# coordinates. Then, the position vectors are described by

Size: px
Start display at page:

Download "coordinates. Then, the position vectors are described by"

Transcription

1 Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general, let q, q,, qn be generalzed coordnates. Then, the poston vectors are descrbed by r r ( q, q,..., q ),,,..., N n

2 In general, we also have some geometrc constrants ( r,, r N, t) 0,,,, d. These are d equatons n 3N (scalar) varables. Let q, q,, qn be the generalzed coordnates or varables.e., r r( q, q,..., qn, t),,,..., N so that the geometrc constrants are satsfed.

3 If we elmnate all geometrc constrants n n 3 N d. o where n number of generalzed coordnates n n o. Sometmes, one may not want to solve for all the geometrc constrants Then q,..., qn are more than the mnmum needed and not all are ndependent. Now consder the work done by effectve forces n any vrtual dsplacement N W F r 3

4 Now, consder the poston vector, and ts vrtual dsplacement: r r ( q, q,..., q, t) n n r r q,,..., N q where q vrtual dsplacement n Then, the vrtual work s r N n n N W F q F q q q n W Q q Q F N r r q q. 4

5 Asde: consder the poston vector: r r( q,..., q, t) Dfferentatng, we get r r r r q q q q t n r r rdt q dt dt q t n r r d r dq dt q t r n r q q n 5

6 Here Q s generalzed force correspondng to the th generalzed coordnate. q Thus, N W F r Q q n 6

7 Ex 8: Consder the compound pendulum. Let, x(t) moton of slder. It s a specfed functon of tme Let, be O generalzed coordnates. Fnd: generalzed forces Q, Q (correspondng to the generalzed coordnates y x(t), ). A B x C F(t) 7

8 Now, to fnd the generalzed forces, we need to frst defne the poston of C n terms of generalzed coordnates: or r [ x Lsn Lsn( )] C L[cos cos( )] r L[cos cos( )( )] C L[ sn sn( )( )] r L[{cos cos( )} {sn C sn( )} ] L[cos( ) sn( ) ] 8

9 Asde: frst fnd the velocty to fnd vrtual dspalcement: r c [ x L cos L( )cos( )] L[ sn ( )sn( )] r [ x L cos c L( )cos( )] L[ sn ( )sn( )] 9

10 Now, the force actng at C s: F Thus, the vrtual work done s: or W FL[{cos cos( )} Q Q cos( )} ] Q Q FL{cos cos( )} FLcos( ) Note: f the forces are conservatve, the con generalzed forces are: Q V / q where the potental functon s F W F r C V q q n (,..., ) 0

11 The potental functon can be found as below: V FL{sn( ) sn( )} h ( ) V FLcos( ) Q or V FL{cos cos( )} Q V FLsn( ) h ( ) V (, ) FL{sn sn( )} h ( ) h ( )

12 6.6 Lagrange s Equatons (Important: ths dervaton s dfferent from the one n the text). The startng pont s the D Alembert s prncple: N ( F m r ) r 0 Recall that there are also d fnte and g knematc constrants to be satsfed by any vrtual dsplacement of the system:

13 N ( r, r,..., r N, t) 0,,,..., d (fnte constrants) l ( r,..., r, t) r D 0,,,..., g N (knematc constrants) Let q,..., qn generalzed coordnates. (need not be all ndependent;.e., need not satsfy fnte constrants dentcally) or n n0 3 N d. 3

14 r r ( q,..., q, t),,,..., N Then n Now, we calculate the dfferent terms n D Alembert s prncple: N N n r F r F ( q ) q n N r n ( F ) q Q q q effectve forces N N n m r m r q q n N r ( m r ) q q r accleraton 4

15 We now defne the knetc energy of the system of partcles to be N but r n r q q r t T m r r r r r r T m ( q ) ( q ) N n n k q t k qk t or r r T m q q N n n { ( ) k k q q k 5

16 or r r r r ( ) N n n m q q k q t k qk t r r N m t t n n N r r T ( m ) q q k q q k k r r r r n N N ( m ) q m q t t t T T ( q, q ) T ( q ) T k 0 6

17 Revew: Dervaton of Lagrange s Equatons N N ( F m r ) r 0 (,...,, ) 0,,,..., r r t d N l r D 0,,,..., g Now express r ( q, q,..., qn, t) 7

