PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg


 Diana Lester
 3 years ago
 Views:
Transcription
1 PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays 121pm ORB 303 Tutoral or Lecture Mondays 12pm G7 Lecture Thursdays 1112pm G7 Lecture Frday 1011am G7 Lecture? Uncertan due to tmetable clash Frday 121pm G7 Lecture Frday 23pm G7 Lecture? Uncertan Tutorals to be held every 2 weeks. PY2101 tutorals commence 19 th October and PY2104 commence 12 th October durng the Monday 121pm slot. Recommended text book: Classcal Mechancs by Kbble and Berkshre. Buy a copy or get from lbrary!
2 Tomorrow s lectures (+ next week) 1011am or 23pm whch does the group want? It wll be a PY2101 slot. 121pm wll be a PY2104 slot. Next week, all four slots wll be Classcal Mechancs PY2101 startng on Monday at 12pm slot n G7. No tutorals next week.
3 Assessment Total Marks 100 End of Year Wrtten Examnaton 80 Marks (1.5 hours) Contnuous Assessment 20 Marks (Weekly problem sets no late submssons accepted) Module Objectve To advance the student s knowledge of classcal mechancs
4 Classcal Mechancs Chapter 1 Laws of classcal mechancs formulated by Galleo and Newton. Vald n many stuatons but nvald n two regmes: Phenomena on atomc and nucle scales requre quantum mechancs Phenemona close to or at the speed of lght (c = 3 x 10 8 ms 1 ) requre specal relatvty (relatvstc mechancs) Classcal mechancs s excellent over a range of phenomena larger than atomc scales (everyday objects, galactc dstances, ) for speeds not close to c.
5 Example of Newton s Laws Applcable n the followng: Apple fallng from tree, d ~ 3m, v ~ 8m/s = % c Earth s moton around sun, d ~ 1.5 x m, v ~ 30 km/s = 0.01% c Sun s moton around galactc centre, d ~ 2.6 x10 20 m, v ~ 220km = 7.3% c Phenomena cover 20 orders of magntude n dstance and 5 orders of mag. n speed huge range descrbed by classcal mechancs. Some aspects of physcs may be unversal e.g. conservaton of energy and momentum always apples.
6 Assumptons of classcal mechancs 1. There s such a thng as a unversal tme system (two observers who have synchronsed ther clocks wll always agree about the tme of the event). Volated at fast speeds of relatvstc mechancs! 2. The geometry of space s Eucldean (any 2 ponts can be joned by a straght lne, etc. ) 3. We can, n prncple, measure all postons and veloctes Volated on wth small arbtrarly scales hgh of quantum accuracy. mechancs!
7 The Relatvty Prncple There s no absolute poston poston only has meanng relatve to a specfed pont (e.g. the centre of the earth). Velocty s also relatve. Ths s not true for acceleraton. Relatvty Prncple: Gven 2 bodes movng wth some constant relatve velocty, t s mpossble to determne expermentally whch of the two bodes s at rest (f ether) and whch s (are) movng. Example: Sttng on a bus hard to tell f car next to you s movng or f bus s movng. If two unaccelerated observers perform a measurement they get same result. For accelerated observers ths s not true.
8 Frame of Reference Must defne a reference frame Lmerck s 100 km east and 50 km north s meanngless f we don t defne the pont from whch we are measurng. An event occurred at some tme 12 mnutes and 13 seconds also s meanngless f we don t defne the orgn of tme. Ths s what we mean by a frame of reference. Example: Cartesan coordnate system, poston defned by x, y, z and tme t. In another reference frame use x, y, z and t.
9 From the relatvty prncple, frames of reference used by dfferent unaccelerated observers are completely equvalent.e. laws of physcs stay the same regardless of reference frame chosen. Unaccelerated reference frames are called nertal frames. In an nertal frame an observer would deduce the correct laws of physcs frame nether rotatng nor acceleratng. Fxed reference frames can be defned relatve to dstant galaxes for example Internatonal Celestal Reference Frame s based on poston of 212 extragalactc sources dstrbuted over entre sky.
