Mechanics Physics 151

Size: px
Start display at page:

Download "Mechanics Physics 151"

Transcription

1 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m energy and boost Go about wth busness Eamples: Partcle creaton Elastc scatterng Partcle decays Today s Goals Relatvstc Lagrangan formulaton Two dfferent approaches: practcal and truly relatvstc Nether s perfect Wll cover both Wll do a few easy eamples n the process

2 Lagrangan Formulaton Proper Approach Set up a covarant form of Hamlton s prncple Keep everythng n clean tensor forms Practcal Approach Buld a Lagrangan that reproduces 3-force n a frame May or may not be correct n other frames Works OK pretty often, but no guarantee Practcal Formalsm For a sngle partcle of mass m L β V = ( ) β = reduced velocty Let s check f ths works L β β Space component p = = = good. But no tme v β β component 3-d equaton d L L V p p F = + = = of moton dt v Looks OK for the 3-d part Try to push ths path Generalzed Potental Epand the defnton to allow v-dependent potental Consder the EM force = β ( v, ) = β φ+ A v L U q q We know that U gves us U d U + qe q( ) = + v B dt v Dd ths before Stll works fne Only dfference s the defnton of the momentum L Same thng happened P = = p + qa wthout relatvty v Canoncal momentum Classcal 3-momentum No bg deal

3 Energy Functon = β ( ) L V Energy functon h s defned by conservatve L β v β β h= L= + β + V = + V Ths s total energy It s conserved f V s tme-ndependent Proved ths before No changes by gong relatvstc Smple Eample Partcle acceleratng under constant force Electron n an electrc feld E L= β + φ = e Lagrange s equaton d L L d β = = dt v dt β d β = dt β Integrate twce, assumng =, v = at t = t β = = + ( ) t ( t) + ( ) β φ = V Smple Eample ( ( ) t ) = + nonrelatvstc = ct t Relatvstc soluton s a hyperbola Approaches v = c Non-relatvstc soluton (parabola) accelerates faster 3

4 Smple Eample β = t = ( + ( t) ) + t ( ) Low-velocty lmt t lmt Look at t n terms of energy = ( ) = ( γ ) γ LHS V( ) v= t m β ct = = t m RHS = pc = T All as epected Energy conservaton Relatvstc Oscllator Consder a -dm. harmonc oscllator m L= β V V = k Let s use energy conservaton ths tme 4 E = + V = const β β = ( E V) > Soluton ests only when E V > Oscllaton between two ponts epected What s the frequency? b V( ) E E b Sem-Relatvstc Oscllator Integrate β for ¼ of the cycle 4 d m c τ b β = = = ( ) cdt E V 4 c b s gven by E = + kb Oscllaton perod 4 ( E V) E V k = + ( b ) + κ ( b ) Appromate for V << 3 E V + 4 ε = + ε ( + ε) ε 3ε ε d Nasty ntegral 4

5 Sem-Relatvstc Oscllator 3 4 b + 4 κ ( b ) π 3 m 3kb τ = d b c = + κ = π + κ ( b ) c κ 8 k 6 Perod s longer than non-relatvstc oscllator τ 3kb 3V = ma = Wrong sgn n tetbook τ 6 8 Relatvstc soluton slower than the non-relatvstc one Dfference depends on the ampltude of oscllaton Lmtatons of Practcal Approach L= β V( ) gves correct relatvstc answers for many practcal problems It s an ad-hoc technque Not Lorentz covarant by constructon Tme s treated separately from space Lorentz transformaton of Lagrangan s not gven Must redefne L n each nertal frame Truly relatvstc theory should respect relatvty from the prncple all the way up Let s see how well t works Lagrangan Formulaton Practcal Approach Buld a Lagrangan that reproduces 3-force n a frame May or may not be correct n other frames Works OK pretty often, but no guarantee Proper Approach Set up a covarant form of Hamlton s prncple Keep everythng n clean tensor forms but t quckly runs nto dffcultes even for a sngle partcle. For a system of more than one partcle, t breaks down almost from the start. No satsfactory formulaton for an nteractng multpartcle system ests n classcal relatvstc mechancs ecept for some few specal cases Goldsten, p. 33 5

