Equilibrium: Forces and Torques


 Lindsey Gallagher
 1 years ago
 Views:
Transcription
1 Practice 15B Answers are available in the classroom and on the website. Scan this QR code for a direct link. Equilibrium: Forces and Torques 16. Lynn walks across a 9.0 m long plank bridge. The mass of the bridge is 20 kg and Lynn s mass is 52 kg. What are the forces on the supports due to the plank bridge when she stops 2.0 m from the right side to answer her phone? 17. One end of a 1.2meterlong uniform beam of mass 16 kg is attached to a wall with a hinge. A wire supports the other end. a. Find the tension in the wire. b. What is the horizontal component of the force of the hinge on the beam? c. What is the vertical component of the force of the hinge on the beam? 30 HINGE Determine the following forces acting on the boom in the system (heavy line). The weight of the uniform boom is 130 N. a. Tension in the cable. b. Find the magnitude and direction of the force from the ground at the base of the boom N
2 19. A scaffold of mass 60 kg and length 5.0 m is supported in a horizontal position by a vertical cable at each end. A window washer of mass 80 kg stands at a point 1.5 m from one end. What is the tension in each cable? 20. The system in the figure is in equilibrium. A concrete block of mass 225 kg hangs from the end of the uniform strut of mass 45.0 kg. For the angles shown, find (a) the tension T in the cable, (b) the horizontal component of the force on the strut from the hinge (c) the vertical component of the force on the strut from the hinge (d) the magnitude and direction of the force on the strut from the hinge The bar shown here is positioned horizontally and has a mass of 1.6 kg. A 500gram object has been hung 10 cm from the end. (a) Find the tension in the diagonal wire that supports the bar. (b) Find the magnitude and direction of the force exerted by the hinge on the bar. 30 cm 50 cm hinge 10 cm
3 22. The figure shows a diver of weight 580 N standing at the end of a diving board with a length of L = 4.5 m and negligible mass. The board is fixed to two pedestals (supports) that are separated by distance d = 1.5 m. For each force state the magnitude and direction (up or down). (a) The force from the left pedestal on the board. (b) The force from the right pedestal on the board. 23. In the figure, one end of a uniform beam of weight 221 N is hinged to a wall; the other end is supported by a wire that makes angle θ = 25.0 with both wall and beam. (a) Find the tension in the wire, (b) the horizontal component of the force of the hinge on the beam (c) the vertical component of the force of the hinge on the beam. COLLABORATION QUESTION: To be whiteboarded in class. 24. A 100N monkey climbs a uniform ladder with weight 120 N and length L as shown in the figure. The ladder rests against the wall at an angle of θ = 53. The upper and lower ends of the ladder rest on frictionless surfaces, with the lower end fastened to the wall by a horizontal rope that is frayed and that can support a maximum tension of only 110 N. (a) Draw a freebody diagram for the ladder. (b) Find the normal force exerted by the bottom of the ladder. (c) Find the tension in the rope when the monkey is onethird of the way up the ladder. (d) Find the maximum distance d that the monkey can climb up the ladder before the rope breaks. Express your answer as a fraction of L. (e) If the horizontal surface were rough and the rope were removed, how would the questions be changed? How would your analysis of the problem be changed? What other information would you need to answer parts (c) and (d)?
4 25. In the figure, a climber with a weight of N is held by a belay rope connected to her climbing harness and belay device; the force of the rope on her has a line of action through her center of mass. The indicated angles are φ = 30.0 and θ = If her feet are on the verge of sliding on the vertical wall, what is the coefficient of static friction between her climbing shoes and the wall? 26. In the figure, what magnitude of (constant) force F applied horizontally at the axle of the wheel is necessary to raise the wheel over an obstacle of height h = 3.00 m? The wheel s radius is r = 6.00 cm, and its mass is m = kg. Blast from the Past: 27. An 18cmdiameter solid ball of mass 1.4 kg rolls without slipping at 8.4 m/s. What is its kinetic energy? 28. A kg hollow ball is released from rest at the top of a 1.2mtall ramp. Assuming that the ball rolls without slipping, find the linear velocity of the ball at the bottom of the ramp.
