanics Cycle 3 Chapter 9++ Chapter 9++

Mechanics Cycle 3 Chapter 9++ Chapter 9++ Chapter 9++ More on Knetc Energy and Potental Energy BACK TO THE FUTURE I++ More Predctons wth Energy Conservaton Revst: Knetc energy for rotaton Potental energy M total g y CM for a body n constant gravty

More information

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics) CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

Modeling of Dynamic Systems

Modeling of Dynamic Systems Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how

More information

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review

σ τ τ τ σ τ τ τ σ Review Chapter Four States of Stress Part Three Review Review Chapter Four States of Stress Part Three When makng your choce n lfe, do not neglect to lve. Samuel Johnson Revew When we use matrx notaton to show the stresses on an element The rows represent the axs

More information

LAGRANGIAN MECHANICS

LAGRANGIAN MECHANICS LAGRANGIAN MECHANICS Generalzed Coordnates State of system of N partcles (Newtonan vew): PE, KE, Momentum, L calculated from m, r, ṙ Subscrpt covers: 1) partcles N 2) dmensons 2, 3, etc. PE U r = U x 1,

More information

Physics 114 Exam 3 Spring Name:

Physics 114 Exam 3 Spring Name: Physcs 114 Exam 3 Sprng 015 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem 4. Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse

More information

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Physics 114 Exam 2 Fall 2014 Solutions. Name: Physcs 114 Exam Fall 014 Name: For gradng purposes (do not wrte here): Queston 1. 1... 3. 3. Problem Answer each of the followng questons. Ponts for each queston are ndcated n red. Unless otherwse ndcated,

More information

MTH 263 Practice Test #1 Spring 1999

MTH 263 Practice Test #1 Spring 1999 Pat Ross MTH 6 Practce Test # Sprng 999 Name. Fnd the area of the regon bounded by the graph r =acos (θ). Observe: Ths s a crcle of radus a, for r =acos (θ) r =a ³ x r r =ax x + y =ax x ax + y =0 x ax

More information

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 0 Canoncal Transformatons (Chapter 9) What We Dd Last Tme Hamlton s Prncple n the Hamltonan formalsm Dervaton was smple δi δ p H(, p, t) = 0 Adonal end-pont constrants δ t ( )

More information

PHYS 1441 Section 002 Lecture #16

PHYS 1441 Section 002 Lecture #16 PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

More information

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013 Lagrange Multplers Monday, 5 September 013 Sometmes t s convenent to use redundant coordnates, and to effect the varaton of the acton consstent wth the constrants va the method of Lagrange undetermned

More information

SUMMARY Phys 2113 (General Physics I) Compiled by Prof. Erickson. v = r t. v = lim t 0. p = mv. a = v. a = lim

SUMMARY Phys 2113 (General Physics I) Compiled by Prof. Erickson. v = r t. v = lim t 0. p = mv. a = v. a = lim SUMMARY Phys 2113 (General Physcs I) Compled by Prof. Erckson Poston Vector (m): r = xˆx + yŷ + zẑ Average Velocty (m/s): v = r Instantaneous Velocty (m/s): v = lm 0 r = ṙ Lnear Momentum (kg m/s): p =

More information

Elshaboury SM et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp

Elshaboury SM et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp Elshabour SM et al.; Sch. J. Phs. Math. Stat. 5; Vol-; Issue-B (Mar-Ma); pp-69-75 Scholars Journal of Phscs Mathematcs Statstcs Sch. J. Phs. Math. Stat. 5; (B):69-75 Scholars Academc Scentfc Publshers

More information

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

PHYS 1441 Section 001 Lecture #15 Wednesday, July 8, 2015

PHYS 1441 Section 001 Lecture #15 Wednesday, July 8, 2015 PHYS 1441 Secton 001 Lecture #15 Wednesday, July 8, 2015 Concept of the Center of Mass Center of Mass & Center of Gravty Fundamentals of the Rotatonal Moton Rotatonal Knematcs Equatons of Rotatonal Knematcs

More information