18 N n N q N where r F r F q n d T T m r r q dt q q Q N T m r r 8

19 Algebrac manpulatons N n r r qk,,,..., N k q r n k k r q k q 0,,,..., d k n N k r r q k q k 0 k n a ( q, t) q 0,,,..., d k k 9

20 constrants n dfferental form N r r 0,,,..., d N l r 0,,,..., g These are d + g relatons n 3N vrtual dspl. D. O. F. = 3N (d + g) = ( n0 g) n = number of generalzed coordnates D. O. F. 0

21 One can then show (wth some manpulaton) that N N r d T T m r,,,..., n q dt q q n d T T ( F m r ) r [ Q ] q 0 dt q q Case : Number of generalzed coordnates n n0 3N d degrees of freedom of the system,.e., all holonomc (geometrc) constrants are automatcally satsfed by the choce of generalzed coordnates; and there are no knematc or velocty constrants.

22 The generalzed coordnates (hence ndependent. Then n d T T dt q q Q q 0 q ) are d T T dt q q Q,,,..., n Ths s one form of Lagrange s equatons for a holonomc n degrees of freedom mechancal system. These are a system of n equatons. ( nd order dfferental equatons)

23 Lagrange s equatons are nd -order nonlnear ordnary dfferental equatons for n generalzed coordnates q We need to specfy q (0), q (0),,,..., n (n ntal condtons) Ther soluton gves One can then fnd the postons r ( t),,,..., N and the constrant forces R F m r,,,..., N q ( t),,,..., n. 3

24 Ex. 9: Consder a plane pendulum wth oscllatng support: Wth the coordnate O system shown, the poston: r f ( t) l(cos sn ) P l sn ( l cos f ( t)) The velocty s: r l cos ( l sn f ( t)) P θ - generalzed coordnate no constrant. B y f(t) l P x g m mg 4

25 The knetc energy s: T mr P r P m [ l f ( t ) l f ( t )sn ] Need to fnd generalzed force Q. W F r Q ; F mg P r d r wth tme frozen ( set t 0) P P df d r P l cos d ( l sn d dt) dt r ( l cos l sn ) P 5

26 W mgl sn Q mgl sn Thus, the Lagrange s d T T equaton s: dt Computng the varous terms: d dt T T T ml ml f ( t )sn ml ml f sn ml f cos ml f cos ml ml f sn ml f cos ml f cos mgl sn Q 6

27 or Ex 9 (text): [{ g f ( t)}sn ]/ l 0 x g μ=0 45 m m x μ=0 msldes on m; m sldes on the horzontal surface: 0. All surfaces n contact are smooth. 7

28 -m g x x absolute poston of m -m g x poston of m relatve to m Fnd: acceleraton of m usng Lagrange s equatons. There are two generalzed coordnates x, x n = degrees of freedom =. (no constrants on x, x ) 45 m m x 8

29 We proceed step by step and develop the varous quanttes, startng wth poston vectors: r x ; r x ( x x ) / v x ; v ( x x / ) x / T mx m{( x x / ) ( x / ) } ( m m ) x m{ x x x } We need to fnd generalzed forces Q, Q? 9

30 F m g ; r x ; F mg ; r ( x ) W F r m g x Q x Q x x x Q 0 ; Q mg / Then, the equatons of moton are: T m x : ( m m ) x x x 30

31 d T m ( ) ( m m ) x x dt x T 0 ; Q 0 x m ( m m) x x 0 T m x : m x x x d T m T ( ) m x x ; 0 dt x x Q mg 3

32 m x m m g x Solvng the two equatons for x x m g /( m m ) 3

33 Another form of Lagrange s equatons: Suppose that some forces actng on the system are conservatve,.e., the correspondng forces (as well as the generalzed forces) are dervable from a potental functon then F V Q( t, q, q ) Q( t, q, q ) q potental part nonconservatve part V ( q,..., q n ), 33

34 The equatons of moton for an n degree of freedom holonomc system take the form: d T T V ( ) Q, dt q q q Let L T V, Then =,,.,n the Lagrangan functon. d L L ( ) Q ( t, q, q ),,,..., n dt q q Ths s the standard form of Lagrange s equatons. 34

35 Explct form of the equatons of moton The dea here s to express all the quanttes n terms of the generalzed coordnates and ther tme-dervatves Now: N T m r r where d T T V ( ) Q,,,..., n dt q q q r r ( t, q, q,..., q ),,,..., n r n n r q q r t 35