5 Practice 15C Rolling Motion 29. A hollow spherical shell is rolling without slipping down a board that is tilted at an angle of 35.0 with respect to the horizontal. What is the linear acceleration of the sphere? 30. A solid disk rolls without slipping down a board that is tilted at an angle of 25.0 with respect to the horizontal. Determine the minimum value of the coefficient of static friction. 31. A constant horizontal force of magnitude 10 N is applied to a wheel of mass 10 kg and radius 0.30 m. The wheel rolls smoothly on the horizontal surface, and the acceleration of its center of mass has magnitude 0.60 m/s 2. (a) What is the direction of the frictional force, left or right? (b) What is the magnitude of the frictional force on the wheel? (c) What is the rotational inertia of the wheel about the axis through its center of mass?
6 32. In the figure, a constant horizontal force F app of magnitude 30 N is applied to a uniform solid cylinder by fishing line wrapped around the cylinder. The mass of the cylinder is 24 kg, its radius is 0.32 m, and the cylinder rolls smoothly on the horizontal surface. (a) What is the direction of the frictional force, left or right? (b) What is the magnitude of the acceleration of the center of mass of the cylinder? (c) What is the magnitude of the angular acceleration of the cylinder about the center of mass? (d) What is the magnitude of the frictional force acting on the cylinder? 33. A uniform sphere rolls without slipping down an incline. (a) What must be the incline angle if the linear acceleration of the center of the sphere is to be 0.10g? (b) For this angle, what would be the acceleration of the sphere if the contact point was frictionless?
Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)
Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Multiple choice Section. Circle the correct answer. No work need be shown and no partial
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT STATIC EQUILIBRIUM MULTIPLE CHOICE / 33 OPEN ENDED / 80 TOTAL / 113 NAME: 1. State the condition for translational equilibrium. A. ΣF = 0 B. ΣF
More information3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?
Practice 8A Torque 1. Find the torque produced by a 3.0 N force applied at an angle of 60.0 to a door 0.25 m from the hinge. What is the maximum torque this force could exert? 2. If the torque required
More informationEquilibrium. Lecture 8 Physics 106 Spring Equilibrium. Equilibrium. Equilibrium. Balance of Forces: Balance of Forces: Balance of Torques:
Lecture 8 Physics 106 Spring 2006 http://web.njit.edu/~sirenko/ 3/8/2006 Andrei Sirenko, JIT 1 3/8/2006 Andrei Sirenko, JIT 2 3/8/2006 Andrei Sirenko, JIT 3 3/8/2006 Andrei Sirenko, JIT 4 3/8/2006 Andrei
More informationChapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:
CHAPTER 8 3. If a net torque is applied to an object, that object will experience: a. a constant angular speed b. an angular acceleration c. a constant moment of inertia d. an increasing moment of inertia
More informationChapter 910 Test Review
Chapter 910 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular
More information1 MR SAMPLE EXAM 3 FALL 2013
SAMPLE EXAM 3 FALL 013 1. A merrygoround rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,
More informationCHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque
7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity
More informationProblem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer
8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology Problem Set 10 1. Moment of Inertia: Disc and Washer (a) A thin uniform disc of mass M and radius R is mounted on an axis passing
More informationτ net l = r p L = Iω = d L dt = I α ΔL Angular momentum (one) Angular momentum (system, fixed axis) Newton s second law (system)
l = r p L = Iω = d L dt = I α ΔL = 0 Angular momentum (one) Angular momentum (system, fixed axis) Newton s second law (system) Conserva
More informationPhys101 Third Major161 Zero Version Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1
Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2 O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see
More informationRotation review packet. Name:
Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the
More informationEquilibrium & Elasticity
PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block
More informationAP Physics 1 Torque, Rotational Inertia, and Angular Momentum Practice Problems FACT: The center of mass of a system of objects obeys Newton s second law F = Ma cm. Usually the location of the center
More informationAP Physics Multiple Choice Practice Torque
AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44
More informationSuggested Problems. Chapter 1
Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,
More informationReview questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.
Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the
More informationRotational Motion What is the difference between translational and rotational motion? Translational motion.