10 Can also defne poston usng a vector r relatve to the coordnate orgn O: r = x + y j + z k,, j and k are unt vectors along x, y and z axs. Use a hat to denote other unt vectors e.g. vector n the drecton of vector r. rˆ s a unt Intally, treat object of nterest as a pont partcle, located at centre of mass of the object
11 Consder solated system of N bodes, = 1, 2,, N. (assume all other bodes far enough away that ther nfluence s neglgble). Poston, velocty and acceleraton of body are gven by: r r& () t ; v () t = r& () t a ( t) = v& ( t) () t = ; dr () t etc. dt Momentum of the body s gven by: Newton s second law: p & = = ma F () t m v ( t) m s body mass. p =,, total force actng on body. F N = j= 1F, F s force on body by body j. j j Twobody forces (only nvolve two bodes).
12 Two body forces must satsfy Newton s thrd law: F = j F j Because of relatvty prncple, F j can only depend on relatve poston and relatve velocty of two bodes: r j = r r ; j r r j v j = v v r r j j If we know force between two bodes as a functon of relatve poston and relatve velocty, use Newton s second law and eqns. relatng acceleraton, velocty and poston to predct future moton of the two bodes. For n bodes, must do ths for whole system ncludng forces between each par of bodes.
13 Central, Conservatve Forces 1. Forces that are drected along the lne connectng the two bodes (central). 2. Forces that depend only on relatve postons of two bodes (conservatve). Man feature of conservatve forces s that total energy of the system s conserved. F = f j r j ( ) rˆ j f s scalar functon of dstance between two bodes r j. Newton s Law of Gravtaton: Coulomb force between two charged bodes: f f Gm m kg 2 r j ( r ) = ; G = Nm j j 12 1 ( r ) = = ; ε = j kq q r q q j 2 0 Fm 2 j 4πε 0r j j attractve or repulsve attractve (negatve)
14 We wll concentrate on central, conservatve forces. But not all forces must be central and conservatve. Need to use quantum mechancs for forces between partcles on atomc scale Frctonal forces appear nonconservatve on large scale Forces between 2 charges n relatve moton are nether central nor conservatve requres ntroducton of electrc feld concept.
15 Mass and Force Should only ntroduce new quanttes f they can be measured so that theory can be tested. Newton s laws use velocty, acceleraton, mass and force. Can use dstance and tme to measure v and a. How can we measure m and F? Inertal mass Newton s 2 nd law Gravtatonal mass Newton s law of gravtaton Need to measure each separately (e.g. cannot use scales to measure nertal mass snce ts operaton s based on gravtatonal force due to Earth. Actually measure gravtatonal mass!)
16 Inertal Mass We could measure nertal mass of 2 bodes by subjectng each to equal force and comparng acceleraton need to ensure both forces are equal. Consder two bodes nteractng wth each other and solated from other bodes and forces. Inertal masses must obey: F 12 = F 21 m 1 a 1 =  m 2 a 2 Can measure rato of nertal masses by measurng acceleratons. Eg. f two bodes collde, mass rato can be determned by measurng veloctes before and after collson snce total momentum must be conserved. After ntegraton: m 1 a 1 + m 2 a 2 = 0 m 1 v 1 + m 2 v 2 = constant Conservaton of momentum
17 Fundamental Axom For any solated par of bodes, the acceleratons always satsfy the relaton a 1 = k 21 a 2, where k 21 s a scalar that does not depend on the postons, veloctes or nternal states of the two bodes Need to choose some body as standard and assgn a mass (e.g. 1 kg). We can then defne mass of any other body relatve to t by k 21 = m 2 /m 1. We can also assume that: In a system wth more than two bodes, the acceleraton of any one of the bodes s equal to the vector sum of the acceleratons t feels due to each of the other bodes ndvdually m 1 a 1 = F 12 + F 13 m 2 a 2 = F 21 + F 23 =  F 12 + F 23 m 3 a 3 = F 31 + F 32 =  F 13 F 23 Now add three equatons: m 1 a 1 + m 2 a 2 + m 3 a 3 = 0 If bodes 2 and 3 are bound together, a 2 = a 3 m 1 a 1 =  (m 2 + m 3 )a 2
Classical Mechanics ( Particles and Biparticles )
Classcal Mechancs ( Partcles and Bpartcles ) Alejandro A. Torassa Creatve Commons Attrbuton 3.0 Lcense (0) Buenos Ares, Argentna atorassa@gmal.com Abstract Ths paper consders the exstence of bpartcles
More informationPhysics 181. Particle Systems
Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system
More informationWeek3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity
Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1s tme nterval. The velocty of the partcle
More informationPhysics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.
Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays
More informationChapter 11 Angular Momentum
Chapter 11 Angular Momentum Analyss Model: Nonsolated System (Angular Momentum) Angular Momentum of a Rotatng Rgd Object Analyss Model: Isolated System (Angular Momentum) Angular Momentum of a Partcle
More informationPHYS 705: Classical Mechanics. Newtonian Mechanics
1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]
More informationPhysics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1
Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. MultPartcle
More informationSo far: simple (planar) geometries
Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector
More informationWeek 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product
The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the
More informationStudy Guide For Exam Two
Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 0106 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force
More informationFirst Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.
Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act
More informationMathematical Preparations
1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the
More informationPhysics 111: Mechanics Lecture 11
Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 RgdBody Rotaton
More informationPhysics 207 Lecture 6
Physcs 207 Lecture 6 Agenda: Physcs 207, Lecture 6, Sept. 25 Chapter 4 Frames of reference Chapter 5 ewton s Law Mass Inerta s (contact and noncontact) Frcton (a external force that opposes moton) Free
More informationChapter 8. Potential Energy and Conservation of Energy
Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and nonconservatve forces Mechancal Energy Conservaton of Mechancal
More information11. Dynamics in Rotating Frames of Reference
Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons
More informationPhysics 207: Lecture 20. Today s Agenda Homework for Monday
Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems
More informationA particle in a state of uniform motion remain in that state of motion unless acted upon by external force.
The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,
More informationLinear Momentum. Center of Mass.
Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html
More informationWeek 9 Chapter 10 Section 15
Week 9 Chapter 10 Secton 15 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,
More informationEN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st
EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to
More informationPES 1120 Spring 2014, Spendier Lecture 6/Page 1
PES 110 Sprng 014, Spender Lecture 6/Page 1 Lecture today: Chapter 1) Electrc feld due to charge dstrbutons > charged rod > charged rng We ntroduced the electrc feld, E. I defned t as an nvsble aura
More informationPhysics 207 Lecture 13. Lecture 13
Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem
More informationMechanics Physics 151
Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate com
More informationNewton s Laws of Motion
Chapter 4 Newton s Laws of Moton 4.1 Forces and Interactons Fundamental forces. There are four types of fundamental forces: electromagnetc, weak, strong and gravtatonal. The frst two had been successfully
More informationχ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body
Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown
More informationChapter 3 and Chapter 4
Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy
More informationThe classical spinrotation coupling
LOUAI H. ELZEIN 2018 All Rghts Reserved The classcal spnrotaton couplng Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 louaelzen@gmal.com Abstract Ths paper s prepared to show that a rgd
More informationPart C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis
Part C Dynamcs and Statcs of Rgd Body Chapter 5 Rotaton of a Rgd Body About a Fxed Axs 5.. Rotatonal Varables 5.. Rotaton wth Constant Angular Acceleraton 5.3. Knetc Energy of Rotaton, Rotatonal Inerta
More informationPhysics 5153 Classical Mechanics. Principle of Virtual Work1
P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal
More informationPHYS 1443 Section 002
PHYS 443 Secton 00 Lecture #6 Wednesday, Nov. 5, 008 Dr. Jae Yu Collsons Elastc and Inelastc Collsons Two Dmensonal Collsons Center o ass Fundamentals o Rotatonal otons Wednesday, Nov. 5, 008 PHYS PHYS
More informationCelestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestialmechanics  J. Hedberg
PHY 454  celestalmechancs  J. Hedberg  207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The
More informationSpinrotation coupling of the angularly accelerated rigid body
Spnrotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 Emal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s
More informationSpring Force and Power
Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems
More informationPhysics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian1
P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the
More informationThermodynamics General
Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,
More informationGravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)
Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng
More information10/23/2003 PHY Lecture 14R 1
Announcements. Remember  Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 94 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth
More information1 What is a conservation law?