36 r r r r T m ( q ) ( q ) or N n n k q k t qk t n n N k r r ( m ) q q q q k k r r r r n N N ( m ) q m q t t t n n n T m k ( q, t) q q k a ( q, t) q T0 ( q, t) k 36

37 T T T T 0 quadratc lnear n ndependent of n q q generalzed velocty q If the constrants are ndependent of tme, (that s, the system s schleronomc), r r r( q) 0 and t n n T T m ( q, t) q q k k k 37

38 n n n T m ( q, t) q q a ( q, t) q T0 ( q, t) T n Then m ( q, t) q a ( q, t) q d T n n ( ) m ( q, t) q m ( q, t) q a ( q, t) dt q Now n m m ( q, t) q l q a ( q, t) n a q l q l m a t t 38

39 T T T T q q q q T 0 m n n l qq l q l q T a n q q q T q 0 0 T q combnng all these expressons 39

40 n n n l l m ( q, t) q ( ) q q l l ql q q n n q T0 V Q ( t, q, q ),,,..., n q q Note that a q m a a a ( ) q t q q t a q m m m - lnear gyroscopc coeffcents 40

41 Ex 0: Dsk of radus l rotatng wth const.. A double pendulum attached at P (O ) on the dsk. Rods are massless, each partcle of mass m. Moton n horzontal plane. Ω O θ X l O q l y A m x l q Y B m 4

42 Fnd: T knetc energy; dentfy terms of dfferent type. XYZ fxed frame xyz movng frame attached to the dsk at O = P K k ; 0 va vo ( ) r vo roo k l (cos I sn J A k l l l(cosq sn q ) q, q ; T, T, T 0 4

43 ( ) ( sn cos ) r lq q q A k l(cos q sn q ) l(cos q sn q) v ( l q l )sn q [( l q l )cos q l] A v v ( ) B O B B r B l(cosq cos q ) l(sn q sn q ) ( ) l( sn q q sn q q ) B r l(cosq q cos q q ) 43

44 Now vb [ l(sn q sn q ) l(sn qq sn q q )] [ l( cos q cos q ) l(cos qq cos qq )] T m ( v A v A v B v B ) [ cos( ) ] ml q q q q q q [ ( cos ) ( cos ) ml q q q q ( q q )cos( q q )] [5 4cos cos cos( )] ml q q q q 44

45 Lagrange s equatons: T q ml q q q q : [ cos( )] q d dt T ml q q q [( cos ) cos( )] ( ) ml [q q cos( q q ) q q ( q q )sn( q q )] [ sn ( )sn( )] ml q q q q q q 45

46 T q ml qq q q ( )sn( ) [ sn ( )sn( )] ml q q q q q q [ sn sn sn( )] ml q q q q The equaton of moton s d T T ( ) Q ( q, q, t) dt q q 46

47 [ cos( ) ml q q q q q ( q q )sn( q q )] [ sn ( )sn( )] ml q q q q q q ml q q sn( q q ) ml [q sn q ( q q )sn( q q )] ml [ sn q sn q sn( q q )] Q( q, q, t) 47

48 Smplfyng ml [q q cos( q q ) q sn( q q )] ml q sn( q q ) [ sn sn( )] ml q q q Q There s a smlar equaton for q : 48

49 T q : ml [ q cos( q q ) q ] d dt q ml q q q [( cos ) cos( )] [ T ( ) ml [ q cos( q q ) q ( q q ) q sn( q q ) q ] ml [ q sn q ( q q )sn( q q )] 49

50 T q ml qq sn( q q ) ml q q q q q q [ sn ( )sn( )] [ sn sn( )] ml q q q The fnal equaton s d T T ( ) Q( q, q, t) dt q q 50

51 [ cos( ) ( )sn( ) ] ml q q q q q q q q q [ sn ( )sn( )] ml q q q q q q ml q q sn( q q ) ml [ q sn q ( q q )sn( q q )] ml q q q Q [sn sn( )] 5

52 Smplfyng ml [ q cos( q q ) q sn( q q ) q ] ml q sn( q q ) ml [sn q sn( q q )] Q ( q, q, t) In vector form cos( q q ) q ml cos( q q ) q 5

53 ml 0 sn( q q ) q sn( q q) 0 q m l 0 sn( q q ) q sn( q q ) 0 q ml sn q sn( q q ) Q sn q sn( q q ) Q 53

