# Physics 211 Week 10. Statics: Walking the Plank (Solution)

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports the beam, which has a mass of 600 kg. The breaking point of the cable is 8000 N. A man of mass 95 kg walks out along the beam. How far can he walk before the cable breaks? x T Fp Fn mg Mg Before the cable breaks, all of the torques and forces are in equilibrium. Draw a free body diagram and use it to write net force and net torque equations. Measuring torques about the given pivot will eliminate the unknown force from the pivot. You ll be left with torques from the weight of the plank, weight of the man, and the tension. Using the maximum value of the tension as the measured value of the tensional force, you can find the maximum distance that the man can walk and still have his torque balanced so that the cable does not break. You will find that he can walk 0.57 m.

2 Rotational Statics and Dynamics: Leaning Pencil A picture below shows a pencil with its sharpened end resting against a smooth vertical surface and its erase end resting on the floor. The center of mass of the pencil is 9 cm from the end of the eraser and 11 cm from the tip of the lead. The coefficient of static friction between the eraser and floor is µ = What is the minimum angle θ the pencil can make with the floor such that it does not slip? Conceptual Analysis: - The net torque and net force on the pencil are both zero. - There are four forces acting on the pencil: the normal force from the floor, the normal force from the wall, the force of gravity, and the force of friction. - The pencil wants to slide down the wall and along the floor; therefore, the force of friction along the floor must point towards the wall to balance the normal force from the wall. Strategic Analysis: - Create net force and torque equations. - Solve the equations for the angle. Quantitative Analysis: - Begin by labeling the given quantities: µ coefficient of static friction between the floor and the eraser d 1 distance from the eraser to the center of mass d 2 distance from the center of mass to the tip of the lead We are looking for θ minimum angle between the pencil and the floor

3 - In the x-direction, there is zero net force. The two forces in the x-direction are the force of friction and the normal force from the wall, so we know that: F x : f = N w - In the y-direction, there is also zero net force. The two forces in the y-direction are the force of gravity and the normal force from the floor, so we know that: F y : N = Mg - Putting the pivot at the bottom of the pencil eliminates 2 of the 4 forces. The only two forces creating torque about this pivot are the force of gravity and normal force from the floor. The two torques must be equal for the pencil to stay in place so we know that N w *(d 1 + d 2 )*sinθ = Mg*d 1 *cosθ - Using substitution with the net force equations to eliminate the normal force in the torque equation, we have N w = f = µn = µmg - So, solving: µmg*(d 1 + d 2 )*sinθ = Mg*d 1 *cosθ µ*(d 1 + d 2 )*sinθ = d 1 *cosθ θ = tan -1 d ( 1 µ(d 1 +d 2 )) The minimum angle that the pencil can make with the floor without slipping is o.

4 Rotational Statics and Dynamics: Weight on Stick One end of a uniform meter stick of mass 0.25 kg is placed against a vertical wall. The other end is held by a lightweight cord making an angle θ = 20 ο with the stick. A block with the same mass as the meter stick is suspended from the stick a distance 0.75 m from the wall. Find the tension in the cord and the frictional force between the stick and the wall. By balancing both the forces and torques, you can find both the tension and the frictional force. The net force in both the x and y direction is zero. The net force equation for the y direction will give you the relationship between the force of friction and tension. Next you can create a net torque equation. In picking your pivot, it is good to choose one end of the stick so at least one of the unknown force values is eliminated by having a zero radius. Using substitution, you should be able to obtain a tension of N and a frictional force of N. F f T N F g F g

5 Rotational Statics and Dynamics: Cylinder Held on Inclined Plane A cylinder of mass M and radius R is in static equilibrium as shown in the diagram. The cylinder rests on an inclined plane making an angle θ with the horizontal and is held by a horizontal string attached to the top of the cylinder and to the inclined plane. There is friction between the cylinder and the plane. What is the tension in the string T? The cylinder is not moving so the forces and torques are all balanced. To balance the torques, pivot the cylinder at the center. The torques about this pivot are due to the forces of tension and friction. Since both forces act at radius R, the two forces must be equal in magnitude. To balance the forces, choose axes that create ease in breaking the forces into components. With the x-axis parallel to the incline, you can balance the forces in the x-direction to obtain another equation relating the forces of friction, gravity, and tension. Knowing that the frictional force is equal to the tension, you can substitute into your net force equation and solve for the value of the tension. You should obtain

### PHYSICS - CLUTCH CH 13: ROTATIONAL EQUILIBRIUM.

!! www.clutchprep.com EXAMPLE: POSITION OF SECOND KID ON SEESAW EXAMPLE: A 4 m-long seesaw 50 kg in mass and of uniform mass distribution is pivoted on a fulcrum at its middle, as shown. Two kids sit on

### HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT STATIC EQUILIBRIUM MULTIPLE CHOICE / 33 OPEN ENDED / 80 TOTAL / 113 NAME: 1. State the condition for translational equilibrium. A. ΣF = 0 B. ΣF

### LECTURE 22 EQUILIBRIUM. Instructor: Kazumi Tolich

LECTURE 22 EQUILIBRIUM Instructor: Kazumi Tolich Lecture 22 2 Reading chapter 11-3 to 11-4 Static equilibrium Center of mass and balance Static equilibrium 3 If a rigid object is in equilibrium (constant

### Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

### Static Equilibrium; Torque

Static Equilibrium; Torque The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium. The first condition for equilibrium is that the net force

### Friction is always opposite to the direction of motion.

6. Forces and Motion-II Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:

### Phys 1401: General Physics I

1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

### The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

### Equilibrium & Elasticity

PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

### Physics 2210 Homework 18 Spring 2015

Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle

### Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

### TEST REPORT. Question file: P Copyright:

Date: February-12-16 Time: 2:00:28 PM TEST REPORT Question file: P12-2006 Copyright: Test Date: 21/10/2010 Test Name: EquilibriumPractice Test Form: 0 Test Version: 0 Test Points: 138.00 Test File: EquilibriumPractice

### Phys 1401: General Physics I

1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

### 40 N cos 35 =49N. T 1 = 28 T y

16 (a) Analyzing vertical forces where string 1 and string 2 meet, we find T 1 = 40 N cos 35 =49N (b) Looking at the horizontal forces at that point leads to T 2 = T 1 sin 35 = (49 N) sin 35 =28N (c) We

### Review for 3 rd Midterm

Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

### Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology Problem Set 10 1. Moment of Inertia: Disc and Washer (a) A thin uniform disc of mass M and radius R is mounted on an axis passing

### AQA Maths M2. Topic Questions from Papers. Moments and Equilibrium

Q Maths M2 Topic Questions from Papers Moments and Equilibrium PhysicsndMathsTutor.com PhysicsndMathsTutor.com 11 uniform beam,, has mass 20 kg and length 7 metres. rope is attached to the beam at. second

### Upthrust and Archimedes Principle

1 Upthrust and Archimedes Principle Objects immersed in fluids, experience a force which tends to push them towards the surface of the liquid. This force is called upthrust and it depends on the density

### 1 MR SAMPLE EXAM 3 FALL 2013

SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

### Physics B Newton s Laws AP Review Packet

Force A force is a push or pull on an object. Forces cause an object to accelerate To speed up To slow down To change direction Unit: Newton (SI system) Newton s First Law The Law of Inertia. A body in

### Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Isaac Newton (1642-1727) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

### Equilibrium: Forces and Torques

Practice 15B Answers are available in the classroom and on the website. Scan this QR code for a direct link. Equilibrium: Forces and Torques 16. Lynn walks across a 9.0 m long plank bridge. The mass of

### PHYS 100 (from 221) Newton s Laws Week8. Exploring the Meaning of Equations

Exploring the Meaning of Equations Exploring the meaning of the relevant ideas and equations introduced recently. This week we ll focus mostly on Newton s second and third laws: Kinematics describes the

### AP Physics Multiple Choice Practice Torque

AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44

### Fr h mg rh h. h 2( m)( m) ( (0.800 kg)(9.80 m/s )

5. We consider the wheel as it leaves the lower floor. The floor no longer exerts a force on the wheel, and the only forces acting are the force F applied horizontally at the axle, the force of gravity

### pg B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is dra

pg 165 A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x

### CHAPTER 4 NEWTON S LAWS OF MOTION

62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

### Examples Newton's Laws and Friction

Examples Newton's Laws and Friction 1. A 10.0 kg box is sitting on a table. (A) If a 49 N force is required to overcome friction and start the block moving, calculate the coefficient of static friction.

### Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

### Consider two students pushing with equal force on opposite sides of a desk. Looking top-down on the desk:

1 Bodies in Equilibrium Recall Newton's First Law: if there is no unbalanced force on a body (i.e. if F Net = 0), the body is in equilibrium. That is, if a body is in equilibrium, then all the forces on

### An Accelerating Hockey Puck

Example 5.1 An Accelerating Hockey Puck A hockey puck having a mass of 0.30 kg slides on the frictionless, horizontal surface of an ice rink. Two hockey sticks strike the puck simultaneously, exerting

### Welcome back to Physics 211

Welcome back to Physics 211 Today s agenda: Weight Friction Tension 07-1 1 Current assignments Thursday prelecture assignment. HW#7 due this Friday at 5 pm. 07-1 2 Summary To solve problems in mechanics,

### Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5.