6 Truly Relatvstc Formalsm Hamlton s prncple δi = δ Ldt = We want the acton ntegral to be Lorentz scalar Integraton should not be by t, but by a Lorentz-nvarant varable Proper tme τ could be a good choce? Lagrangan L must then be a Lorentz scalar Lagrange s equaton should look lke L d L µ µ = u Soluton s not unque. None of them perfect Let s look at one Goldsten Secton 7. for more Symmetrc for tme and space components Free Lagrangan We try a force-free Lagrangan Λ= muν uν Looks lke the non-relatvstc knetc energy Lorentz scalar d Λ dmu ( µ ) Lagrange s equaton would be µ = = u Conservaton of 4-momentum Tme component s conservaton of energy Energy functon doesn t gve total energy, though µ Λ µ h= u Λ= mu uµ = µ u Conserved, but not energy EM Force We know only one force n 4-vector form EM Potental was gven by qu µ Aµ µ µ µ µ Lagrangan can be Λ (, u ) = muµ u + qu Aµ Lagrange s equatons d Λ Λ d A ( mu qa ) qu µ µ ν ν ν ν = + ν = u ν dmu ( ) A µ µ da ν = q u = K ν Ths looks promsng 4-force found last week 6

7 Lmtatons of Purst Approach We don t know 4-force for anythng but EM Most real-world problems cannot be solved ths way What to do wth mult-partcle system L d L δ I = δ L = µ µ u Proper tme of what? Lagrangan formalsm allows coordnate transformaton Each coordnate does not correspond to a sngle partcle Problem wll be solved only when we gve up the partcle pcture Summary Constructed Lagrangan formulaton Practcal approach provdes useful tools Relatvstc solutons can be L= β V( ) found for many systems Not really relatvstc at heart Purst approach can be bult only for lmted cases µ µ E.g. sngle partcle n EM feld Λ= muµ u + qu Aµ Done wth specal relatvty Net: Hamltonan formalsm 7

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 0 Canoncal Transformatons (Chapter 9) What We Dd Last Tme Hamlton s Prncple n the Hamltonan formalsm Dervaton was smple δi δ p H(, p, t) = 0 Adonal end-pont constrants δ t ( )

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 3 Contnuous Systems an Fels (Chapter 3) Where Are We Now? We ve fnshe all the essentals Fnal wll cover Lectures through Last two lectures: Classcal Fel Theory Start wth wave equatons

More information

Lagrangian Field Theory

Lagrangian Field Theory Lagrangan Feld Theory Adam Lott PHY 391 Aprl 6, 017 1 Introducton Ths paper s a summary of Chapter of Mandl and Shaw s Quantum Feld Theory [1]. The frst thng to do s to fx the notaton. For the most part,

More information

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force.

A particle in a state of uniform motion remain in that state of motion unless acted upon by external force. The fundamental prncples of classcal mechancs were lad down by Galleo and Newton n the 16th and 17th centures. In 1686, Newton wrote the Prncpa where he gave us three laws of moton, one law of gravty,

More information

Lecture 20: Noether s Theorem

Lecture 20: Noether s Theorem Lecture 20: Noether s Theorem In our revew of Newtonan Mechancs, we were remnded that some quanttes (energy, lnear momentum, and angular momentum) are conserved That s, they are constant f no external

More information

Classical Mechanics ( Particles and Biparticles )

Classical Mechanics ( Particles and Biparticles ) Classcal Mechancs ( Partcles and Bpartcles ) Alejandro A. Torassa Creatve Commons Attrbuton 3.0 Lcense (0) Buenos Ares, Argentna atorassa@gmal.com Abstract Ths paper consders the exstence of bpartcles