54 or, n compact notaton M q G q G q F( q) Q( q) Note: G G G G T T skew-symmetrc matrces 54

55 Readng Assgnment: Examples Imp: Note the dscusson n Ex. 6.6 on page 77 (begns at the bottom of p. 76) and page 78. Specally, note the redefned T and V (the fcttous knetc and potental energes). We wll see ths when we study lnearzaton and stablty n the last week of the course. 55

56 6.7 Lagrange Multplers: (nonholonomc systems or systems wth n n o Recall the equatons for dynamcs of an N partcle system N (F m r ) r 0 Subect to fnte constrants: f (r,r,...,r N,t) 0,,,...,d knematc constrants: N l ( r,..., r, t) r D 0,,,..., g N 56

57 Note that there are only d geometrc constrants let n n0 (3 N d) be the number of generalzed coordnates. Note: degrees of freedom of the system are n 3 N ( d g). In terms of generalzed coordnates and vrtual dsplacements n the generalzed coordnates, the constrants can be wrtten as n a ( t, q) q 0,,,...,( d g) 57

58 Note that f n n, 0 then the d geometrc constrants are automatcally satsfed and only g constrant expressons reman. We now assume that the constrants are workless n any vrtual dsplacements permtted by the constrants. Let C,,,..., n be the constrant forces correspondng to the generalzed coordnates q,,,..., n 58

59 Then, the vrtual work done by constrant forces n any vrtual dsplacement s W R r C q (ths mples that C N n N R r q 0 ) Now, f the vrtual dsplacements q are all ndependent, C 0,,,..., n. (Note: ths does not mean that are zero). R 59

60 In the present case, we have constrant relatons nvolvng q ' s and, hence, C 0,,,..., n even though n W C q 0. Summarzng: the D Alembert s prncple wrtten n terms of the generalzed coordnates s n d T T dt q q Q q 0 () 60

61 subected to the assocated constrant relatons: We need some way of makng ndependent. Let,,,...,( d g) be new parameters (equal n number to the constrant relatons) that wll be utlzed to accomplsh ths task (makng n a ( t, q) q 0,,,...,( d g) () qs ' ndependent) qs ' Lagrange multplers 6

62 The dea s to manpulate the constrants and the workless constrant forces n some way. The constrant equatons are n a ( t, q) q 0,,,...,( d g) Addng these d g n a ( t, q) q 0 (3) Addtonally, the vrtual work relaton as n W C q 0 6

63 Addng these two Note: at ths pont we have (d + g) unknown multplers unknowns ; n C, the generalzed constrant forces; and the vrtual dsplacements are not ndependent they satsfy (d + g) constrants. n d g C a q qs ' 0 (4) 63

64 The trck now s to choose 's such that become ndependent assume that 's have values such that d g C a,,,..., n (5) Add the constrant relatons (3) to () qs ' n d T T d g Q a q dt q q 0 (6) Snce qs ' are ndependent wth the related to C ' s by (5), ' s 64

65 d T T d g Q a,,,..., n (6) dt q q We thus have varables,. q n equatons n n ( d g) The addtonal (d + g) equatons are the constrant relatons n a ( t, q) q d 0,,,...,( d g) 65

66 Readng Assgnment: Ex: 6-8,

67 Ex. 6-9 Z Consder two wheels on a common axle of length l. Wheels are rollng on the horzontal plane wthout slppng, wheels reman normal to the ground. Wheel mass concentrated at the hubs. System defned by the postons ( x, y ) X m o G l ( x, y ) Y m ( x, y ) 67

68 z x o y G l m n : ( x, y) : ( x, y ) m vg n 0 68

69 vg x x y y n ( r r ) / r r vg n ( x x ) ( y y ) x x y y 0 {( ) ( ) } ( x x ) ( x x ) ( y y ) ( y y ) 0 69

70 Wheels roll wthout slppng G moves to the axle. Constrants: fnte ( x x ) ( y y ) l 0 () r knematc y y ( x x ) x x ( y y ) or y y y y x x x x 4 general coordnates, constrants n = degrees of freedom = 4 =. ( )( ) ( )( ) 0 () n0 N ( d) 4 3, n 4 70

