ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15


 Britney Cobb
 4 years ago
 Views:
Transcription
1 NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound at the other end on a drum of varyng radus. The drum rad at the two ends are r 1 and r as shown. The end of vew of the drum s shown n the nset, whch shows the gears that rotate the drum. The radus of the drver gear A s r A and that of the drven gear B s r B. Gear B and the concal drum are attached rgdly to the same shaft. The gear rad are as shown and the axal length of the drum s L = 10R. Intally, the cable s completely unwound,.e., the cable s n contact wth the drum at radus r 1. Startng from rest, the drver gear rotates n counter clockwse drecton at a constant angular acceleraton of = 1 rad/s durng tme T = 40 s, followed by a constant deceleraton to rest. Cable dameter = d r r 1 r drum r A = R r B = 4R r =6R r 1 =4R R = 10 cm d=1 cm m
2 () erve expressons for the angular speed of gear B B as a functon of tme t for 0 t T and T t T and plot B as a functon of tme for 0 t T. Show the maxmum value of B on the plot. What s the drecton of rotaton of the drum? () erve expressons for the angle of rotaton of the drum () as a functon of tme t for 0 t T and T t T. Plot as a functon of tme t for 0 t T. What are the values of at t = T and t = T? () Note that the pont where the cable separates from the drum (let s call ths pont the cable contact pont ) advances by a dstance d along the drum surface for each complete revoluton of the drum. erve a relaton between the radus of the drum at the cable contact pont (r) as a functon of the rotaton angle. (v) erve expressons for the speed of the mass as a functon of tme t for 0 t T and T t T. (v) What s the total dstance traveled by the mass m?. The fgure shows a crankrocker mechansm. It conssts of three rgd members AB, BC and C connected by pn onts. Pns at A and are attached to the ground and reman fxed. AB s the crank and C s the rocker. As the crank AB rotates wth a constant angular velocty ω, the pont C rocks back and forth along an arc. The lnk AB rotates at a constant angular velocty of ω = 10 k rad/s. The lnk C s vertcal at the nstant shown. () Calculate the velocty vector of pont B at the nstant shown n the fgure, expressng your answer as components n the {, } coordnate system shown. () etermne the angular veloctes of members BC and C, and the velocty vector of pont C. () What are the angular acceleratons of BC and C? 0.4m C 0.1m B 0.08m A 0.06m
3 3. Trflar pendulum analyss A trflar pendulum s used to measure the mass moment of nerta of an obect. It conssts of a flat platform whch s suspended by three cables. An obect wth unknown mass moment of nerta s placed on the platform, as shown n the fgure. The devce s then set n moton by rotatng the platform about a vertcal axs through ts center, and releasng t. The pendulum then oscllates as shown n the anmaton posted on the man N40 homework page. The perod of oscllaton depends on the combned mass moment of nerta of the platform and test obect: f the moment of nerta s large, the perod s long (slow vbratons); f the moment of nerta s small, the perod s short. Consequently, the moment of nerta of the system can be determned by measurng the perod of oscllaton. The goal of ths problem s to determne the relatonshp between the moment of nerta and the perod. As n all free vbraton problems, the approach wll be to derve an equaton of moton for the system, and arrange t nto the form d x 0 n x dt Snce we are solvng a rgd body problem, ths equaton wll be derved usng Newton s law F ma COM, and the momentangular acceleraton relaton Mk IZk. Here, a COM s the acceleraton of the center of mass; Mk s the net moment about the center of mass (COM); I Z s the moment of nerta about the zaxs; k s the angular acceleraton of the platform. Note that, by symmetry, the center of mass s the center of the platform. You are already famlar wth the frst of these equatons (F = ma) for a partcle. The second equaton s ust an analog for rotatons, that relates the net moment wth the angular acceleraton. It wll be derved n the class soon (may be on Tuesday, 4/13). But, untl then, have fath n your nstructors and ust accept t. Before startng ths problem, watch the anmaton posted on the N40 homework page closely. When you are feelng sleepy, emal your Swss bank account number to Professor Guduru. Then, notce that () () The table s rotatng about ts center, wthout lateral moton If you look closely at the platform, you wll see that t moves up and down by a very small dstance. The platform s at ts lowest poston when the cables are vertcal.