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

10. Canonical Transformations Michael Fowler

10. Canonical Transformations Michael Fowler 10. Canoncal Transformatons Mchael Fowler Pont Transformatons It s clear that Lagrange s equatons are correct for any reasonable choce of parameters labelng the system confguraton. Let s call our frst

More information

Physics 181. Particle Systems

Physics 181. Particle Systems Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1 P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

Notes on Analytical Dynamics

Notes on Analytical Dynamics Notes on Analytcal Dynamcs Jan Peters & Mchael Mstry October 7, 004 Newtonan Mechancs Basc Asssumptons and Newtons Laws Lonely pontmasses wth postve mass Newtons st: Constant velocty v n an nertal frame

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

Three views of mechanics

Three views of mechanics Three vews of mechancs John Hubbard, n L. Gross s course February 1, 211 1 Introducton A mechancal system s manfold wth a Remannan metrc K : T M R called knetc energy and a functon V : M R called potental

More information

Symmetric Lie Groups and Conservation Laws in Physics

Symmetric Lie Groups and Conservation Laws in Physics Symmetrc Le Groups and Conservaton Laws n Physcs Audrey Kvam May 1, 1 Abstract Ths paper eamnes how conservaton laws n physcs can be found from analyzng the symmetrc Le groups of certan physcal systems.

More information

Analytical classical dynamics

Analytical classical dynamics Analytcal classcal ynamcs by Youun Hu Insttute of plasma physcs, Chnese Acaemy of Scences Emal: yhu@pp.cas.cn Abstract These notes were ntally wrtten when I rea tzpatrck s book[] an were later revse to

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays

More information

Classical Field Theory

Classical Field Theory Classcal Feld Theory Before we embark on quantzng an nteractng theory, we wll take a dverson nto classcal feld theory and classcal perturbaton theory and see how far we can get. The reader s expected to

More information

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013

Lagrange Multipliers. A Somewhat Silly Example. Monday, 25 September 2013 Lagrange Multplers Monday, 5 September 013 Sometmes t s convenent to use redundant coordnates, and to effect the varaton of the acton consstent wth the constrants va the method of Lagrange undetermned

More information

CHAPTER 14 GENERAL PERTURBATION THEORY

CHAPTER 14 GENERAL PERTURBATION THEORY CHAPTER 4 GENERAL PERTURBATION THEORY 4 Introducton A partcle n orbt around a pont mass or a sphercally symmetrc mass dstrbuton s movng n a gravtatonal potental of the form GM / r In ths potental t moves

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

11. Dynamics in Rotating Frames of Reference

11. Dynamics in Rotating Frames of Reference Unversty of Rhode Island DgtalCommons@URI Classcal Dynamcs Physcs Course Materals 2015 11. Dynamcs n Rotatng Frames of Reference Gerhard Müller Unversty of Rhode Island, gmuller@ur.edu Creatve Commons

More information

Quantum Mechanics I Problem set No.1

Quantum Mechanics I Problem set No.1 Quantum Mechancs I Problem set No.1 Septembe0, 2017 1 The Least Acton Prncple The acton reads S = d t L(q, q) (1) accordng to the least (extremal) acton prncple, the varaton of acton s zero 0 = δs = t

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Lecture Notes 7: The Unruh Effect

Lecture Notes 7: The Unruh Effect Quantum Feld Theory for Leg Spnners 17/1/11 Lecture Notes 7: The Unruh Effect Lecturer: Prakash Panangaden Scrbe: Shane Mansfeld 1 Defnng the Vacuum Recall from the last lecture that choosng a complex

More information

4. Laws of Dynamics: Hamilton s Principle and Noether's Theorem

4. Laws of Dynamics: Hamilton s Principle and Noether's Theorem 4. Laws of Dynamcs: Hamlton s Prncple and Noether's Theorem Mchael Fowler Introducton: Galleo and Newton In the dscusson of calculus of varatons, we antcpated some basc dynamcs, usng the potental energy