71 We now use the generalzed coordnates (x, y, ): x x ( sn ) /, y y ( cos )/, x x ( sn ) /, y y ( cos )/ ths defnton allows the fnte constrant to be satsfed automatcally there are 3 generalzed coordnates, There s only constrant, d = 0, g =. n 3, x sn y cos 0 (3) ( another formofv G n 0) 7

72 Let q x, q y, q3. Then, the constrant can be wrtten n standard form as n 3 (3) a q d 0 constrant a sn, a cos, a3 0, d 0. The equatons of moton for the constraned system are: d T T d g Q a dt q q =,, 3. 7

73 T m x x y y etc. ( ) x x ( sn )/ x x cos / y y ( cos ) / y y sn / x x ( sn )/ x x cos / y y ( cos )/ y y sn / 73

74 The knetc energy (K.E. ) s T ( m)( x y ) m 4 K.E.of the C.M. K.E.of rotaton about the C.M. d q x : T / x mx ; ( T / x ) mx dt T / x 0 d T T d g Q a ; d g dt x x 74

75 Note that there s only one constrant there s only one Lagrange multpler., a sn, Q 0 (there s no external effectve force) mx sn (4) d q y : T / y my ; ( dt T / y ) my T / y 0, a cos my cos (5) 75

76 d T T q3 : Q3 a3 dt T / ml /; d ( T / ) ml / dt T/ 0, a 0 3 ml 0 (6) There are 3 equatons of moton + constrant equaton for the four varables x, y, and. Need ntal condtons to determne the moton. 76

77 example of a moton: Intal condtons: ( x, y ) 0 ( x, y ) ( v,0) ( 0 0, 0 ) 0 0 mass center at the orgn; - mass center gven a velocty n x-drecton; - gven angular velocty about the z-axs m O G v 0 m y ntal condtons x 77

78 (6) ml / 0 0, t (7) (4) mx sn, (5) my cos Now, note that y x a t tangent acceler cos sn m m /m s te h force along e t 78

79 Now x ( sn t)/ m, y ( cos t)/m Thus, the acceleraton n e n drecton s a xcos ysn n sn cos cos sn 0 m m Integratng v = constant v ( t 0) v n n 0 x v cos v cos t 0 0 y v sn v sn t 0 0 velocty components 79

80 Integratng agan, we get v0 x( t) sn t v (8) 0 y( t) cos t constant ( t) or v0 (9) y( t) ( cos t) v 0 / Then (4) sn t mx m( v0 or mv 0 sn (0) t) Note: turned out to be constant here. 80

81 Clearly wth t x v v ( y ) ( ) 0 0 () = Path of G s a crcle wth center at (x, y) (0, v / ) and radus v / 0 0 8

82 v 0 / path of G O y v 0 x 8

83 6.8 Conservaton Laws: The Lagrange s equatons for a holonomc system wth n degrees of freedom and n generalzed coordnates are: d T T V ( ) Q,,,..., n dt q q q These equatons can be put n frst-order form by defnng generalzed momenta: L T p,,,..., n q q 83

84 Then, the equatons can be wrtten as: d T V ( p) Q, dt q q L p,,,..., n q Suppose that there s a system for whch a generalzed coordnate, say q s, s absent from the Lagrangan L although ts tme dervatve does appear,.e., L T ( q,..., q, q,.., q q, q,... q ) s s n, n V ( q,..., qs, qs,.., qn) Further, suppose that the generalzed force Q s 84 0.

85 Then Lagrange s equatons gve for the generalzed coordnate q s : d L ( ps) 0 or ps constant dt q Ths says that the generalzed momentum assocated wth the coordnate q s s conserved remans constant throughout moton. q s s called an gnorable coordnate. The term gnorable refers to the fact that the degree of freedom correspondng to the coordnate q s can be gnored from the formulaton of the problem. s 85

86 Ex 9 (text): x g μ=0 45 m m x μ=0 msldes on m; m sldes on the horzontal surface: All surfaces n contact are smooth

87 -m g x x absolute poston of m -m g x poston of m relatve to m Fnd: Equatons of moton of the system, gnorable coordnates, and the conserved quanttes. There are two generalzed coordnates x, x n = degrees of freedom =. (no constrants on 87 x, x ) 45 m m x

88 We proceed as before and develop the varous quanttes, startng wth poston vectors: r x ; r x ( x x ) / v x ; v ( x x / ) x / T mx m{( x x / ) ( x / ) } ( m m ) x m{ x x x } We need to fnd generalzed forces Q, Q? 88