4 F L k B 10 0 C B A C F R A 10 0 (a) The fgure above shows the system n ts statc equlbrum poston. The three cables are vertcal, and all have length L. The platform has radus R. Take the orgn at the center of the dsk n the statc equlbrum confguraton, and let {,,k} be a Cartesan bass as shown n the pcture. Wrte down the poston vectors r, r, rf of the three attachment ponts n terms of R and L. F L z b c k a b F c a (b) Now, suppose that the platform rotates about ts center through some angle, and also rses by a dstance z, as shown n the fgure. Wrte down the poston vectors ra, rb, rc of the three ponts where the cable s ted to the platform, n terms of R, z and. (c) Assume that the cables do not stretch. Use the results of () and () to calculate the dstance between a and, and show that z and are related by the equaton:
5 R (1 cos ) z( z L) 0 / Hence, show that f the rotaton angle s small, then z R L. (Hnt use Taylor seres). Snce z s proportonal to the square of, vertcal moton of the platform can be neglected f s small. (d) Wrte down formulas for unt vectors parallel to each of the deflected cables, n terms of L, ra, rb, r c and r, r, r F. (It s not necessary to express the results n {,,k} components). (e) raw a free body dagram showng the forces actng on the platform and test obect together. (f) Assume that the tenson has the same magntude T n each cable. Hence, use (e) and (d) and Newton s law of moton to show that (remember that the center of mass, COM, s at the center of the platform) d z r r rf ra rb rc x y ( ) ( ) m a a k T mgk dt L (g) Note that ( r r r ) / 3 s the average poston of the three ponts where the cables connect to a b c the platform. By nspecton, ths pont must be at the center of the platform. Usng a smlar approach to determne a value for ( r r r ) / 3, show that F d z m ax ay k 3 T (1 z / L) mg k dt (h) For small, we can assume z 0, d z / dt 0. Hence, fnd a formula for the cable tenson T. () Fnally, consder rotatonal moton of the system. Use the rotatonal equaton of moton to show that (agan, remember that the center of mass, COM, s at the center of the platform)
6 d ( ra zk) ( r ra ) ( rb zk) ( r rb ) ( rc zk) ( rf rc ) I k T T T dt L L L ther by usng MAPL to evaluate the cross products, (or f you are maplephobc try to fnd a clever way to evaluate the cross products by nspecton you mght lke to do ths as a challenge even f you love MAPL. Then agan, you may prefer to have your wsdom teeth pulled.), show that d 3R T I sn 0 (1) dt L () Hence, fnd a formula for the frequency of smallampltude vbraton of the system, n terms of m, g, R, L and I. (k) Wrte a MATLAB scrpt that wll solve equaton (1) (do not lnearze the equaton), wth ntal condtons d / dt 0 0 t 0. Use your code to compute the perod of vbraton for 0 / 4 and plot the results on a graph. What s the maxmum allowable ampltude of vbraton 0 f the approxmate formula derved n part () must predct the perod to wthn 5% error? How about 1%?
EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics
N40: ynamcs and Vbratons Homewor 7: Rgd Body Knematcs School of ngneerng Brown Unversty 1. In the fgure below, bar AB rotates counterclocwse at 4 rad/s. What are the angular veloctes of bars BC and C?.
More informationSCHOOL OF COMPUTING, ENGINEERING AND MATHEMATICS SEMESTER 2 EXAMINATIONS 2011/2012 DYNAMICS ME247 DR. N.D.D. MICHÉ
s SCHOOL OF COMPUTING, ENGINEERING ND MTHEMTICS SEMESTER EXMINTIONS 011/01 DYNMICS ME47 DR. N.D.D. MICHÉ Tme allowed: THREE hours nswer: ny FOUR from SIX questons Each queston carres 5 marks Ths s a CLOSEDBOOK
More informationChapter 11 Angular Momentum
Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle
More informationPlease initial the statement below to show that you have read it
EN40: Dynamcs and Vbratons Mdterm Examnaton Thursday March 5 009 Dvson of Engneerng rown Unversty NME: Isaac Newton General Instructons No collaboraton of any knd s permtted on ths examnaton. You may brng
More informationWeek3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity
Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1s tme nterval. The velocty of the partcle
More informationPart C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis
Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta
More informationPhysics 111: Mechanics Lecture 11
Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 RgdBody Rotaton
More informationImportant Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!