Rotational Motion 1 1. What is the difference between translational and rotational motion? Translational motion Rotational motion 2. What is a rigid object? 3. What is rotational motion? 4. Identify and
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationChapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity
Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular
More informationName: Date: Period: AP Physics C Rotational Motion HO19
1.) A wheel turns with constant acceleration 0.450 rad/s 2. (99) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions
More informationPHYSICS 221 SPRING 2015
PHYSICS 221 SPRING 2015 EXAM 2: April 2, 2015 8:1510:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit questions,
More informationGeneral Physics 1. School of Science, University of Tehran Fall Exercises (set 07)
General Physics 1 School of Science, University of Tehran Fall 139697 Exercises (set 07) 1. In Fig., wheel A of radius r A 10cm is coupled by belt B to wheel C of radius r C 25 cm. The angular speed of
More informationEndofChapter Exercises
EndofChapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a
More informationPHYSICS 221 SPRING 2014
PHYSICS 221 SPRING 2014 EXAM 2: April 3, 2014 8:1510:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit questions,
More informationIII. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 28 with rotatiing objects. Eqs. of motion. Energy.
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Toward Exam 3 Eqs. of motion o To study angular
More informationBig Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular
Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only
More informationPY105 Assignment 10 ( )
1 of 5 2009/10/30 8:27 AM PY105 Assignment 10 (1031274) 0/20 Tue Nov 17 2009 10:15 PM EST Question Points 1 2 3 4 5 6 7 0/2 0/6 0/2 0/2 0/2 0/5 0/1 Total 0/20 Description This assignment is worth 20 points.
More informationExam 3 PREP Chapters 6, 7, 8
PHY241  General Physics I Dr. Carlson, Fall 2013 Prep Exam 3 PREP Chapters 6, 7, 8 Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Astronauts in orbiting satellites
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More informationPHYSICS  CLUTCH CH 13: ROTATIONAL EQUILIBRIUM.
!! www.clutchprep.com EXAMPLE: POSITION OF SECOND KID ON SEESAW EXAMPLE: A 4 mlong seesaw 50 kg in mass and of uniform mass distribution is pivoted on a fulcrum at its middle, as shown. Two kids sit on
More informationBig Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1
Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50kg boy and a 40kg girl sit on opposite ends of a 3meter seesaw. How far from the girl should the fulcrum be placed in order for the
More informationPhysics 211 Week 10. Statics: Walking the Plank (Solution)
Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports
More informationPhysics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems
A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E 4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationRolling, Torque & Angular Momentum
PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the
More informationAngular Speed and Angular Acceleration Relations between Angular and Linear Quantities
Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities 1. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More informationSample Final Exam 02 Physics 106 (Answers on last page)
Sample Final Exam 02 Physics 106 (Answers on last page) Name (Print): 4 Digit ID: Section: Instructions: 1. There are 30 multiple choice questions on the test. There is no penalty for guessing, so you
More informationCutnell/Johnson Physics
Cutnell/Johnson Physics Classroom Response System Questions Chapter 9 Rotational Dynamics Interactive Lecture Questions 9.1.1. You are using a wrench in an attempt to loosen a nut by applying a force as
More informationName Date Period PROBLEM SET: ROTATIONAL DYNAMICS
Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget
More informationRotation. PHYS 101 Previous Exam Problems CHAPTER
PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that
More informationThe Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples
The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION
More informationPhysics 2210 Homework 18 Spring 2015
Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle
More informationa. On the circle below draw vectors showing all the forces acting on the cylinder after it is released. Label each force clearly.
1976 Mech 1 A small block of mass m slides on a horizontal frictionless surface as it travels around the inside of a hoop of radius R. The coefficient of friction between the block and the wall is µ; therefore,
More informationAQA Maths M2. Topic Questions from Papers. Moments and Equilibrium
Q Maths M2 Topic Questions from Papers Moments and Equilibrium PhysicsndMathsTutor.com PhysicsndMathsTutor.com 11 uniform beam,, has mass 20 kg and length 7 metres. rope is attached to the beam at. second
More informationPhys101 Third Major161 Zero Version Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1
Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see Figure
More informationChapter 8  Rotational Dynamics and Equilibrium REVIEW
Pagpalain ka! (Good luck, in Filipino) Date Chapter 8  Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body
More information6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.