MATHEMATICS 7302 (Analytcal Dynamcs) YEAR 2016 2017, TERM 2 HANDOUT #6: MOMENTUM, ANGULAR MOMENTUM, AND ENERGY; CONSERVATION LAWS In ths handout we wll develop the concepts of momentum, angular momentum,
More informationPage 1. Physics 131: Lecture 14. Today s Agenda. Things that stay the same. Impulse and Momentum Nonconstant forces
Physcs 131: Lecture 14 Today s Agenda Imulse and Momentum Nonconstant forces Imulsemomentum momentum thm Conservaton of Lnear momentum Eternal/Internal forces Eamles Physcs 201: Lecture 1, Pg 1 Physcs
More informationLecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics
Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn
More information= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]
Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:
More informationRotational Dynamics. Physics 1425 Lecture 19. Michael Fowler, UVa
Rotatonal Dynamcs Physcs 1425 Lecture 19 Mchael Fowler, UVa Rotatonal Dynamcs Newton s Frst Law: a rotatng body wll contnue to rotate at constant angular velocty as long as there s no torque actng on t.
More informationConservation of Angular Momentum = "Spin"
Page 1 of 6 Conservaton of Angular Momentum = "Spn" We can assgn a drecton to the angular velocty: drecton of = drecton of axs + rght hand rule (wth rght hand, curl fngers n drecton of rotaton, thumb ponts
More informationChapter 3. r r. Position, Velocity, and Acceleration Revisited
Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector
More informationLecture 4. Macrostates and Microstates (Ch. 2 )
Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.
More informationCHAPTER 8 Potential Energy and Conservation of Energy
CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and nonconservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated
More informationMEASUREMENT OF MOMENT OF INERTIA
1. measurement MESUREMENT OF MOMENT OF INERTI The am of ths measurement s to determne the moment of nerta of the rotor of an electrc motor. 1. General relatons Rotatng moton and moment of nerta Let us
More informationENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15
NGN 40 ynamcs and Vbratons Homework # 7 ue: Frday, Aprl 15 1. Consder a concal hostng drum used n the mnng ndustry to host a mass up/down. A cable of dameter d has the mass connected at one end and s wound/unwound
More informationCenter of Mass and Linear Momentum
PH 2212A Fall 2014 Center of Mass and Lnear Momentum Lectures 1415 Chapter 9 (Hallday/Resnck/Walker, Fundamentals of Physcs 9 th edton) 1 Chapter 9 Center of Mass and Lnear Momentum In ths chapter we
More informationWeek 8: Chapter 9. Linear Momentum. Newton Law and Momentum. Linear Momentum, cont. Conservation of Linear Momentum. Conservation of Momentum, 2
Lnear omentum Week 8: Chapter 9 Lnear omentum and Collsons The lnear momentum of a partcle, or an object that can be modeled as a partcle, of mass m movng wth a velocty v s defned to be the product of
More informationcoordinates. Then, the position vectors are described by
Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,
More informationMechanics Physics 151
Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed multpartcle systems! Internal and external forces! Laws of acton and
More informationwhere v means the change in velocity, and t is the
1 PHYS:100 LECTURE 4 MECHANICS (3) Ths lecture covers the eneral case of moton wth constant acceleraton and free fall (whch s one of the more mportant examples of moton wth constant acceleraton) n a more
More informationEPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski
EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on
More informationModeling of Dynamic Systems
Modelng of Dynamc Systems Ref: Control System Engneerng Norman Nse : Chapters & 3 Chapter objectves : Revew the Laplace transform Learn how to fnd a mathematcal model, called a transfer functon Learn how
More informationPHYSICS 203NYA05 MECHANICS
PHYSICS 03NYA05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN  ST. LAWRENCE 790 NÉRÉETREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/
More informationChapter 9: Statistical Inference and the Relationship between Two Variables
Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,
More informationCHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)
CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: mgk F 1 x O
More informationCHAPTER 14 GENERAL PERTURBATION THEORY
CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves
More informationModule 1 : The equation of continuity. Lecture 1: Equation of Continuity
1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 16 () () () (v) (v) Overall Mass Balance Momentum
More informationτ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1