Important Dates: Post Test: Dec. 8 0 durng rectatons. If you have taken the post test, don t come to rectaton! Post Test MakeUp Sessons n ARC 03: Sat Dec. 6, 0 AM noon, and Sun Dec. 7, 8 PM 0 PM. Post
More informationSpring 2002 Lecture #13
4450 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallelas Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the mdterm
More informationEN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st
EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to
More informationMoments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.
Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these
More informationWeek 9 Chapter 10 Section 15
Week 9 Chapter 10 Secton 15 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,
More informationDynamics of Rotational Motion
Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =
More informationPhysics 207: Lecture 27. Announcements
Physcs 07: ecture 7 Announcements akeup labs are ths week Fnal hwk assgned ths week, fnal quz next week Revew sesson on Thursday ay 9, :30 4:00pm, Here Today s Agenda Statcs recap Beam & Strngs» What
More informationSo far: simple (planar) geometries
Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector
More informationHomework 2: Kinematics and Dynamics of Particles Due Friday Feb 7, 2014 Max Score 45 Points + 8 Extra Credit
EN40: Dynamcs and Vbratons School of Engneerng Brown Unversty Homework : Knematcs and Dynamcs of Partcles Due Frday Feb 7, 014 Max Score 45 Ponts + 8 Extra Credt 1. An expermental mcrorobot (see a descrpton
More informationCHAPTER 10 ROTATIONAL MOTION
CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n xy plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The
More informationStudy Guide For Exam Two
Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 0106 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force
More informationWeek 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product
The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the
More informationRotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa
Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.
More information11. Dynamics in Rotating Frames of Reference
Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons
More informationModeling of Dynamic Systems
Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how
More informationCHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)
CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: mgk F 1 x O
More informationMEASUREMENT OF MOMENT OF INERTIA
1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us
More informationFirst Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.
Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act
More information10/23/2003 PHY Lecture 14R 1
Announcements. Remember  Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 94 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth
More informationFour Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point.
Four bar lnkages 1 Four Bar Lnkages n Two Dmensons lnk has fed length and s oned to other lnks and also possbly to a fed pont. The relatve velocty of end B wth regard to s gven by V B = ω r y v B B = +y
More informationConservation of Angular Momentum = "Spin"
Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts
More informationGravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)
Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng
More informationSpinrotation coupling of the angularly accelerated rigid body
Spnrotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 Emal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s
More informationPhysics 5153 Classical Mechanics. Principle of Virtual Work1
P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
ME 270 Summer 2014 Fnal Exam NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS
More informationChapter 3. r r. Position, Velocity, and Acceleration Revisited
Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector
More informationcoordinates. Then, the position vectors are described by
Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,
More informationChapter 11 Torque and Angular Momentum
Chapter Torque and Angular Momentum I. Torque II. Angular momentum  Defnton III. Newton s second law n angular form IV. Angular momentum  System of partcles  Rgd body  Conservaton I. Torque  Vector
More informationˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)
7.. = = 3 = 4 = 5. The electrc feld s constant everywhere between the plates. Ths s ndcated by the electrc feld vectors, whch are all the same length and n the same drecton. 7.5. Model: The dstances to
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS Begn each problem n the space
More informationPhysics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.
Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays
More informationPhysics 111 Final Exam, Fall 2013, Version A
Physcs 111 Fnal Exam, Fall 013, Verson A Name (Prnt): 4 Dgt ID: Secton: Honors Code Pledge: For ethcal and farness reasons all students are pledged to comply wth the provsons of the NJIT Academc Honor
More informationPhysics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1
Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. MultPartcle
More informationChapter 20 Rigid Body: Translation and Rotational Motion Kinematics for Fixed Axis Rotation
Chapter 20 Rgd Body: Translaton and Rotatonal Moton Knematcs for Fxed Axs Rotaton 20.1 Introducton... 1 20.2 Constraned Moton: Translaton and Rotaton... 1 20.2.1 Rollng wthout slppng... 5 Example 20.1
More informationAngular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004
Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a
More informationGAUTENG DEPARTMENT OF EDUCATION SENIOR SECONDARY INTERVENTION PROGRAMME PHYSICAL SCIENCES GRADE 12 SESSION 1 (LEARNER NOTES)
PHYSICAL SCIENCES GRADE 1 SESSION 1 (LEARNER NOTES) TOPIC 1: MECHANICS PROJECTILE MOTION Learner Note: Always draw a dagram of the stuaton and enter all the numercal alues onto your dagram. Remember to
More informationPhysics 207: Lecture 20. Today s Agenda Homework for Monday
Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems
More informationτ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1
A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor
More informationIterative General Dynamic Model for SerialLink Manipulators
EEL6667: Knematcs, Dynamcs and Control of Robot Manpulators 1. Introducton Iteratve General Dynamc Model for SeralLnk Manpulators In ths set of notes, we are gong to develop a method for computng a general
More informationPhysics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian1
P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the
More informationMEV442 Introduction to Robotics Module 2. Dr. Santhakumar Mohan Assistant Professor Mechanical Engineering National Institute of Technology Calicut
MEV442 Introducton to Robotcs Module 2 Dr. Santhakumar Mohan Assstant Professor Mechancal Engneerng Natonal Insttute of Technology Calcut Jacobans: Veloctes and statc forces Introducton Notaton for tmevaryng
More informationPhysics 207 Lecture 13. Lecture 13
Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem
More informationChapter 10 Rotational motion
Prof. Dr. I. Nasser Chapter0_I November 6, 07 Important Terms Chapter 0 Rotatonal moton Angular Dsplacement s, r n radans where s s the length of arc and r s the radus. Angular Velocty The rate at whch
More informationPhysics 1202: Lecture 11 Today s Agenda
Physcs 122: Lecture 11 Today s Agenda Announcements: Team problems start ths Thursday Team 1: Hend Ouda, Mke Glnsk, Stephane Auger Team 2: Analese Bruder, Krsten Dean, Alson Smth Offce hours: Monday 2:33:3
More informationChapter 11: Angular Momentum
Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For
More informationClassical Mechanics Virtual Work & d Alembert s Principle
Classcal Mechancs Vrtual Work & d Alembert s Prncple Dpan Kumar Ghosh UMDAE Centre for Excellence n Basc Scences Kalna, Mumba 400098 August 15, 2016 1 Constrants Moton of a system of partcles s often
More informationLinear Momentum. Center of Mass.
Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html
More informationSection 8.3 Polar Form of Complex Numbers
80 Chapter 8 Secton 8 Polar Form of Complex Numbers From prevous classes, you may have encountered magnary numbers the square roots of negatve numbers and, more generally, complex numbers whch are the
More information10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 913, 1516
0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 93, 56. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03  Lecture 7 0/4/03
More informationPhysics 207 Lecture 6
Physcs 207 Lecture 6 Agenda: Physcs 207, Lecture 6, Sept. 25 Chapter 4 Frames of reference Chapter 5 ewton s Law Mass Inerta s (contact and noncontact) Frcton (a external force that opposes moton) Free
More informationRigid body simulation
Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum
More informationwhere v means the change in velocity, and t is the
1 PHYS:100 LECTURE 4 MECHANICS (3) Ths lecture covers the eneral case of moton wth constant acceleraton and free fall (whch s one of the more mportant examples of moton wth constant acceleraton) n a more
More information= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]
Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:
More informationChapter 8. Potential Energy and Conservation of Energy
Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and nonconservatve forces Mechancal Energy Conservaton of Mechancal
More informationELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM
ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look
More informationA Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph
A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular
More informationPHYS 1441 Section 001 Lecture #15 Wednesday, July 8, 2015
PHYS 1441 Secton 001 Lecture #15 Wednesday, July 8, 2015 Concept of the Center of Mass Center of Mass & Center of Gravty Fundamentals of the Rotatonal Moton Rotatonal Knematcs Equatons of Rotatonal Knematcs
More information10/9/2003 PHY Lecture 11 1
Announcements 1. Physc Colloquum today The Physcs and Analyss of Nonnvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular
More informationThe classical spinrotation coupling
LOUAI H. ELZEIN 2018 All Rghts Reserved The classcal spnrotaton couplng Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 louaelzen@gmal.com Abstract Ths paper s prepared to show that a rgd
More informationMEEM 3700 Mechanical Vibrations
MEEM 700 Mechancal Vbratons Mohan D. Rao Chuck Van Karsen Mechancal EngneerngEngneerng Mechancs Mchgan echnologcal Unversty Copyrght 00 Lecture & MEEM 700 Multple Degree of Freedom Systems (ext: S.S.
More informationCelestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestialmechanics  J. Hedberg
PHY 454  celestalmechancs  J. Hedberg  207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The
More informationPHYSICS 231 Review problems for midterm 2
PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October
More information5.76 Lecture #21 2/28/94 Page 1. Lecture #21: Rotation of Polyatomic Molecules I
5.76 Lecture # /8/94 Page Lecture #: Rotaton of Polatomc Molecules I A datomc molecule s ver lmted n how t can rotate and vbrate. * R s to nternuclear as * onl one knd of vbraton A polatomc molecule can
More informationPHYS 1443 Section 003 Lecture #17
PHYS 144 Secton 00 ecture #17 Wednesda, Oct. 9, 00 1. Rollng oton of a Rgd od. Torque. oment of Inerta 4. Rotatonal Knetc Energ 5. Torque and Vector Products Remember the nd term eam (ch 6 11), onda, Nov.!
More informationtotal If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions.
Lesson 0: Collsons, Rotatonal netc Energy, Torque, Center o Graty (Sectons 7.8 Last te we used ewton s second law to deelop the pulseoentu theore. In words, the theore states that the change n lnear oentu
More informationLAGRANGIAN MECHANICS
LAGRANGIAN MECHANICS Generalzed Coordnates State of system of N partcles (Newtonan vew): PE, KE, Momentum, L calculated from m, r, ṙ Subscrpt covers: 1) partcles N 2) dmensons 2, 3, etc. PE U r = U x 1,
More informationDO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.
EE 539 Homeworks Sprng 08 Updated: Tuesday, Aprl 7, 08 DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. For full credt, show all work. Some problems requre hand calculatons.
More informationProblem Points Score Total 100
Physcs 450 Solutons of Sample Exam I Problem Ponts Score 1 8 15 3 17 4 0 5 0 Total 100 All wor must be shown n order to receve full credt. Wor must be legble and comprehensble wth answers clearly ndcated.
More informationNEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).
EWTO S LAWS Consder two partcles. 1 1. If 1 0 then 0 wth p 1 m1v. 1 1 2. 1.. 3. 11 These laws only apply when vewed from an nertal coordnate system (unaccelerated system). consder a collecton of partcles
More informationχ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body
Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown
More informationDynamics 4600:203 Homework 08 Due: March 28, Solution: We identify the displacements of the blocks A and B with the coordinates x and y,
Dynamcs 46:23 Homework 8 Due: March 28, 28 Name: Please denote your answers clearly,.e., box n, star, etc., and wrte neatly. There are no ponts for small, messy, unreadable work... please use lots of paper.