1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular
More informationIt will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV
AP Physics 1 Lesson 16 Homework Newton s First and Second Law of Rotational Motion Outcomes Define rotational inertia, torque, and center of gravity. State and explain Newton s first Law of Motion as it
More informationEquilibrium Notes 1 Translational Equilibrium
Equilibrium Notes 1 Translational Equilibrium Ex. A 20.0 kg object is suspended by a rope as shown. What is the net force acting on it? Ex. Ok that was easy, now that same 20.0 kg object is lifted at a
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationTorque and Static Equilibrium
Torque and Static Equilibrium Rigid Bodies Rigid body: An extended object in which the distance between any two points in the object is constant in time. Examples: sphere, disk Effect of external forces
More informationis the study of and. We study objects. is the study of and. We study objects.
Static Equilibrium Translational Forces Torque Unit 4 Statics Dynamics vs Statics is the study of and. We study objects. is the study of and. We study objects. Recall Newton s First Law All objects remain
More informationPHYSICS 149: Lecture 21
PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30
More informationCHAPTER 8 TEST REVIEW MARKSCHEME
AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM
More informationAssignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ.
Assignment 9 1. A heavy cylindrical container is being rolled up an incline as shown, by applying a force parallel to the incline. The static friction coefficient is µ s. The cylinder has radius R, mass
More information1. An object is dropped from rest. Which of the five following graphs correctly represents its motion? The positive direction is taken to be downward.
Unless otherwise instructed, use g = 9.8 m/s 2 Rotational Inertia about an axis through com: Hoop about axis(radius=r, mass=m) : MR 2 Hoop about diameter (radius=r, mass=m): 1/2MR 2 Disk/solid cyllinder
More informationTest 7 wersja angielska
Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with
More informationPractice Exam #2. Please bring this with you to the SI review session on Monday, March 31. Please do NOT look past this page until then.
Exam Review Sections 7.1 13.5 Supplemental Instruction Iowa State University Leader: Brian Course: PHYS 221 Instructor: Ho Date: 03/31/2014 Practice Exam #2 Please bring this with you to the SI review
More informationHolt Physics Chapter 8. Rotational Equilibrium and Dynamics
Holt Physics Chapter 8 Rotational Equilibrium and Dynamics Apply two equal and opposite forces acting at the center of mass of a stationary meter stick. F 1 F 2 F 1 =F 2 Does the meter stick move? F ext
More informationSPH3U1  Dynamics Problems Set 3
SPH3U1  Dynamics Problems Set 3 Problems 1. A force of 1.2 N [ ] is applied to an object of mass 1.5 kg. It accelerates at 0.50 m/s 2 [ ] along a surface. Determine the force of friction that is acting
More informationPHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011
PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a righthanded Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this
More informationOn my honor, I have neither given nor received unauthorized aid on this examination.
Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.
More informationSTATICS. Friction VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.
Eighth E 8 Friction CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University Contents Introduction Laws of Dry Friction.
More informationKINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK UNIT I  PARTA
KINGS COLLEGE OF ENGINEERING ENGINEERING MECHANICS QUESTION BANK Sub. Code: CE1151 Sub. Name: Engg. Mechanics UNIT I  PARTA Sem / Year II / I 1.Distinguish the following system of forces with a suitable
More informationChapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balancethetorques lab as an inquiry introduction
Chapter 8 Rotational Motion and Equilibrium Name 1. Give explanation of torque in own words after doing balancethetorques lab as an inquiry introduction 1. The distance between a turning axis and the
More informationQ1. Which of the following is the correct combination of dimensions for energy?
Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers
More informationPhysics 2514 Lecture 13
Physics 2514 Lecture 13 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/18 Goals We will discuss some examples that involve equilibrium. We then move on to a discussion
More informationTEST REPORT. Question file: P Copyright:
Date: February1216 Time: 2:00:28 PM TEST REPORT Question file: P122006 Copyright: Test Date: 21/10/2010 Test Name: EquilibriumPractice Test Form: 0 Test Version: 0 Test Points: 138.00 Test File: EquilibriumPractice
More informationAn Accelerating Hockey Puck
Example 5.1 An Accelerating Hockey Puck A hockey puck having a mass of 0.30 kg slides on the frictionless, horizontal surface of an ice rink. Two hockey sticks strike the puck simultaneously, exerting
More informationReading Quiz. Chapter 5. Physics 111, Concordia College
Reading Quiz Chapter 5 1. The coefficient of static friction is A. smaller than the coefficient of kinetic friction. B. equal to the coefficient of kinetic friction. C. larger than the coefficient of kinetic
More informationAP practice ch 78 Multiple Choice
AP practice ch 78 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to
More informationGeneral Physics Contest 2010
General Physics Contest 2010 May 22, 2010 (9:1010:50), Total 6 pages Part I : Choice Questions (20 singlechoice questions of 3% each. Use 2B pencil to mark the answer.) 1. A particle moving along the
More informationWebreview Torque and Rotation Practice Test
Please do not write on test. ID A Webreview  8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30mradius automobile
More informationPhys 1401: General Physics I
1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?
More informationPhysics 11 Fall 2012 Practice Problems 6
Physics 11 Fall 2012 Practice Problems 6 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences
More informationRolling, Torque, Angular Momentum
Chapter 11 Rolling, Torque, Angular Momentum Copyright 11.2 Rolling as Translational and Rotation Combined Motion of Translation : i.e.motion along a straight line Motion of Rotation : rotation about a
More informationUpthrust and Archimedes Principle
1 Upthrust and Archimedes Principle Objects immersed in fluids, experience a force which tends to push them towards the surface of the liquid. This force is called upthrust and it depends on the density
More informationDefinition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)
Torque Definition is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) = r F = rfsin, r = distance from pivot to force, F is the applied force
More informationPractice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010
Practice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010 Chapter 11 1. The Ferris wheel shown below is turning at constant speed. Draw and label freebody diagrams showing the forces
More informationExam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More informationAP Physics C! name I CM R 2. v cm K = m
AP Physics C! name 120pt TAKE HOME TEST Chap 11 Rolling Mot., Angular Mom., Torque 3/914/12 Show your work on the problems Box in answers No Naked Numbers! 80pts from Chap 11 in class Questions and Problems:
More informationPhysics 201, Exam 3  Summer 2017
Physics 201, Exam 3  Summer 2017 Name (printed) On my honor as a Texas A&M University student, I will neither give nor receive unauthorized help on this exam. The fillintheblank and multiplechoice
More informationExam 2 Solutions. PHY2048 Spring 2017
Exam Solutions. The figure shows an overhead view of three horizontal forces acting on a cargo canister that was initially stationary but that now moves across a frictionless floor. The force magnitudes
More informationPHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium
PHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium These are selected problems that you are to solve independently or in a team of 23
More informationStatic Equilibrium; Torque
Static Equilibrium; Torque The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium. The first condition for equilibrium is that the net force
More informationSample Physics Placement Exam
Sample Physics 1301 Placement Exam A. Multiple Choice Questions: 1. A cable is used to take construction equipment from the ground to the top of a tall building. During the trip up, when (if ever) is
More informationif the initial displacement and velocities are zero each. [ ] PARTB
Set No  1 I. Tech II Semester Regular Examinations ugust  2014 ENGINEERING MECHNICS (Common to ECE, EEE, EIE, iotech, E Com.E, gri. E) Time: 3 hours Max. Marks: 70 Question Paper Consists of Part and
More informationRotation Quiz II, review part A
Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationPHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm
PHYSICS 221 SPRING 2017 EXAM 2: March 30, 2017; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # Student ID# INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit
More informationVALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR DEPARTMENT OF MECHANICAL ENGINEERING
VALLIAMMAI ENGINEERING COLLEGE SRM NAGAR, KATTANKULATHUR 603203 DEPARTMENT OF MECHANICAL ENGINEERING BRANCH: MECHANICAL YEAR / SEMESTER: I / II UNIT 1 PART A 1. State Newton's three laws of motion? 2.
More informationYou may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.
1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction
More informationStudent AP Physics 1 Date. Newton s Laws B FR
Student AP Physics 1 Date Newton s Laws B FR #1 A block is at rest on a rough inclined plane and is connected to an object with the same mass as shown. The rope may be considered massless; and the pulley
More informationChapter 11. Today. Last Wednesday. Precession from Pre lecture. Solving problems with torque
Chapter 11 Last Wednesday Solving problems with torque Work and power with torque Angular momentum Conserva5on of angular momentum Today Precession from Pre lecture Study the condi5ons for equilibrium
More informationPhysics 160 Spring 2013 Homework Assignments
Physics 160 Spring 2013 Homework Assignments HW #11  Due May 3. Mastering Physics: 7 questions from chapters 13 and 14. Written Question:13.77 Consider a spacecraft in elliptical orbit around the earth.
More information