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

Mathematical Preparations

Mathematical Preparations 1 Introducton Mathematcal Preparatons The theory of relatvty was developed to explan experments whch studed the propagaton of electromagnetc radaton n movng coordnate systems. Wthn expermental error the

More information

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation 1 PHYS 705: Classcal Mechancs Hamlton-Jacob Equaton Hamlton-Jacob Equaton There s also a very elegant relaton between the Hamltonan Formulaton of Mechancs and Quantum Mechancs. To do that, we need to derve

More information

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity

Module 1 : The equation of continuity. Lecture 1: Equation of Continuity 1 Module 1 : The equaton of contnuty Lecture 1: Equaton of Contnuty 2 Advanced Heat and Mass Transfer: Modules 1. THE EQUATION OF CONTINUITY : Lectures 1-6 () () () (v) (v) Overall Mass Balance Momentum

More information

coordinates. Then, the position vectors are described by

coordinates. Then, the position vectors are described by Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

Integrals and Invariants of

Integrals and Invariants of Lecture 16 Integrals and Invarants of Euler Lagrange Equatons NPTEL Course Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng, Indan Insttute of Scence, Banagalore

More information

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry)

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry) Introducton to Densty Functonal Theory Jereme Zaffran nd year-msc. (anochemstry) A- Hartree appromatons Born- Oppenhemer appromaton H H H e The goal of computatonal chemstry H e??? Let s remnd H e T e

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg

Celestial Mechanics. Basic Orbits. Why circles? Tycho Brahe. PHY celestial-mechanics - J. Hedberg PHY 454 - celestal-mechancs - J. Hedberg - 207 Celestal Mechancs. Basc Orbts. Why crcles? 2. Tycho Brahe 3. Kepler 4. 3 laws of orbtng bodes 2. Newtonan Mechancs 3. Newton's Laws. Law of Gravtaton 2. The

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lecture 22 Canoncal Transformatons (Chater 9) What We Dd Last Tme Drect Condtons Q j Q j = = j P, Q, P j, P Q, P Necessary and suffcent P j P j for Canoncal Transf. = = j Q, Q, P j

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs hyscs 151 Lecture Canoncal Transformatons (Chater 9) What We Dd Last Tme Drect Condtons Q j Q j = = j, Q, j, Q, Necessary and suffcent j j for Canoncal Transf. = = j Q, Q, j Q, Q, Infntesmal CT

More information

8.323: QFT1 Lecture Notes

8.323: QFT1 Lecture Notes 8.33: QFT1 Lecture Notes Joseph A. Mnahan c MIT, Sprng 11 Preface Ths volume s a complaton of eght nstallments of notes that I provded for the students who took Relatvstc Quantum Feld Theory 1 8.33 at

More information

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy

Comparative Studies of Law of Conservation of Energy. and Law Clusters of Conservation of Generalized Energy Comparatve Studes of Law of Conservaton of Energy and Law Clusters of Conservaton of Generalzed Energy No.3 of Comparatve Physcs Seres Papers Fu Yuhua (CNOOC Research Insttute, E-mal:fuyh1945@sna.com)

More information

VEKTORANALYS. GAUSS s THEOREM and STOKES s THEOREM. Kursvecka 3. Kapitel 6-7 Sidor 51-82

VEKTORANALYS. GAUSS s THEOREM and STOKES s THEOREM. Kursvecka 3. Kapitel 6-7 Sidor 51-82 VEKTORANAY Kursvecka 3 GAU s THEOREM and TOKE s THEOREM Kaptel 6-7 dor 51-82 TARGET PROBEM EECTRIC FIED MAGNETIC FIED N + Magnetc monopoles do not est n nature. How can we epress ths nformaton for E and

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

Physics 106a, Caltech 11 October, Lecture 4: Constraints, Virtual Work, etc. Constraints

Physics 106a, Caltech 11 October, Lecture 4: Constraints, Virtual Work, etc. Constraints Physcs 106a, Caltech 11 October, 2018 Lecture 4: Constrants, Vrtual Work, etc. Many, f not all, dynamcal problems we want to solve are constraned: not all of the possble 3 coordnates for M partcles (or

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

1 What is a conservation law?

1 What is a conservation law? MATHEMATICS 7302 (Analytcal Dynamcs) YEAR 2016 2017, TERM 2 HANDOUT #6: MOMENTUM, ANGULAR MOMENTUM, AND ENERGY; CONSERVATION LAWS In ths handout we wll develop the concepts of momentum, angular momentum,

More information

From Biot-Savart Law to Divergence of B (1)

From Biot-Savart Law to Divergence of B (1) From Bot-Savart Law to Dvergence of B (1) Let s prove that Bot-Savart gves us B (r ) = 0 for an arbtrary current densty. Frst take the dvergence of both sdes of Bot-Savart. The dervatve s wth respect to

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 151 Lectue 18 Hamltonan Equatons of Moton (Chapte 8) What s Ahead We ae statng Hamltonan fomalsm Hamltonan equaton Today and 11/6 Canoncal tansfomaton 1/3, 1/5, 1/10 Close lnk to non-elatvstc

More information

Yukawa Potential and the Propagator Term

Yukawa Potential and the Propagator Term PHY304 Partcle Physcs 4 Dr C N Booth Yukawa Potental an the Propagator Term Conser the electrostatc potental about a charge pont partcle Ths s gven by φ = 0, e whch has the soluton φ = Ths escrbes the

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

LAGRANGIAN MECHANICS

LAGRANGIAN MECHANICS LAGRANGIAN MECHANICS Generalzed Coordnates State of system of N partcles (Newtonan vew): PE, KE, Momentum, L calculated from m, r, ṙ Subscrpt covers: 1) partcles N 2) dmensons 2, 3, etc. PE U r = U x 1,

More information

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2

Lecture 6/7 (February 10/12, 2014) DIRAC EQUATION. The non-relativistic Schrödinger equation was obtained by noting that the Hamiltonian 2 P470 Lecture 6/7 (February 10/1, 014) DIRAC EQUATION The non-relatvstc Schrödnger equaton was obtaned by notng that the Hamltonan H = P (1) m can be transformed nto an operator form wth the substtutons

More information

A Gauge-invariant Hamiltonian Description of the Motion of Charged Test Particles

A Gauge-invariant Hamiltonian Description of the Motion of Charged Test Particles A Gauge-nvarant Hamltonan Descrpton of the Moton of Charged Test Partcles Darusz Chruścńs Insttute of Physcs, Ncholas Coperncus nversty ul. Grudz adza 5/7, 87-00 Toruń, Poland and Jerzy Kjows Centrum Fzy

More information

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582 NMT EE 589 & UNM ME 48/58 ROBOT ENGINEERING Dr. Stephen Bruder NMT EE 589 & UNM ME 48/58 7. Robot Dynamcs 7.5 The Equatons of Moton Gven that we wsh to fnd the path q(t (n jont space) whch mnmzes the energy

More information

Review of Newtonian Mechanics

Review of Newtonian Mechanics hapter 1 Revew of Newtonan Mechancs 1.1 Why Study lasscal Mechancs? Quantum lmt Relatvstc lmt General relatvty Mathematcal technques Frst approxmaton Intuton 1.2 Revew of Newtonan Mechancs Basc defntons

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

One Dimension Again. Chapter Fourteen

One Dimension Again. Chapter Fourteen hapter Fourteen One Dmenson Agan 4 Scalar Lne Integrals Now we agan consder the dea of the ntegral n one dmenson When we were ntroduced to the ntegral back n elementary school, we consdered only functons

More information

Dynamics of a Superconducting Qubit Coupled to an LC Resonator

Dynamics of a Superconducting Qubit Coupled to an LC Resonator Dynamcs of a Superconductng Qubt Coupled to an LC Resonator Y Yang Abstract: We nvestgate the dynamcs of a current-based Josephson juncton quantum bt or qubt coupled to an LC resonator. The Hamltonan of

More information

10/23/2003 PHY Lecture 14R 1

10/23/2003 PHY Lecture 14R 1 Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D Chapter Twelve Integraton 12.1 Introducton We now turn our attenton to the dea of an ntegral n dmensons hgher than one. Consder a real-valued functon f : R, where the doman s a nce closed subset of Eucldean

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

VEKTORANALYS GAUSS THEOREM STOKES THEOREM. and. Kursvecka 3. Kapitel 6 7 Sidor 51 82

VEKTORANALYS GAUSS THEOREM STOKES THEOREM. and. Kursvecka 3. Kapitel 6 7 Sidor 51 82 VEKTORANAY Kursvecka 3 GAU THEOREM and TOKE THEOREM Kaptel 6 7 dor 51 82 TARGET PROBEM Do magnetc monopoles est? EECTRIC FIED MAGNETIC FIED N +? 1 TARGET PROBEM et s consder some EECTRIC CHARGE 2 - + +

More information

EP523 Introduction to QFT I

EP523 Introduction to QFT I EP523 Introducton to QFT I Toc 0 INTRODUCTION TO COURSE Deartment of Engneerng Physcs Unversty of Gazante Setember 2011 Sayfa 1 Content Introducton Revew of SR, QM, RQM and EMT Lagrangan Feld Theory An

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

The Symmetries of Kibble s Gauge Theory of Gravitational Field, Conservation Laws of Energy-Momentum Tensor Density and the

The Symmetries of Kibble s Gauge Theory of Gravitational Field, Conservation Laws of Energy-Momentum Tensor Density and the The Symmetres of Kbble s Gauge Theory of Gravtatonal Feld, Conservaton aws of Energy-Momentum Tensor Densty and the Problems about Orgn of Matter Feld Fangpe Chen School of Physcs and Opto-electronc Technology,Dalan

More information

Finslerian Nonholonomic Frame For Matsumoto (α,β)-metric

Finslerian Nonholonomic Frame For Matsumoto (α,β)-metric Internatonal Journal of Mathematcs and Statstcs Inventon (IJMSI) E-ISSN: 2321 4767 P-ISSN: 2321-4759 ǁ Volume 2 ǁ Issue 3 ǁ March 2014 ǁ PP-73-77 Fnsleran Nonholonomc Frame For Matsumoto (α,)-metrc Mallkarjuna

More information

Physics 2113 Lecture 14: WED 18 FEB

Physics 2113 Lecture 14: WED 18 FEB Physcs 2113 Jonathan Dowlng Physcs 2113 Lecture 14: WED 18 FEB Electrc Potental II Danger! Electrc Potental Energy, Unts : Electrc Potental Potental Energy = U = [J] = Joules Electrc Potental = V = U/q

More information

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

6. Hamilton s Equations

6. Hamilton s Equations 6. Hamlton s Equatons Mchael Fowler A Dynamcal System s Path n Confguraton Sace and n State Sace The story so far: For a mechancal system wth n degrees of freedom, the satal confguraton at some nstant

More information

The generating function of a canonical transformation

The generating function of a canonical transformation ENSEÑANZA Revsta Mexcana de Físca E 57 158 163 DICIEMBRE 2011 The generatng functon of a canoncal transformaton G.F. Torres del Castllo Departamento de Físca Matemátca Insttuto de Cencas Unversdad Autónoma

More information

Rate of Absorption and Stimulated Emission

Rate of Absorption and Stimulated Emission MIT Department of Chemstry 5.74, Sprng 005: Introductory Quantum Mechancs II Instructor: Professor Andre Tokmakoff p. 81 Rate of Absorpton and Stmulated Emsson The rate of absorpton nduced by the feld

More information

HW #6, due Oct Toy Dirac Model, Wick s theorem, LSZ reduction formula. Consider the following quantum mechanics Lagrangian,

HW #6, due Oct Toy Dirac Model, Wick s theorem, LSZ reduction formula. Consider the following quantum mechanics Lagrangian, HW #6, due Oct 5. Toy Drac Model, Wck s theorem, LSZ reducton formula. Consder the followng quantum mechancs Lagrangan, L ψ(σ 3 t m)ψ, () where σ 3 s a Paul matrx, and ψ s defned by ψ ψ σ 3. ψ s a twocomponent

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

2-π STRUCTURES ASSOCIATED TO THE LAGRANGIAN MECHANICAL SYSTEMS UDC 531.3: (045)=111. Victor Blãnuţã, Manuela Gîrţu

2-π STRUCTURES ASSOCIATED TO THE LAGRANGIAN MECHANICAL SYSTEMS UDC 531.3: (045)=111. Victor Blãnuţã, Manuela Gîrţu FACTA UNIVERSITATIS Seres: Mechancs Automatc Control and Robotcs Vol. 6 N o 1 007 pp. 89-95 -π STRUCTURES ASSOCIATED TO THE LAGRANGIAN MECHANICAL SYSTEMS UDC 531.3:53.511(045)=111 Vctor Blãnuţã Manuela

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

8.022 (E&M) Lecture 4

8.022 (E&M) Lecture 4 Topcs: 8.0 (E&M) Lecture 4 More applcatons of vector calculus to electrostatcs: Laplacan: Posson and Laplace equaton url: concept and applcatons to electrostatcs Introducton to conductors Last tme Electrc

More information

This content has been downloaded from IOPscience. Please scroll down to see the full text.

This content has been downloaded from IOPscience. Please scroll down to see the full text. Ths content has been downloaded from IOPscence. Please scroll down to see the full text. Download detals: IP Address: 48.5.3.83 Ths content was downloaded on 3/08/08 at 9:8 Please note that terms and condtons

More information

Classical Mechanics. Jung Hoon Han

Classical Mechanics. Jung Hoon Han Classcal Mechancs Jung Hoon Han May 18, 2015 2 Contents 1 Coordnate Systems 5 1.1 Orthogonal Rotaton n Cartesan Coordnates.... 5 1.2 Curved Coordnates................... 9 1.3 Problems.........................

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

The Dirac Monopole and Induced Representations *

The Dirac Monopole and Induced Representations * The Drac Monopole and Induced Representatons * In ths note a mathematcally transparent treatment of the Drac monopole s gven from the pont of vew of nduced representatons Among other thngs the queston

More information

Study Guide For Exam Two

Study Guide For Exam Two Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

Spin-rotation coupling of the angularly accelerated rigid body

Spin-rotation coupling of the angularly accelerated rigid body Spn-rotaton couplng of the angularly accelerated rgd body Loua Hassan Elzen Basher Khartoum, Sudan. Postal code:11123 E-mal: louaelzen@gmal.com November 1, 2017 All Rghts Reserved. Abstract Ths paper s

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Feld Theory III Prof. Erck Wenberg February 16, 011 1 Lecture 9 Last tme we showed that f we just look at weak nteractons and currents, strong nteracton has very good SU() SU() chral symmetry,

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

Classical Mechanics Virtual Work & d Alembert s Principle

Classical Mechanics Virtual Work & d Alembert s Principle Classcal Mechancs Vrtual Work & d Alembert s Prncple Dpan Kumar Ghosh UM-DAE Centre for Excellence n Basc Scences Kalna, Mumba 400098 August 15, 2016 1 Constrants Moton of a system of partcles s often

More information