Phys101 Lectures 19,20 Statics Key points: The Conditions for static equilibrium Solving statics problems Stress and strain Ref: 9-1,2,3,4,5. Page 1 The Conditions for Static Equilibrium An object in static

### Physics 2514 Lecture 13

Physics 2514 Lecture 13 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/18 Goals We will discuss some examples that involve equilibrium. We then move on to a discussion

### Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction

Chapter 8 Rotational Motion and Equilibrium Name 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction 1. The distance between a turning axis and the

### AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

### PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74

PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74 8.3 A 2-kg ball is held in position by a horizontal string and a string that makes an angle of 30 with the vertical, as

### Q1. Which of the following is the correct combination of dimensions for energy?

Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers

### AP Mechanics Summer Assignment

2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

### Sara Rwentambo. PHYS 1007 AB

Topics: Free body diagrams (FBDs) Static friction and kinetic friction Tension and acceleration of a system Tension in dynamic equilibrium (bonus question) Opener: Find Your Free Body Diagram Group Activity!

### Rotation review packet. Name:

Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the

### Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities

Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities 1. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the

### AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).

AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the

### Physics 111: Mechanics Lecture 5

Physics 111: Mechanics Lecture 5 Bin Chen NJIT Physics Department Forces of Friction: f q When an object is in motion on a surface or through a viscous medium, there will be a resistance to the motion.

### PSI AP Physics B Dynamics

PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

### PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

### Physics 8 Wednesday, October 25, 2017

Physics 8 Wednesday, October 25, 2017 HW07 due Friday. It is mainly rotation, plus a couple of basic torque questions. And there are only 8 problems this week. For today, you read (in Perusall) Onouye/Kane

### Lecture Presentation Chapter 8 Equilibrium and Elasticity

Lecture Presentation Chapter 8 Equilibrium and Elasticity Suggested Videos for Chapter 8 Prelecture Videos Static Equilibrium Elasticity Video Tutor Solutions Equilibrium and Elasticity Class Videos Center

### = v 0 x. / t = 1.75m / s 2.25s = 0.778m / s 2 nd law taking left as positive. net. F x ! F

Multiple choice Problem 1 A 5.-N bos sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at one instant the bos sliding to the right at 1.75 m/s

### Phys101 Lecture 5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects Free-Body Diagrams Ref: 4-1,2,3,4,5,6,7. Page

### UNIVERSITY OF MANITOBA

PAGE NO.: 1 of 6 + Formula Sheet Equal marks for all questions. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will look

### Physics 211 Week 4. Work and Kinetic Energy: Block on Incline (Solutions)

Physics 211 Week 4 Work and Kinetic Energy: Block on Incline (Solutions) A block of mass 3 kg is moved up an incline that makes an angle of 37 o with the horizontal under the action of a constant horizontal

### Announcements Oct 16, 2014

Announcements Oct 16, 2014 1. Prayer 2. While waiting, see how many of these blanks you can fill out: Centripetal Accel.: Causes change in It points but not Magnitude: a c = How to use with N2: Always

### Physics 1A Lecture 10B

Physics 1A Lecture 10B "Sometimes the world puts a spin on life. When our equilibrium returns to us, we understand more because we've seen the whole picture. --Davis Barton Cross Products Another way to

### Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

### Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of:

The exam is closed book and closed notes. There are 30 multiple choice questions. Make sure you put your name, section, and ID number on the SCANTRON form. The answers for the multiple choice Questions

### Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

### 2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

### Physics 101 Lecture 12 Equilibrium

Physics 101 Lecture 12 Equilibrium Assist. Prof. Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net eternal

### PHY131H1S - Class 20. Pre-class reading quiz on Chapter 12

PHY131H1S - Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Pre-class reading quiz on Chapter 12 1 Last

### Physics 2210 Fall Review for Midterm Exam 2 10/07/2015

Physics 2210 Fall 2015 Review for Midterm Exam 2 10/07/2015 Problem 1 (1/3) A spring of force constant k = 800 N/m and a relaxed length L 0 = 1.10 m has its upper end fixed/attached to a pivot in the ceiling.

### Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14

Static equilibrium Objectives State the conditions of static equilibrium in terms of forces and torques. Draw a free-body diagram of a lever showing all forces. Use the condition of equilibrium to solve

### OCR Maths M2. Topic Questions from Papers. Statics

OR Maths M2 Topic Questions from Papers Statics PhysicsndMathsTutor.com 51 PhysicsndMathsTutor.com uniformrod of length 60 cm and weight 15 N is freely suspended from its end. Theend of the rod is attached

### Exam 3 Practice Solutions

Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

### PHYS 100 Midterm Exam Review Session

PHYS 100 Midterm Exam Review Session y x F net on A = m a A A v = v + a t x 0x x x = x + v + a t 1 0 0x ( ) ( ) v = v + a x x x 0x x 0 x Physics 100 Midterm Review, Slide 1 Midterm Exam TODAY (Mar 9):

### End-of-Chapter Exercises

End-of-Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a

### where x and y are any two non-parallel directions in the xy-plane. iii) One force equation and one moment equation.

Concurrent Force System ( of Particles) Recall that the resultant of a concurrent force system is a force F R that passes through the point of concurrency, which we label as point O. The moment equation,

### https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

### Acceleration due to Gravity

Acceleration due to Gravity 1 Object To determine the acceleration due to gravity by different methods. 2 Apparatus Balance, ball bearing, clamps, electric timers, meter stick, paper strips, precision

### CHAPTER 8 TEST REVIEW MARKSCHEME

AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

### Physics 207 Lecture 9. Lecture 9

Lecture 9 Today: Review session Assignment: For Thursday, Read Chapter 8, first four sections Exam Wed., Feb. 18 th from 7:15-8:45 PM Chapters 1-7 One 8½ X 11 note sheet and a calculator (for trig.) Place:

### Newton s 3 Laws of Motion

Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

### A. B. C. D. E. v x. ΣF x

Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

### Torque and Static Equilibrium

Torque and Static Equilibrium Rigid Bodies Rigid body: An extended object in which the distance between any two points in the object is constant in time. Examples: sphere, disk Effect of external forces

Semester 1 Revision Last modified: 05/06/2018 Contents Links Motion with Uniform Acceleration Equations Method Example Forces Equations Method Example Static Equilibrium Equations Method Example Energy

### HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest

### 1. An object is fired with an initial velocity of 23 m/s [R30 U]. What are the initial components of its velocity?

Physics 304 Unit 1 - Total Review 1. An object is fired with an initial velocity of 3 m/s [R30U]. What are the initial components of its velocity?. An object rolls off the top of a horizontal table. a)

### Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

### Forces on an inclined plane. And a little friction too

Forces on an inclined plane And a little friction too The Takeaway } You should be able to: } 2.2.2 Identify the forces acting on an object } Forces on non-horizontal surfaces } Including Friction } 2.2.8

### Chapter 11. Today. Last Wednesday. Precession from Pre- lecture. Solving problems with torque

Chapter 11 Last Wednesday Solving problems with torque Work and power with torque Angular momentum Conserva5on of angular momentum Today Precession from Pre- lecture Study the condi5ons for equilibrium

### Physics. TOPIC : Friction. 1. To avoid slipping while walking on ice, one should take smaller steps because of the

TOPIC : Friction Date : Marks : 0 mks Time : ½ hr. To avoid slipping while walking on ice, one should take smaller steps because of the Friction of ice is large (b Larger normal reaction (c Friction of

### Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

### A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

### 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. Problem Set 2

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology 1. Stacked Blocks Problem Set 2 Consider two blocks that are resting one on top of the other. The lower block has mass m 2 = 4.8

### Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)

Torque Definition is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) = r F = rfsin, r = distance from pivot to force, F is the applied force

### Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

### Chapter 9. Rotational Dynamics

Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

### Chapter 5. The Laws of Motion

Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

Connected Bodies 1. Two 10 kg bodies are attached to a spring balance as shown in figure. The reading of the balance will be 10 kg 10 kg 1) 0 kg-wt ) 10 kg-wt 3) Zero 4) 5 kg-wt. In the given arrangement,

### It will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV

AP Physics 1 Lesson 16 Homework Newton s First and Second Law of Rotational Motion Outcomes Define rotational inertia, torque, and center of gravity. State and explain Newton s first Law of Motion as it

### = o + t = ot + ½ t 2 = o + 2

Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

### Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:

Do not fill out the information below until instructed to do so! Name: Signature: Student ID: E-mail: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You

### 24/06/13 Forces ( F.Robilliard) 1

R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

### CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

### Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity

Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular

### b) Fluid friction: occurs when adjacent layers in a fluid are moving at different velocities.

Ch.6 Friction Types of friction a) Dry friction: occurs when non smooth (non ideal) surfaces of two solids are in contact under a condition of sliding or a tendency to slide. (also called Coulomb friction)

### PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

### Find the magnitude of F when t = 2. (9 marks)

Condensed M2 Paper These questions are all taken from a Mechanics 2 exam paper, but any intermediate steps and diagrams have been removed, leaving enough information to answer the question, but none of