A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor
More informationWeek 6, Chapter 7 Sect 15
Week 6, Chapter 7 Sect 15 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force
More informationPhysics 207: Lecture 27. Announcements
Physcs 07: ecture 7 Announcements akeup labs are ths week Fnal hwk assgned ths week, fnal quz next week Revew sesson on Thursday ay 9, :30 4:00pm, Here Today s Agenda Statcs recap Beam & Strngs» What
More informationChapter 11: Angular Momentum
Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For
More informationAP Physics 1 & 2 Summer Assignment
AP Physcs 1 & 2 Summer Assgnment AP Physcs 1 requres an exceptonal profcency n algebra, trgonometry, and geometry. It was desgned by a select group of college professors and hgh school scence teachers
More informationPlease initial the statement below to show that you have read it
EN40: Dynamcs and Vbratons Mdterm Examnaton Thursday March 5 009 Dvson of Engneerng rown Unversty NME: Isaac Newton General Instructons No collaboraton of any knd s permtted on ths examnaton. You may brng
More informationPhysics for Scientists and Engineers. Chapter 9 Impulse and Momentum
Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum
More informationMoments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.
Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these
More informationChapter 7: Conservation of Energy
Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant
More informationPHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014
PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 WorkKnetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o
More informationLAB # 4  Torque. d (1)
LAB # 4  Torque. Introducton Through the use of Newton's three laws of moton, t s possble (n prncple, f not n fact) to predct the moton of any set of partcles. That s, n order to descrbe the moton of
More informationErrors in Nobel Prize for Physics (7) Improper Schrodinger Equation and Dirac Equation
Errors n Nobel Prze for Physcs (7) Improper Schrodnger Equaton and Drac Equaton u Yuhua (CNOOC Research Insttute, Emal:fuyh945@sna.com) Abstract: One of the reasons for 933 Nobel Prze for physcs s for
More informationRigid body simulation
Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum
More informationPHYS 1441 Section 002 Lecture #16
PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Nonconservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!
More informationGround Rules. PC1221 Fundamentals of Physics I. Linear Momentum, cont. Linear Momentum. Lectures 17 and 18. Linear Momentum and Collisions
PC Fundamentals of Physcs I Lectures 7 and 8 Lnear omentum and Collsons Dr Tay Seng Chuan Ground Rules Swtch off your handphone and pager Swtch off your laptop computer and keep t No talkng whle lecture
More informationCHAPTER 10 ROTATIONAL MOTION
CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n xy plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The
More informationHow Differential Equations Arise. Newton s Second Law of Motion
page 1 CHAPTER 1 FrstOrder Dfferental Equatons Among all of the mathematcal dscplnes the theory of dfferental equatons s the most mportant. It furnshes the explanaton of all those elementary manfestatons
More informationClassical Mechanics Virtual Work & d Alembert s Principle
Classcal Mechancs Vrtual Work & d Alembert s Prncple Dpan Kumar Ghosh UMDAE Centre for Excellence n Basc Scences Kalna, Mumba 400098 August 15, 2016 1 Constrants Moton of a system of partcles s often
More informationPhysics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2
Physcs 607 Exam 1 Please be wellorganzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on
More informationChapter 11 Torque and Angular Momentum
Chapter Torque and Angular Momentum I. Torque II. Angular momentum  Defnton III. Newton s second law n angular form IV. Angular momentum  System of partcles  Rgd body  Conservaton I. Torque  Vector
More information1. Review of Mechanics Newton s Laws
. Revew of Mechancs.. Newton s Laws Moton of partcles. Let the poston of the partcle be gven by r. We can always express ths n Cartesan coordnates: r = xˆx + yŷ + zẑ, () where we wll always use ˆ (crcumflex)
More informationConservation Laws (Collisions) Phys101 Lab  04
Conservaton Laws (Collsons) Phys101 Lab  04 1.Objectves The objectves o ths experment are to expermentally test the valdty o the laws o conservaton o momentum and knetc energy n elastc collsons. 2. Theory
More informationCONDUCTORS AND INSULATORS
CONDUCTORS AND INSULATORS We defne a conductor as a materal n whch charges are free to move over macroscopc dstances.e., they can leave ther nucle and move around the materal. An nsulator s anythng else.