89 F m g ; r x ; F mg ; r ( x ) W F r m g x Q x Q x x x Q 0 ; Q mg / Then, the equatons of moton are: T m x : ( m m ) x x x 89

90 Note that T does not depend on x. In addton, Q 0. So, x s an 'gnorable' coordnate, and the corrospondng generalzed momentum p x s conserved. T m ( ) ( m m) x x cons tant p x x T m x : m x x x d T m T ( ) m x x ; 0 dt x x mg Q m x x m m g 90

91 Lagrangan ndependent of tme: Suppose that L does not depend explctly on tme. Then, L t 0 Now, the Lagrangan s L=T-V, and t depends both on generalzed coordnates and generalzed veloctes. The total dervatve of Lagrangan s: n n dl L L q k dt k qk k q k Now, Lagrange's equatons gve d L L ( ) 0 ( for the case of Qk ' s 0) dt q q k k q k 9

92 So, we can wrte n n n dl d L L d L ( ) q q ( q ) dt dt q q dt q k k k k k k k k k n n d L dl d L or ( q ) 0 ( q k L) 0 dt q dt dt q k k k k Ths shows that the quantty remans constant durng moton,.e., n L ( q k L ) h Jacob ' s Integral q k k k n L ( q k L ) q k k We can further manpulate ths as follows. 9

93 Consder the expresson for a Lagrangan: n n n L T T T0 V q q q V rs r s s s r s s Snce the Lagrangan s ndependent of tme, the coeffcents,, and depend on generalzed rs coordnates only, and thus s n L h ( qk L) T T ( T T T0 V ) T T0 V q k k When the knetc energy s a homogeneous quadratc functon of the generalzed veloctes, 93

94 we have and thus n n T T q q r s rs r s n L h ( q k L) T ( T V ) T V q k k E ( total energy) In other words, n a natural system for whch the Lagrangan does not depend explctly on tme, the total energy of the system E s conserved. 94

95 Example: Sphercal pendulum Consder the sphercal pendulum. The knetc and potental energes are: The Lagrangan s [( ) ( sn ) ] T m L L V mgl( cos ) x O [( ) ( sn ) ] ( cos ) L m L L mgl z L y mg 95

### CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

### Physics 5153 Classical Mechanics. Principle of Virtual Work-1

P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

### Classical Mechanics Virtual Work & d Alembert s Principle

Classcal Mechancs Vrtual Work & d Alembert s Prncple Dpan Kumar Ghosh UM-DAE Centre for Excellence n Basc Scences Kalna, Mumba 400098 August 15, 2016 1 Constrants Moton of a system of partcles s often

### Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

Lagrange Multplers Monday, 5 September 013 Sometmes t s convenent to use redundant coordnates, and to effect the varaton of the acton consstent wth the constrants va the method of Lagrange undetermned

### Physics 106a, Caltech 11 October, Lecture 4: Constraints, Virtual Work, etc. Constraints

Physcs 106a, Caltech 11 October, 2018 Lecture 4: Constrants, Vrtual Work, etc. Many, f not all, dynamcal problems we want to solve are constraned: not all of the possble 3 coordnates for M partcles (or

### PHYS 705: Classical Mechanics. Calculus of Variations II

1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

### Mechanics Physics 151

Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

### Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

### Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

### 11. Dynamics in Rotating Frames of Reference

Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

### Physics 181. Particle Systems

Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

### Poisson brackets and canonical transformations

rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

### Lecture 20: Noether s Theorem

Lecture 20: Noether s Theorem In our revew of Newtonan Mechancs, we were remnded that some quanttes (energy, lnear momentum, and angular momentum) are conserved That s, they are constant f no external

### Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

### Canonical transformations

Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

### PHYS 705: Classical Mechanics. Newtonian Mechanics

1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

### Notes on Analytical Dynamics

Notes on Analytcal Dynamcs Jan Peters & Mchael Mstry October 7, 004 Newtonan Mechancs Basc Asssumptons and Newtons Laws Lonely pontmasses wth postve mass Newtons st: Constant velocty v n an nertal frame

### CHAPTER 10 ROTATIONAL MOTION

CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

### NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 48/58 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 48/58 7. Robot Dynamcs 7.5 The Equatons of Moton Gven that we wsh to fnd the path q(t (n jont space) whch mnmzes the energy