More informationTHE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions
THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George
More informationRotational and Translational Comparison. Conservation of Angular Momentum. Angular Momentum for a System of Particles
Conservaton o Angular Momentum 8.0 WD Rotatonal and Translatonal Comparson Quantty Momentum Ang Momentum Force Torque Knetc Energy Work Power Rotaton L cm = I cm ω = dl / cm cm K = (/ ) rot P rot θ W =
More informationr B r A EN40: Dynamics and Vibrations Homework 7: Rigid Body Kinematics, Inertial properties of rigid bodies Due Friday April 20, 2018
EN40: Dynamcs and Vbratons Homewor 7: Rgd Body Knematcs, Inertal propertes of rgd bodes Due Frday Aprl 20, 2018 School of Engneerng Brown Unversty 1. The rgd body shown n the fgure s at rest at tme t=0,
More informationName (print neatly): Section #: First, write your name on this sheet and on the Scantron Card. The Physics faculty would like to help you do well:
Name (prnt neatly): Secton #: Physcs 111 Exam Frst, wrte your name on ths sheet and on the Scantron Card. The Physcs faculty would lke to help you do well: 1. Budget your tme: 80 mnutes/0 questons=4 mn
More informationPHYS 705: Classical Mechanics. Newtonian Mechanics
1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]
More informationPY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg
PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays
More informationPHYSICS 203NYA05 MECHANICS
PHYSICS 03NYA05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN  ST. LAWRENCE 790 NÉRÉETREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
ME 270 Sprng 2017 Exam 1 NAME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: Instructor s Name
More informationTHE CURRENT BALANCE Physics 258/259
DSH 1988, 005 THE CURRENT BALANCE Physcs 58/59 The tme average force between two parallel conductors carryng an alternatng current s measured by balancng ths force aganst the gravtatonal force on a set
More informationPHY2049 Exam 2 solutions Fall 2016 Solution:
PHY2049 Exam 2 solutons Fall 2016 General strategy: Fnd two resstors, one par at a tme, that are connected ether n SERIES or n PARALLEL; replace these two resstors wth one of an equvalent resstance. Now
More informationAngular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )
Angular momentum Instructor: Dr. Ho Lam TAM ( 譚海嵐 ) Physcs Enhancement Programme or Gted Students The Hong Kong Academy or Gted Educaton and Department o Physcs, HKBU Department o Physcs Hong Kong Baptst
More informationSUMMARY Phys 2113 (General Physics I) Compiled by Prof. Erickson. v = r t. v = lim t 0. p = mv. a = v. a = lim
SUMMARY Phys 2113 (General Physcs I) Compled by Prof. Erckson Poston Vector (m): r = xˆx + yŷ + zẑ Average Velocty (m/s): v = r Instantaneous Velocty (m/s): v = lm 0 r = ṙ Lnear Momentum (kg m/s): p =
More informationHow Differential Equations Arise. Newton s Second Law of Motion
page 1 CHAPTER 1 FrstOrder Dfferental Equatons Among all of the mathematcal dscplnes the theory of dfferental equatons s the most mportant. It furnshes the explanaton of all those elementary manfestatons
More informationPhysics 106a, Caltech 11 October, Lecture 4: Constraints, Virtual Work, etc. Constraints
Physcs 106a, Caltech 11 October, 2018 Lecture 4: Constrants, Vrtual Work, etc. Many, f not all, dynamcal problems we want to solve are constraned: not all of the possble 3 coordnates for M partcles (or
More informationPlease review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.
ME 270 Sprng 2014 Fnal Exam NME (Last, Frst): Please revew the followng statement: I certfy that I have not gven unauthorzed ad nor have I receved ad n the completon of ths exam. Sgnature: INSTRUCTIONS
More information( ) = ( ) + ( 0) ) ( )
EETOMAGNETI OMPATIBIITY HANDBOOK 1 hapter 9: Transent Behavor n the Tme Doman 9.1 Desgn a crcut usng reasonable values for the components that s capable of provdng a tme delay of 100 ms to a dgtal sgnal.
More informationClassical Mechanics ( Particles and Biparticles )
Classcal Mechancs ( Partcles and Bpartcles ) Alejandro A. Torassa Creatve Commons Attrbuton 3.0 Lcense (0) Buenos Ares, Argentna atorassa@gmal.com Abstract Ths paper consders the exstence of bpartcles
More informationMath1110 (Spring 2009) Prelim 3  Solutions
Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3  Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.
More informationPhysics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2
Physcs 607 Exam 1 Please be wellorganzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on
More informationChapter 8: Potential Energy and The Conservation of Total Energy
Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. Dmenson F x d U( x) dx
More informationCHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE
CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng
More informationNotes on Analytical Dynamics
Notes on Analytcal Dynamcs Jan Peters & Mchael Mstry October 7, 004 Newtonan Mechancs Basc Asssumptons and Newtons Laws Lonely pontmasses wth postve mass Newtons st: Constant velocty v n an nertal frame
More information