More informationPhysics 2A Chapter 3 HW Solutions
Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C
More informationCHAPTER 7 ENERGY BALANCES SYSTEM SYSTEM. * What is energy? * Forms of Energy.  Kinetic energy (KE)  Potential energy (PE) PE = mgz
SYSTM CHAPTR 7 NRGY BALANCS 1 7.17. SYSTM nergy & 1st Law of Thermodynamcs * What s energy? * Forms of nergy  Knetc energy (K) K 1 mv  Potental energy (P) P mgz  Internal energy (U) * Total nergy,
More informationPoisson brackets and canonical transformations
rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order
More informationRobert Eisberg Second edition CH 09 Multielectron atoms ground states and xray excitations
Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and xray exctatons 901 By gong through the procedure ndcated n the text, develop the tmendependent Schroednger equaton
More informationNEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).
EWTO S LAWS Consder two partcles. 1 1. If 1 0 then 0 wth p 1 m1v. 1 1 2. 1.. 3. 11 These laws only apply when vewed from an nertal coordnate system (unaccelerated system). consder a collecton of partcles
More informationSCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.
SCALARS AND ECTORS All phscal uanttes n engneerng mechancs are measured usng ether scalars or vectors. Scalar. A scalar s an postve or negatve phscal uantt that can be completel specfed b ts magntude.
More informationRecitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk.
Rectaton: Energy, Phys 207. Energy. Energes. An acorn fallng from an oak tree onto the sdewalk. The acorn ntal has gravtatonal potental energy. As t falls, t converts ths energy to knetc. When t hts the
More informationFoundations of Newtonian Dynamics: An Axiomatic Approach for the Thinking Student 1
Foundatons of Newtonan Dynamcs: An Axomatc Approach for the Thnkng Student 1 C. J. Papachrstou 2 Department of Physcal Scences, Hellenc Naval Academy, Praeus 18539, Greece Abstract. Despte ts apparent
More informationPHYSICS 231 Review problems for midterm 2
PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October
More informationLinear Momentum. Center of Mass.
Lecture 16 Chapter 9 Physcs I 11.06.2013 Lnear oentu. Center of ass. Course webste: http://faculty.ul.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.ul.edu/danylov2013/physcs1fall.htl
More informationSUMMARY Phys 2113 (General Physics I) Compiled by Prof. Erickson. v = r t. v = lim t 0. p = mv. a = v. a = lim
SUMMARY Phys 2113 (General Physcs I) Compled by Prof. Erckson Poston Vector (m): r = xˆx + yŷ + zẑ Average Velocty (m/s): v = r Instantaneous Velocty (m/s): v = lm 0 r = ṙ Lnear Momentum (kg m/s): p =
More informationAngular Momentum and Fixed Axis Rotation. 8.01t Nov 10, 2004
Angular Momentum and Fxed Axs Rotaton 8.01t Nov 10, 2004 Dynamcs: Translatonal and Rotatonal Moton Translatonal Dynamcs Total Force Torque Angular Momentum about Dynamcs of Rotaton F ext Momentum of a
More informationCOMPLEX NUMBERS AND QUADRATIC EQUATIONS
COMPLEX NUMBERS AND QUADRATIC EQUATIONS INTRODUCTION We know that x 0 for all x R e the square of a real number (whether postve, negatve or ero) s nonnegatve Hence the equatons x, x, x + 7 0 etc are not
More informationEMU Physics Department
Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product
More informationTHE CURRENT BALANCE Physics 258/259
DSH 1988, 005 THE CURRENT BALANCE Physcs 58/59 The tme average force between two parallel conductors carryng an alternatng current s measured by balancng ths force aganst the gravtatonal force on a set
More information10/9/2003 PHY Lecture 11 1
Announcements 1. Physc Colloquum today The Physcs and Analyss of Nonnvasve Optcal Imagng. Today s lecture Bref revew of momentum & collsons Example HW problems Introducton to rotatons Defnton of angular
More information