### Chapter 11 Angular Momentum

Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle

### Rigid body simulation

Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum

### Lesson 5: Kinematics and Dynamics of Particles

Lesson 5: Knematcs and Dynamcs of Partcles hs set of notes descrbes the basc methodology for formulatng the knematc and knetc equatons for multbody dynamcs. In order to concentrate on the methodology and

### Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta

### CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

### Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

### τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor

### 12. The Hamilton-Jacobi Equation Michael Fowler

1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

### Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

### PHYSICS 231 Review problems for midterm 2

PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October

### So far: simple (planar) geometries

Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

### 10/9/2003 PHY Lecture 11 1

Announcements 1. Physc Colloquum today --The Physcs and Analyss of Non-nvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular

### Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

### Linear Momentum. Center of Mass.

Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

### 10/23/2003 PHY Lecture 14R 1

Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

### Quantum Mechanics I Problem set No.1

Quantum Mechancs I Problem set No.1 Septembe0, 2017 1 The Least Acton Prncple The acton reads S = d t L(q, q) (1) accordng to the least (extremal) acton prncple, the varaton of acton s zero 0 = δs = t

### ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound

### Three views of mechanics

Three vews of mechancs John Hubbard, n L. Gross s course February 1, 211 1 Introducton A mechancal system s manfold wth a Remannan metrc K : T M R called knetc energy and a functon V : M R called potental

### Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

### Physics 207: Lecture 27. Announcements

Physcs 07: ecture 7 Announcements ake-up labs are ths week Fnal hwk assgned ths week, fnal quz next week Revew sesson on Thursday ay 9, :30 4:00pm, Here Today s Agenda Statcs recap Beam & Strngs» What

### Physics 207 Lecture 13. Lecture 13

Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem

### Rotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa

Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.

### Classical Mechanics ( Particles and Biparticles )

Classcal Mechancs ( Partcles and Bpartcles ) Alejandro A. Torassa Creatve Commons Attrbuton 3.0 Lcense (0) Buenos Ares, Argentna atorassa@gmal.com Abstract Ths paper consders the exstence of bpartcles

### Kinematics of Fluids. Lecture 16. (Refer the text book CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlines) 17/02/2017

17/0/017 Lecture 16 (Refer the text boo CONTINUUM MECHANICS by GEORGE E. MASE, Schaum s Outlnes) Knematcs of Fluds Last class, we started dscussng about the nematcs of fluds. Recall the Lagrangan and Euleran

### PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation

1 PHYS 705: Classcal Mechancs Hamlton-Jacob Equaton Hamlton-Jacob Equaton There s also a very elegant relaton between the Hamltonan Formulaton of Mechancs and Quantum Mechancs. To do that, we need to derve

### Dynamics of Rotational Motion

Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =

### Study Guide For Exam Two

Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

### A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

### The Feynman path integral

The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

### 2D Motion of Rigid Bodies: Falling Stick Example, Work-Energy Principle

Example: Fallng Stck 1.003J/1.053J Dynamcs and Control I, Sprng 007 Professor Thomas Peacock 3/1/007 ecture 10 D Moton of Rgd Bodes: Fallng Stck Example, Work-Energy Prncple Example: Fallng Stck Fgure

### Chapter 20 Rigid Body: Translation and Rotational Motion Kinematics for Fixed Axis Rotation

Chapter 20 Rgd Body: Translaton and Rotatonal Moton Knematcs for Fxed Axs Rotaton 20.1 Introducton... 1 20.2 Constraned Moton: Translaton and Rotaton... 1 20.2.1 Rollng wthout slppng... 5 Example 20.1

### Modeling of Dynamic Systems

Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how

### Physics 111: Mechanics Lecture 11

Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

### Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

### Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

### Army Ants Tunneling for Classical Simulations

Electronc Supplementary Materal (ESI) for Chemcal Scence. Ths journal s The Royal Socety of Chemstry 2014 electronc supplementary nformaton (ESI) for Chemcal Scence Army Ants Tunnelng for Classcal Smulatons

### First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

### Chapter 8. Potential Energy and Conservation of Energy

Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

### Please initial the statement below to show that you have read it

EN40: Dynamcs and Vbratons Mdterm Examnaton Thursday March 5 009 Dvson of Engneerng rown Unversty NME: Isaac Newton General Instructons No collaboraton of any knd s permtted on ths examnaton. You may brng

### Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

### Spin-rotation coupling of the angularly accelerated rigid body

Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

### Spring 2002 Lecture #13

44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

### Conservation of Angular Momentum = "Spin"

Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts

### Angular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004

Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a

### ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

### Integrals and Invariants of Euler-Lagrange Equations

Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

### χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

### Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

### Iterative General Dynamic Model for Serial-Link Manipulators

EEL6667: Knematcs, Dynamcs and Control of Robot Manpulators 1. Introducton Iteratve General Dynamc Model for Seral-Lnk Manpulators In ths set of notes, we are gong to develop a method for computng a general

### MEV442 Introduction to Robotics Module 2. Dr. Santhakumar Mohan Assistant Professor Mechanical Engineering National Institute of Technology Calicut

MEV442 Introducton to Robotcs Module 2 Dr. Santhakumar Mohan Assstant Professor Mechancal Engneerng Natonal Insttute of Technology Calcut Jacobans: Veloctes and statc forces Introducton Notaton for tme-varyng

### 1 What is a conservation law?

MATHEMATICS 7302 (Analytcal Dynamcs) YEAR 2016 2017, TERM 2 HANDOUT #6: MOMENTUM, ANGULAR MOMENTUM, AND ENERGY; CONSERVATION LAWS In ths handout we wll develop the concepts of momentum, angular momentum,

### Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

### EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.

### Spring Force and Power

Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

### Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg

PHY 454 - celestal-mechancs - J. Hedberg - 207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The

### PHYS 705: Classical Mechanics. Canonical Transformation II

1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

### Mathematical Preparations

1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

### LAGRANGIAN MECHANICS

LAGRANGIAN MECHANICS Generalzed Coordnates State of system of N partcles (Newtonan vew): PE, KE, Momentum, L calculated from m, r, ṙ Subscrpt covers: 1) partcles N 2) dmensons 2, 3, etc. PE U r = U x 1,

### PHYS 1441 Section 002 Lecture #16

PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

### 10. Canonical Transformations Michael Fowler

10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst

### The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

### CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

### The classical spin-rotation coupling

LOUAI H. ELZEIN 2018 All Rghts Reserved The classcal spn-rotaton couplng Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 louaelzen@gmal.com Abstract Ths paper s prepared to show that a rgd

### Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 7, 2014 Max Score 45 Points + 8 Extra Credit

EN40: Dynamcs and Vbratons School of Engneerng Brown Unversty Homework : Knematcs and Dynamcs of Partcles Due Frday Feb 7, 014 Max Score 45 Ponts + 8 Extra Credt 1. An expermental mcro-robot (see a descrpton

### Physics 207 Lecture 6

Physcs 207 Lecture 6 Agenda: Physcs 207, Lecture 6, Sept. 25 Chapter 4 Frames of reference Chapter 5 ewton s Law Mass Inerta s (contact and non-contact) Frcton (a external force that opposes moton) Free

### In this section is given an overview of the common elasticity models.

Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

### Chapter 11: Angular Momentum

Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

### Classical Field Theory

Classcal Feld Theory Before we embark on quantzng an nteractng theory, we wll take a dverson nto classcal feld theory and classcal perturbaton theory and see how far we can get. The reader s expected to

### PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays

### Lagrangian Field Theory

Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

### Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Chapter Eght Energy Method 8. Introducton 8. Stran energy expressons 8.3 Prncpal of statonary potental energy; several degrees of freedom ------ Castglano s frst theorem ---- Examples 8.4 Prncpal of statonary

### Conservation of Energy

Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,

### Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

### 4. Laws of Dynamics: Hamilton s Principle and Noether's Theorem

4. Laws of Dynamcs: Hamlton s Prncple and Noether's Theorem Mchael Fowler Introducton: Galleo and Newton In the dscusson of calculus of varatons, we antcpated some basc dynamcs, usng the potental energy

### NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 4. Moton Knematcs 4.2 Angular Velocty Knematcs Summary From the last lecture we concluded that: If the jonts

### A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

### Physics 231. Topic 8: Rotational Motion. Alex Brown October MSU Physics 231 Fall

Physcs 231 Topc 8: Rotatonal Moton Alex Brown October 21-26 2015 MSU Physcs 231 Fall 2015 1 MSU Physcs 231 Fall 2015 2 MSU Physcs 231 Fall 2015 3 Key Concepts: Rotatonal Moton Rotatonal Kneatcs Equatons

### THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

### Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes