# Spring Force and Power

Size: px
Start display at page:

Download "Spring Force and Power"

Transcription

1 Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste:

2 IN THIS CHAPTER, you wll learn how to solve problems usng two new concepts: work and knetc energy nstead o orces. Today we are gong to dscuss: Chapter 9: Work done by a Sprng: Secton 9.4 Skp: Secton 9.5 Power: Secton 9.6

3 Work Done By a Varyng Force In the prevous class, we were ndng work done by constant orces But there are orces whch are not constant, let s look at one o those, sprng orce Object oscllatng on a sprng F k We need to gure out how to deal wth ths case.

4 Let s rst just ntroduce a sprng orce and then get work done by t. The Sprng Force varable orce The varable orce eerted by a sprng s gven by Hooke s Law: F sprng k k sprng constant (postve) Equlbrum Equlbrum Equlbrum 0 0 F S F S 0 F s 0 0 F s k 0 The orce s to the let 0 F s k( ) 0 The orce s to the rght The sprng orce returns the cart to the equlbrum. It s called a Restorng orce

5 Work done by a sprng Let s calculate work done a sprng orce Sprng orce: F sprng k Stretched Equlbrum d - dsplacement 0 F sp d Work done by F sp : W sp F sp d ( k ) d d k Ths s used to ntegrate: n n1 d n 1 k W sp k

6 Let s learn a useul trck o calculatng work Work s an area under a curve F-vs- Graphcal meanng o an ntegral s an area under a curve F-vs-. Proo: ( you want) Area = Work done by F Let s convnce ourselves: Work done by F over each : W 1 F1 1 ; W F ; etc Total work done by F s a sum: W W 1 W W 3... We must evaluate the ntegral ether geometrcally, by ndng the area under the curve, or by actually dong the ntegraton. W W 7 1 W lm 0 F By denton, ths s an ntegral: W 7 1 F d F

7

8 I want power!!! Power

9 Power Sometmes normaton about work done s not enough to descrbe some stuatons: 1) Derence between a ast and slow worker ) Derence between a sport and a regular car So we need to ntroduce a new quantty: The average Power s the work done dvded by the tme t takes to do the work. W work done by a orce P t tme taken to do ths work P dw dt Unts Watts = Joules/sec The nstantaneous Power s the rate at whch work s done s F ds dt Snce ds s nntesmally small, we can say that F s constant over ds F ds dt dw F ds dt s F ds F v

10 Eample Average Car Power A certan 1000 kg car can accelerate rom rest to a speed o 0 m/s n a tme o 10 s. What average power must the motor produce n order to cause ths acceleraton? v 0 0 v 0 m / s The work done by the motor n acceleratng the car can be ound rom the work-ke prncple: 0 W K K K mv 10 s s the tme taken or ths work By denton, the average Power s P W t work done tme taken to by do a orce ths work P W t 1 mv t kg(0m / 10s s) 0000Watt 0kW

11 ConcepTest Tme or Work Mke perormed 5 J o work n 10 secs. Joe dd 3 J o work n 5 secs. Who produced the greater power? A) Mke produced more power B) Joe produced more power C) both produced the same amount o power Because power = work / tme, we see that Mke produced 0.5 W and Joe produced 0.6 W o power. Thus, even though Mke dd more work, he requred twce the tme to do the work, and thereore hs power output was lower.

12 Eample Average Runner Power How much power does t take a 50-kg runner to run up a 5 m hgh hll n 10 s? Assume acceleraton s zero. By denton, the average Power s P work done tme taken to by do a orce ths work

13 Lecture 14 Chapter 10 I have lots o potental Potental Energy Conservaton o Energy Course webste:

14 IN THIS CHAPTER, we wll add a new very mportant player to our energy game team (KE, work): potental energy. Today we are gong to dscuss: Chapter 10: Potental Energy: Secton (don t read t. Only you have a strong desre) Sprng Potental Energy: Secton 10.3 Conservaton o Mechancal Energy: Secton 10.4

15 Conservatve Forces (denton) The work done by a conservatve orce n movng an object rom pont A to pont B depends only on the postons A and B, not the path or the velocty o the object 1 A F C W A W B W C B Work done by F s the same or any path Conservatve orces: gravty, sprng Non-conservatve orces: rcton

16 Gravtatonal Potental Energy y y 1 Consder a block sldng down on a rctonless surace under the nluence o gravty mg K 1 ds Reerence level y K F G mg mg( ˆ) j ds Work done by the gravtatonal orce: W G d( ˆ) dy( ˆ) j FG ds mg( ˆ) j [ d(ˆ) dy( ˆ)] j 1 W G y y 1 mgdy mg( y ) y1 The work done by gravty depends only on coordnates o the nal and ntal postons, so gravtatonal orce s conservatve 1 ˆ ( j ˆ) ˆj ˆ cos90 0 ˆ ( j ˆ) j ˆj ˆj cos0 1 You see there s eactly the same structure o both terms, mgy, so let s gve t a nce name and symbol Gravtatonal potental energy (a new orm o energy) U 0 W G U mgy ( U ) U1 Actually, n general t s W G U U 0 U Reerence pont mgy

17 Conservaton o Mechancal Energy!!! Combne W U Relaton between potental energy and work U U1) wth W K ( U K K 1 W K Work-KE Prncple K U K 1 U 1 So we got a new constructon K+U, so let s gve t a nce name and symbol also Total Mechancal Energy E K U E E 1 E constant Whch s Conservaton o Mechancal Energy Only changes o potental energy mportant, not absolute values Choose a sutable reerence U 0 =0 or each problem (lke a PE orgn)

18 Eample Roller coaster The roller-coaster car starts rom rest at the top o the hll. The heght o the hll s 40 m. Calculate a) the speed o the car at the bottom o the hll; b) at what heght t wll have hal ths speed.

19 ConcepTest Water Slde I Paul and Kathleen start rom rest at the A) Paul same tme on rctonless water sldes B) Kathleen wth derent shapes. At the bottom, C) both the same whose velocty s greater? Conservaton o Energy (or any o them): thereore: mgh 1 mv K E E U K U v gh because they both start rom the same heght (h), they have the same velocty at the bottom. Re. level U=0

20 Energy Energy s dened as the ablty to do work Knetc Energy: assocated wth energy o moton K 1 mv Other types o stored energy that can do work A compressed sprng An object at a heght that can roll or drop These systems have the potental to do work Call t a stored potental energy Potental energy can only be assocated wth conservatve orces

21 Thank you

22 Elastc/Sprng Potental Energy F sp k What s the potental energy o a sprng compressed rom equlbrum by a dstance? Use a relaton between potental energy and work: Work done by a sprng W (rom the prevous class) sp k k ( U U ) Let s combne them From here you can see that the PE o a sprng s U sprng 1 k Potental energy o a sprng Where s a dsplacement rom an equlbrum o a sprng End o Class

23 Eample Brck/sprng on a track A kg mass, wth an ntal velocty o 5 m/s, sldes down the rctonless track shown below and nto a sprng wth sprng constant k=50 N/m. How ar s the sprng compressed?

24 ConcepTest Paul and Kathleen start rom rest at the same tme on rctonless water sldes wth derent shapes. Who makes t to the bottom rst? Water Slde II A) Paul B) Kathleen C) both the same Even though they both have the same nal velocty, Kathleen s at a lower heght than Paul or most o her rde. Thus, she always has a larger velocty durng her rde and thereore arrves earler! Re. level U=0

25 Eample Droppng ball h y v 0 An object o mass m s dropped v 0 rom a heght h above the ground. Fnd speed o the object as t hts the ground: Now we are much more eperenced and We can apply two methods Re. level U=0 v? Knematc equatons From N. nd law we got ths knematc eq-n: mv mgy v v gh v gh K Thus, both approaches are equvalent Energy conservaton U v 1 K mv 1 mv mgh gh U 0 h mgy

### Conservation of Energy

Lecture 3 Chapter 8 Physcs I 0.3.03 Conservaton o Energy Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcsall.html 95.4, Fall 03,

More information

### Lecture 16. Chapter 11. Energy Dissipation Linear Momentum. Physics I. Department of Physics and Applied Physics

Lecture 16 Chapter 11 Physcs I Energy Dsspaton Lnear Momentum Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi Department o Physcs and Appled Physcs IN IN THIS CHAPTER, you wll learn

More information

### Chapter 07: Kinetic Energy and Work

Chapter 07: Knetc Energy and Work Conservaton o Energy s one o Nature s undamental laws that s not volated. Energy can take on derent orms n a gven system. Ths chapter we wll dscuss work and knetc energy.

More information

### PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

### EMU Physics Department

Physcs 0 Lecture 8 Potental Energy and Conservaton Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aovgun.com Denton o Work W q The work, W, done by a constant orce on an object s dened as the product

More information

### Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

### PHYS 1441 Section 002 Lecture #15

PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

### Chapter 3 and Chapter 4

Chapter 3 and Chapter 4 Chapter 3 Energy 3. Introducton:Work Work W s energy transerred to or rom an object by means o a orce actng on the object. Energy transerred to the object s postve work, and energy

More information

### PHYS 1441 Section 002 Lecture #16

PHYS 1441 Secton 00 Lecture #16 Monday, Mar. 4, 008 Potental Energy Conservatve and Non-conservatve Forces Conservaton o Mechancal Energy Power Today s homework s homework #8, due 9pm, Monday, Mar. 31!!

More information

### CHAPTER 8 Potential Energy and Conservation of Energy

CHAPTER 8 Potental Energy and Conservaton o Energy One orm o energy can be converted nto another orm o energy. Conservatve and non-conservatve orces Physcs 1 Knetc energy: Potental energy: Energy assocated

More information

### Physics 131: Lecture 16. Today s Agenda

Physcs 131: Lecture 16 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton t o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

### Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Perod & Frequency Perod (T): Tme to complete one ull rotaton Frequency (): Number o rotatons completed per second. = 1/T, T = 1/ v = πr/t Work and Energy Work: W = F!d (pcks out parallel components) F

More information

### Chapter 8: Potential Energy and The Conservation of Total Energy

Chapter 8: Potental Energy and The Conservaton o Total Energy Work and knetc energy are energes o moton. K K K mv r v v F dr Potental energy s an energy that depends on locaton. -Dmenson F x d U( x) dx

More information

### You will analyze the motion of the block at different moments using the law of conservation of energy.

Physcs 00A Homework 7 Chapter 8 Where s the Energy? In ths problem, we wll consder the ollowng stuaton as depcted n the dagram: A block o mass m sldes at a speed v along a horzontal smooth table. It next

More information

### Chapter 7: Conservation of Energy

Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

### Chapter 8. Potential Energy and Conservation of Energy

Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

### Energy and Energy Transfer

Energy and Energy Transer Chapter 7 Scalar Product (Dot) Work Done by a Constant Force F s constant over the dsplacement r 1 Denton o the scalar (dot) product o vectors Scalar product o unt vectors = 1

More information

### Physics 2A Chapters 6 - Work & Energy Fall 2017

Physcs A Chapters 6 - Work & Energy Fall 017 These notes are eght pages. A quck summary: The work-energy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on

More information

### Physics 181. Particle Systems

Physcs 181 Partcle Systems Overvew In these notes we dscuss the varables approprate to the descrpton of systems of partcles, ther defntons, ther relatons, and ther conservatons laws. We consder a system

More information

### Study Guide For Exam Two

Study Gude For Exam Two Physcs 2210 Albretsen Updated: 08/02/2018 All Other Prevous Study Gudes Modules 01-06 Module 07 Work Work done by a constant force F over a dstance s : Work done by varyng force

More information

### 10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

### Force = F Piston area = A

CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

### Page 1. Clicker Question 9: Physics 131: Lecture 15. Today s Agenda. Clicker Question 9: Energy. Energy is Conserved.

Physcs 3: Lecture 5 Today s Agenda Intro to Conseraton o Energy Intro to some derent knds o energy Knetc Potental Denton o Mechancal Energy Conseraton o Mechancal Energy Conserate orces Examples Pendulum

More information

### Physics 2A Chapter 3 HW Solutions

Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

### Recitation: Energy, Phys Energies. 1.2 Three stones. 1. Energy. 1. An acorn falling from an oak tree onto the sidewalk.

Rectaton: Energy, Phys 207. Energy. Energes. An acorn fallng from an oak tree onto the sdewalk. The acorn ntal has gravtatonal potental energy. As t falls, t converts ths energy to knetc. When t hts the

More information

### Chapter Seven - Potential Energy and Conservation of Energy

Chapter Seven - Potental Energy and Conservaton o Energy 7 1 Potental Energy Potental energy. e wll nd that the potental energy o a system can only be assocated wth specc types o orces actng between members

More information

### Physics 207 Lecture 13. Lecture 13

Physcs 07 Lecture 3 Goals: Lecture 3 Chapter 0 Understand the relatonshp between moton and energy Defne Potental Energy n a Hooke s Law sprng Develop and explot conservaton of energy prncple n problem

More information

### A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

### Chapter 8 Potential Energy and Conservation of Energy Important Terms (For chapters 7 and 8)

Pro. Dr. I. Nasser Chapter8_I November 3, 07 Chapter 8 Potental Energy and Conservaton o Energy Important Terms (For chapters 7 and 8) conservatve orce: a orce whch does wor on an object whch s ndependent

More information

### in state i at t i, Initial State E = E i

Physcs 01, Lecture 1 Today s Topcs n More Energy and Work (chapters 7 & 8) n Conservatve Work and Potental Energy n Sprng Force and Sprng (Elastc) Potental Energy n Conservaton of Mechanc Energy n Exercse

More information

### K = 100 J. [kg (m/s) ] K = mv = (0.15)(36.5) !!! Lethal energies. m [kg ] J s (Joule) Kinetic Energy (energy of motion) E or KE.

Knetc Energy (energy of moton) E or KE K = m v = m(v + v y + v z ) eample baseball m=0.5 kg ptche at v = 69 mph = 36.5 m/s K = mv = (0.5)(36.5) [kg (m/s) ] Unts m [kg ] J s (Joule) v = 69 mph K = 00 J

More information

### Linear Momentum. Center of Mass.

Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

### Spring Force and Power

Lecture 14 Chapter 9 Physics I Spring Force and Power Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will learn how to solve problems using two new concepts:

More information

### Physics for Scientists and Engineers. Chapter 9 Impulse and Momentum

Physcs or Scentsts and Engneers Chapter 9 Impulse and Momentum Sprng, 008 Ho Jung Pak Lnear Momentum Lnear momentum o an object o mass m movng wth a velocty v s dened to be p mv Momentum and lnear momentum

More information

### Physics 207, Lecture 13, Oct. 15. Energy

Physcs 07 Lecture 3 Physcs 07, Lecture 3, Oct. 5 Goals: Chapter 0 Understand the relatonshp between moton and energy Dene Potental Energy n a Hooke s Law sprng Deelop and explot conseraton o energy prncple

More information

### PHYSICS 203-NYA-05 MECHANICS

PHYSICS 03-NYA-05 MECHANICS PROF. S.D. MANOLI PHYSICS & CHEMISTRY CHAMPLAIN - ST. LAWRENCE 790 NÉRÉE-TREMBLAY QUÉBEC, QC GV 4K TELEPHONE: 48.656.69 EXT. 449 EMAIL: smanol@slc.qc.ca WEBPAGE: http:/web.slc.qc.ca/smanol/

More information

### Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force.

Unt 5 Work and Energy 5. Work and knetc energy 5. Work - energy theore 5.3 Potenta energy 5.4 Tota energy 5.5 Energy dagra o a ass-sprng syste 5.6 A genera study o the potenta energy curve 5. Work and

More information

### Chapter 7. Potential Energy and Conservation of Energy

Chapter 7 Potental Energy and Conservaton o Energy 1 Forms o Energy There are many orms o energy, but they can all be put nto two categores Knetc Knetc energy s energy o moton Potental Potental energy

More information

### Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

### Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Chapter 3 Poston, Velocty, and Acceleraton Revsted The poston vector of a partcle s a vector drawn from the orgn to the locaton of the partcle. In two dmensons: r = x ˆ+ yj ˆ (1) The dsplacement vector

More information

### Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

P. Guterrez Physcs 5153 Classcal Mechancs D Alembert s Prncple and The Lagrangan 1 Introducton The prncple of vrtual work provdes a method of solvng problems of statc equlbrum wthout havng to consder the

More information

### Conservation of Energy

Lecture 3 Chapter 8 Physics I 03.0.04 Conservation of Energy Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov03/physicsspring.html

More information

### 9/19/2013. PHY 113 C General Physics I 11 AM-12:15 PM MWF Olin 101

PHY 3 C General Physcs I AM-:5 PM MF Oln 0 Plan or Lecture 8: Chapter 8 -- Conservaton o energy. Potental and knetc energy or conservatve orces. Energy and non-conservatve orces 3. Power PHY 3 C Fall 03--

More information

### PHYSICS 231 Review problems for midterm 2

PHYSICS 31 Revew problems for mdterm Topc 5: Energy and Work and Power Topc 6: Momentum and Collsons Topc 7: Oscllatons (sprng and pendulum) Topc 8: Rotatonal Moton The nd exam wll be Wednesday October

More information

### TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES. PHYS 2211, Exam 2 Section 1 Version 1 October 18, 2013 Total Weight: 100 points

TIME OF COMPLETION NAME SOLUTION DEPARTMENT OF NATURAL SCIENCES PHYS, Exam Secton Verson October 8, 03 Total Weght: 00 ponts. Check your examnaton or completeness pror to startng. There are a total o nne

More information

### First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

Secton 1. Dynamcs (Newton s Laws of Moton) Two approaches: 1) Gven all the forces actng on a body, predct the subsequent (changes n) moton. 2) Gven the (changes n) moton of a body, nfer what forces act

More information

### v c motion is neither created nor destroyed, but transferred via interactions. Fri. Wed (.18,.19) Introducing Potential Energy RE 6.

r. 6.5-.7 (.) Rest Mass,ork by Changng orces Columba Rep 3pm, here RE 6.b (last day to drop) ed. 6.8-.9(.8,.9) Introducng Potental Energy RE 6.c Tues. H6: Ch 6 Pr s 58,59, 99(a-c), 05(a-c) moton s nether

More information

### τ rf = Iα I point = mr 2 L35 F 11/14/14 a*er lecture 1

A mass s attached to a long, massless rod. The mass s close to one end of the rod. Is t easer to balance the rod on end wth the mass near the top or near the bottom? Hnt: Small α means sluggsh behavor

More information

### Lecture 22: Potential Energy

Lecture : Potental Energy We have already studed the work-energy theorem, whch relates the total work done on an object to the change n knetc energy: Wtot = KE For a conservatve orce, the work done by

More information

### Week 6, Chapter 7 Sect 1-5

Week 6, Chapter 7 Sect 1-5 Work and Knetc Energy Lecture Quz The frctonal force of the floor on a large sutcase s least when the sutcase s A.pushed by a force parallel to the floor. B.dragged by a force

More information

### Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physcs 141. Lecture 14. Frank L. H. Wolfs Department of Physcs and Astronomy, Unversty of Rochester, Lecture 14, Page 1 Physcs 141. Lecture 14. Course Informaton: Lab report # 3. Exam # 2. Mult-Partcle

More information

### Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight

Physcs 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn n the ollowng problems rom Chapter 4 Knght Conceptual Questons: 8, 0, ; 4.8. Anta s approachng ball and movng away rom where ball was

More information

### Momentum. Momentum. Impulse. Momentum and Collisions

Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally

More information

### Chapter 11: Angular Momentum

Chapter 11: ngular Momentum Statc Equlbrum In Chap. 4 we studed the equlbrum of pontobjects (mass m) wth the applcaton of Newton s aws F 0 F x y, 0 Therefore, no lnear (translatonal) acceleraton, a0 For

More information

### ONE-DIMENSIONAL COLLISIONS

Purpose Theory ONE-DIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n one-dmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal

More information

### AP Physics Enosburg Falls High School Mr. Bushey. Week 6: Work, Energy, Power

AP Physcs Enosburg Falls Hgh School Mr. Bushey ee 6: or, Energy, Power Homewor! Read Gancol Chapter 6.1 6.10 AND/OR Read Saxon Lessons 1, 16, 9, 48! Read Topc Summary Handout! Answer Gancol p.174 Problems

More information

### Physics 5153 Classical Mechanics. Principle of Virtual Work-1

P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

### Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

### Chapter 5. Answers to Even Numbered Problems m kj. 6. (a) 900 J (b) (a) 31.9 J (b) 0 (c) 0 (d) 31.9 J. 10.

Answers to Even Numbered Problems Chapter 5. 3.6 m 4..6 J 6. (a) 9 J (b).383 8. (a) 3.9 J (b) (c) (d) 3.9 J. 6 m s. (a) 68 J (b) 84 J (c) 5 J (d) 48 J (e) 5.64 m s 4. 9. J 6. (a). J (b) 5. m s (c) 6.3

More information

### Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

### Chapter 2. Pythagorean Theorem. Right Hand Rule. Position. Distance Formula

Chapter Moton n One Dmenson Cartesan Coordnate System The most common coordnate system or representng postons n space s one based on three perpendcular spatal axes generally desgnated x, y, and z. Any

More information

### Physics 106 Lecture 6 Conservation of Angular Momentum SJ 7 th Ed.: Chap 11.4

Physcs 6 ecture 6 Conservaton o Angular Momentum SJ 7 th Ed.: Chap.4 Comparson: dentons o sngle partcle torque and angular momentum Angular momentum o a system o partcles o a rgd body rotatng about a xed

More information

### Physics 2A Chapter 9 HW Solutions

Phscs A Chapter 9 HW Solutons Chapter 9 Conceptual Queston:, 4, 8, 13 Problems: 3, 8, 1, 15, 3, 40, 51, 6 Q9.. Reason: We can nd the change n momentum o the objects b computng the mpulse on them and usng

More information

### Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

### Ch04 Work, Energy and Power What is work in physics?

Eunl Won Dept o Physcs, Korea Unversty 1 Ch04 Work, Energy and Power What s work n physcs? Eunl Won Dept o Physcs, Korea Unversty Eunl Won Dept o Physcs, Korea Unversty 3 Work W F d W Fd cosφ W Fd ο cos

More information

### Conservation of Energy

Conservaton o nergy The total energy o a system can change only by amounts o energy that are transerred nto or out o the system W mec th nt Ths s one o the great conservaton laws n nature! Other conservaton

More information

### Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

### χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

### EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

EN40: Dynamcs and bratons Homework 4: Work, Energy and Lnear Momentum Due Frday March 1 st School of Engneerng Brown Unversty 1. The fgure (from ths publcaton) shows the energy per unt area requred to

More information

### CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

CHAPTER 6 LAGRANGE S EQUATIONS (Analytcal Mechancs) 1 Ex. 1: Consder a partcle movng on a fxed horzontal surface. r P Let, be the poston and F be the total force on the partcle. The FBD s: -mgk F 1 x O

More information

### Chapter 3 Differentiation and Integration

MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton

More information

### a) No books or notes are permitted. b) You may use a calculator.

PHYS 050 Sprng 06 Name: Test 3 Aprl 7, 06 INSTRUCTIONS: a) No books or notes are permtted. b) You may use a calculator. c) You must solve all problems begnnng wth the equatons on the Inormaton Sheet provded

More information

### PHYS 705: Classical Mechanics. Newtonian Mechanics

1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

### Mechanics Physics 151

Mechancs Physcs 151 Lecture 3 Lagrange s Equatons (Goldsten Chapter 1) Hamlton s Prncple (Chapter 2) What We Dd Last Tme! Dscussed mult-partcle systems! Internal and external forces! Laws of acton and

More information

### OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

### Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

### Conservation Laws (Collisions) Phys101 Lab - 04

Conservaton Laws (Collsons) Phys101 Lab - 04 1.Objectves The objectves o ths experment are to expermentally test the valdty o the laws o conservaton o momentum and knetc energy n elastc collsons. 2. Theory

More information

### PY2101 Classical Mechanics Dr. Síle Nic Chormaic, Room 215 D Kane Bldg

PY2101 Classcal Mechancs Dr. Síle Nc Chormac, Room 215 D Kane Bldg s.ncchormac@ucc.e Lectures stll some ssues to resolve. Slots shared between PY2101 and PY2104. Hope to have t fnalsed by tomorrow. Mondays

More information

### So far: simple (planar) geometries

Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

### EMU Physics Department.

Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q -D Collsons

More information

### Spring 2002 Lecture #13

44-50 Sprng 00 ecture # Dr. Jaehoon Yu. Rotatonal Energy. Computaton of oments of nerta. Parallel-as Theorem 4. Torque & Angular Acceleraton 5. Work, Power, & Energy of Rotatonal otons Remember the md-term

More information

### RETURN ONLY THE SCANTRON SHEET!

Andrzej Czajkowsk PHY/ exam Page out o Prncples o Physcs I PHY PHY Instructor: Dr. Andrzej Czajkowsk Fnal Exam December Closed book exam pages questons o equal value 5 correct answers pass the test! Duraton:

More information

### Phys102 General Physics II

Electrc Potental/Energy Phys0 General Physcs II Electrc Potental Topcs Electrc potental energy and electrc potental Equpotental Surace Calculaton o potental rom eld Potental rom a pont charge Potental

More information

### coordinates. Then, the position vectors are described by

Revewng, what we have dscussed so far: Generalzed coordnates Any number of varables (say, n) suffcent to specfy the confguraton of the system at each nstant to tme (need not be the mnmum number). In general,

More information

### TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

ES 5 (phy 40). a) Wrte the zeroth law o thermodynamcs. b) What s thermal conductvty? c) Identyng all es, draw schematcally a P dagram o the arnot cycle. d) What s the ecency o an engne and what s the coecent

More information

### Rigid body simulation

Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum

More information

### CHAPTER 10 ROTATIONAL MOTION

CHAPTER 0 ROTATONAL MOTON 0. ANGULAR VELOCTY Consder argd body rotates about a fxed axs through pont O n x-y plane as shown. Any partcle at pont P n ths rgd body rotates n a crcle of radus r about O. The

More information

### = 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

Secton 1.3: Acceleraton Tutoral 1 Practce, page 24 1. Gven: 0 m/s; 15.0 m/s [S]; t 12.5 s Requred: Analyss: a av v t v f v t a v av f v t 15.0 m/s [S] 0 m/s 12.5 s 15.0 m/s [S] 12.5 s 1.20 m/s 2 [S] Statement:

More information

### Prof. Dr. I. Nasser T /16/2017

Pro. Dr. I. Nasser T-171 10/16/017 Chapter Part 1 Moton n one dmenson Sectons -,, 3, 4, 5 - Moton n 1 dmenson We le n a 3-dmensonal world, so why bother analyzng 1-dmensonal stuatons? Bascally, because

More information

### Physics 101 Lecture 9 Linear Momentum and Collisions

Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum -D Collsons

More information

### 5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

### PHYS 1443 Section 002

PHYS 443 Secton 00 Lecture #6 Wednesday, Nov. 5, 008 Dr. Jae Yu Collsons Elastc and Inelastc Collsons Two Dmensonal Collsons Center o ass Fundamentals o Rotatonal otons Wednesday, Nov. 5, 008 PHYS PHYS

More information

### 12. The Hamilton-Jacobi Equation Michael Fowler

1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

### 10/23/2003 PHY Lecture 14R 1

Announcements. Remember -- Tuesday, Oct. 8 th, 9:30 AM Second exam (coverng Chapters 9-4 of HRW) Brng the followng: a) equaton sheet b) Calculator c) Pencl d) Clear head e) Note: If you have kept up wth

More information

### Mechanics Physics 151

Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

### Work and Energy (Work Done by a Varying Force)

Lecture 1 Chpter 7 Physcs I 3.5.14 ork nd Energy (ork Done y Vryng Force) Course weste: http://fculty.uml.edu/andry_dnylov/techng/physcsi Lecture Cpture: http://echo36.uml.edu/dnylov13/physcs1fll.html

More information

### Angular momentum. Instructor: Dr. Hoi Lam TAM ( 譚海嵐 )

Angular momentum Instructor: Dr. Ho Lam TAM ( 譚海嵐 ) Physcs Enhancement Programme or Gted Students The Hong Kong Academy or Gted Educaton and Department o Physcs, HKBU Department o Physcs Hong Kong Baptst

More information

### AP Physics 1 & 2 Summer Assignment

AP Physcs 1 & 2 Summer Assgnment AP Physcs 1 requres an exceptonal profcency n algebra, trgonometry, and geometry. It was desgned by a select group of college professors and hgh school scence teachers

More information

### Problem While being compressed, A) What is the work done on it by gravity? B) What is the work done on it by the spring force?

Problem 07-50 A 0.25 kg block s dropped on a relaed sprng that has a sprng constant o k 250.0 N/m (2.5 N/cm). The block becomes attached to the sprng and compresses t 0.12 m beore momentarl stoppng. Whle

More information

### Physics 111: Mechanics Lecture 11

Physcs 111: Mechancs Lecture 11 Bn Chen NJIT Physcs Department Textbook Chapter 10: Dynamcs of Rotatonal Moton q 10.1 Torque q 10. Torque and Angular Acceleraton for a Rgd Body q 10.3 Rgd-Body Rotaton

More information