Exam 3 Practice Solutions


 Lauren Hodge
 1 years ago
 Views:
Transcription
1 Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at the same instant, in which order will they reach the bottom? (a) disk, sphere, hoop (b) sphere, disk, hoop (c) hoop, disk, sphere (d) hoop, sphere, disk (e) sphere, hoop, disk At the top of the ramp, each object has the same gravitational potential energy. The gravitational potential energy is converted to translational and rotational kinetic energy. More of the energy will show up as rotational kinetic eneryg for objects with higher moments of inertia. Therefore, the objects with lower moments of inertia will reach the bottom first: sphere ( 2 5 MR2 ), disk ( 1 2 MR2 ), hoop (MR 2 ). 2. A student is sitting on a heavy stool with their feet off of the ground. The stool s seat is free to rotate. The student holds a spinning wheel with a heavy rim, as shown below. As viewed from the front, the student tilts the wheel to the right (the student tilts the wheel to their left). What happens? (a) the stool rotates clockwise as viewed from above When the student tips the wheel to the right, their is an angular momentum change of L as shown above. Since angular momentum is conserved, there must be a corresponding angular momentum change of L for the stool. This corresponds to a clockwise rotation when viewed from above. 1
2 3. The vectors shown below represent forces of equal magnitude applied to boxes of equal mass (shown in gray). All forces are either vertical, horizontal, or at a 45 angle. Which of the boxes are in translational and rotational equilibrium? (a) I only (b) II only (c) III only (d) I and II (e) I and III (f) II and III (g) I, II, and III Box II will rotate clockwise. Boxes I and III are in translation equilibrium: for every force vector, there is a force vector pointing in the opposite direction. Boxes I and III are also in rotational equilibrium: for every torque, there is an equal and opposite torque. 4. A child stands of mass m at the edge of a rotating disk of mass M (like a merrygoround). The disk rotates with angular velocity ω 0. Suppose that she starts walking opposite the direction of rotation so that she is at rest with respect to the ground. What is the final angular velocity of the disk? ) (a) ω 0 (1 2m M M (b) ω 0 m ( (c) ω m ) M ) (d) ω 0 (M 2m M (e) ω 0 m M Angular momentum must be conserved. The angular momentum before and after she starts walking are equal. Since she is walking so that she is motionless with respect to the ground, her angular velocity must be zero. She no longer carries any angular momentum, so the angular velocity of the 2
3 disk must increase so that it carries more angular momentum. L = L I disk ω 0 + I child ω 0 = I disk ω 1 2 MR2 ω 0 + mr 2 ω 0 = 1 2 MR2 ω 2 M ( 1 2 M + m ) ω 0 = ω ( 1 + 2m M ) ω 0 = ω 5. The moment of inertia of a disk of mass m and radius R about an axis through the edge of the disk and perpendicular to the disk s surface is (a) 1 2 mr2 (b) mr 2 (c) 3 2 mr2 (d) 2mR 2 (e) none of the above Use the parallel axis theorem to find the new moment of inertia. I = I cm + mh 2 I = 1 2 mr2 + mr 2 I = 3 2 mr2 6. A particle of mass m moves in the +î direction with velocity v as shown below. The ĵ direction is up and the ˆk direction is out of the page. The angular momentum of the particle about the point P is (a) mrv ˆk (b) mrv ˆk (c) mrv sin θ ˆk 3
4 (d) mrv sin θ ˆk (e) none of the above The angular momentum is L = r p. The vector r points from P to the particle, so the direction of r p is into the page, or ˆk. The magnitude of the cross product is rp sin θ = mrv sin θ. 7. A thin rod of mass M and length L spins clockwise with angular velocity ω about an axis that passes through one end of the rod, perpendicular to its length. An object of mass m moving to the left with velocity v strikes the rod at its midpoint and sticks to it. The rod stops spinning. What was v? (a) MLω 3m (b) MLω 6m (c) MLω 12m (d) 2MLω 3m (e) there is not enough information to solve this problem Angular momentum is conserved in the collision, so the angular momenta of the object and the rod must be equal and opposite. The angular momentum of the object is mvl 2, out of the page. The angular momentum of the rod is Iω 2 = 1 3 ML2 ω. mvl 2 = 1 3 ML2 ω v = 2MLω 3m 4
5 8. A nonuniform rod of length L is suspended horizontally by two cords as shown below. The left cord makes an angle of 30 with the vertical and the right cord makes an angle of 60 with the vertical. The rod is in equilibrium. Measuring from the left, where is the center of mass of the rod? (a) L 4 (b) 2L 3 (c) 3L 4 (d) 7L 8 (e) there is not enough information to solve this problem Since the rod is in equilibrium and shifted to the right, we expect that the center of mass will be closer to the right. The tension in the right string is T R, in the left string is T L, and the location of the center of mass is x. The rod is in translational equilibrium, so: Fx = 0 T L sin 60 + T R sin 30 = 0 (.866)T L + (.5)T R = 0 T L = (.577)T R and Fy = 0 Mg + T L cos60 + T R cos30 = 0 Mg + (.5)T L + (.866)T R = 0 Mg + (.5)(.577)T R + (.866)T R = 0 Mg + (1.155)T R = 0 T R = (.866)Mg The rod is also in rotational equilibrium. Setting the pivot point at the left end of the rod: τ = 0 Mgx (.866)T R L = 0 Mgx (.866)(.866)MgL = 0 x =.75L 5
6 9. A mass is attached to a cord which is wound about a pulley that is fixed in placed and free to rotate. If the mass is allowed to drop, which set of graphs best describes the angular displacement, angular velocity, and angular acceleration of the pulley? The horizontal axis on each graph is time, while the vertical axes are θ, ω, or α, as labeled. Angular acceleration is the derivative (with respect to time) of angular velocity, which is the derivative of angular displacement. Furthermore, for a falling mass, we expect a constant acceleration, a linearly increasing velocity, and a parabolic displacement. The only choice that correctly displays these characteristics is (b). 6
7 Problems 1. A cart of mass m (cart A) slides with velocity v to the right on a frictionless surface. Another cart (cart B), also of mass m is at rest a distance x 1 ahead of it. A distance x 2 beyond the second cart, a spring of spring constant k is attached to a wall. Assume that all collisions are perfectly elastic. What are the final velocities of carts A and B? Explain briefly. Cart A is moving to the right with velocity v, so it will collide with cart B. Since both carts have the same mass and the collision is elastic, they will simply exchange velocities. Cart A stops while cart B moves to the right with velocity v. Cart B then collides with and compresses the spring. Since the spring force is conservative, no energy is lost in the compression and subsequent expansion of the spring. Cart B is sent back to the left with the same velocity v. It then collides again with cart A. Once again, since the carts have the same mass and the collision is elastic, they simply exchange velocities. The final velocity of cart A is v to the left and cart B is at rest. 7
8 2. A block of mass m=1 kg is released from rest at the top of a frictionless inclined plane. The plane is h=5 m high at an angle of 45. When the block reaches the end of the plane, it transitions smoothly to a rough surface where friction cannot be neglected. The block slides a distance d before coming to a stop. (a) Sketch a graph that shows the block s potential energy, kinetic energy, and total mechanical energy as a function of position x (see figure). It is convenient to set the zero of gravitational potential energy to be the bottom of the ramp (that definition will be used for the remainder of this problem). The total mechanical energy, the potential energy, and the kinetic energy of the block are graphed below. The blocks initially has only gravitation potential energy. As it slides down the ramp, it gains kinetic energy but loses gravitational potential energy. When it reaches the bottom of the ramp, all of the gravitational potential energy has been converted into kinetic energy. While the block is on the ramp, the total mechanical energy remains constant because only conservative forces (gravity) are acting. When the block begins to slide horizontally, friction starts to do work. Friction is a nonconservative force, so the mechanical energy drops until the work done by friction has removed all of the mechanical energy from the system and converted it to heat. Thus, the mechanical energy drops to zero over some distance (and the kinetic energy, of course, which is equal to the mechanical energy). 8
9 (b) If the frictional force is a constant 5 N, what is d? When the block stops, it has zero mechanical energy. The initial mechanical energy was entirely gravitational potential energy. The mechanical energy was lost to work done by friction, or F F d, where F F is the force of friction and d is the distance the block slides on the horizontal surface. We can use conservation of total energy to determine how far the block slides: mgh = F F d d = mgh F F d = (1)(9.8)(5) 5 d = 9.8 m (c) Take a look at your graph. Is mechanical energy conserved? Why or why not? What about total energy? No, mechanical energy is not conserved. Mechanical energy is lost to work done by friction. Total energy is conserved, since the work done by friction is the same as the mechanical energy lost. Total energy is always conserved; unfortunately it is most often converted into unusable forms such as heat (via friction in this case). 9
10 3. A block of mass m=.306 kg is dropped from height h=1.33 m. Directly underneath the block is a spring in its equilibrium position with spring constant k=2 N/m. The spring has a massless platform that is attached to its top (the top of the spring with platform is even with the ground level). The block lands on and compresses the spring by a distance x. This is not a homework problem  feel free to round your answers as you go. Hint: The following relation may be useful: if ax 2 + bx + c = 0, then x = b± b 2 4ac 2a. (a) What is the speed of the block just before it hits the spring? Set the zero of gravitational potential energy as the ground level from which h is measured (and keep this definition throughout the problem). Mechanical energy is conserved in this system since we have only conservative forces (gravity and spring forces). The block starts out at rest with only gravitational potential energy mgh. When the block is about to hit the spring, the gravitational potential energy is entirely converted to kinetic energy: mgh = 1 2 mv2 v 2 = 2gh v = 2gh = 2(9.8)(1.33) v = 5.1 m/s (b) When the block returns to height h after bouncing off of the spring, what is its speed? Explain. Since mechanical energy is conserved, the block will always have the same mechanical energy. The block starts with total mechanical energy mgh and speed v=0. When the block returns to height h, it has gravitational potential energy mgh which is the same as the total mechanical energy. Thus, the speed of the block must be zero again. 10
11 (c) Write an expression for the conservation of energy when the spring is at maximum compression (in terms of the givens m, g, h, x, or k). At maximum compression, the spring is compressed a distance x by the block. Thus, the spring will have potential energy 1 2 kx2. The block stops moving at this point and has no kinetic energy. However, the block is now located a distance x below the ground level where we set the zero of gravitation potential energy. Thus, the block has gravitational potential energy mgx. The block started out with gravitational potential energy mgh. Conservation of energy says that E initial = E final mgh = 1 2 kx2 mgx (d) Find x, the maximum distance the spring is compressed. To find x, we need to solve the equation we determined in (c). This is a quadratic equation: 0 = 1 2 kx2 mgx mgh 0 = 1 2 (2)x2 (.306)(9.8)x (.306)(9.8)(1.33) 0 = x 2 3x 4 Using the quadratic formula with a = 1, b = 3, and c = 4, we obtain x = 3 ± x = 3 ± 5 2 x = 4 or 1 Since x is positive based on my definition of the gravitational potential energy, the solution is x=4 m. 11
12 4. Two identical spools of thread (solid cylinders with several windings of thread) are held the same height above the floor. The thread from spool A is tied to a support, while spool B is not connected to a support. The thread has negligible mass. Both spools are released from rest at the same instant. (a) Draw a freebody diagram for each spool corresponding to an instant after they are released, but before they hit the ground. Be sure to draw each force exactly where it acts. Compare the magnitude of all forces on your diagrams. The tension T < F g. (b) Which spool will reach the floor first? Explain how your answer is consistent with your freebody diagrams. Spool B will reach the ground first, as it has only one force acting on it, F g, in the downward direction. Spool A has two forces acting on it, one of which is in the upward direction, the tension T. Thus the downward acceleration of spool B will be larger. 12
13 (c) Will spool A strike the floor directly below the point where it was released, to the right of this point, or to the left of this point? Explain. Spool A will strike the floor directly below where it was released. There are no horizontal forces on spool A (it is in equilibrium in the horizontal direction) so there is no acceleration in the horizontal direction. (d) What is the ratio of the accelerations of the two spools ( a A ab )? The acceleration of spool B is simply a B = g, the acceleration due to gravity. For spool A, we need to find the acceleration by taking the tension into account. From Newton s second law for translational motion, we have T + F g = ma A where m is the mass of the spool. From Newton s second law for rotational motion, we have τ = I α. Working on the rotational motion first, we can relate the linear acceleration a A to the angular acceleration α by α = aa R where R is the radius of the spool. This is because the string constrains the rotation of the spool. τ = Iα TR = 1 2 mr2a A R T = 1 2 ma A Now we can substitute our expression for T into the equation for the translational motion. T mg = ma A 1 2 ma A mg = ma A 3 2 a A = g a A = 2 3 g Where we were careful to explicitly note the directions of tension, acceleration, and acceleration due to gravity in the first step. The ratio of the accelerations is thus a A a B = 2g 3g = 2 3 (e) What is the ratio of the velocities of the two spools just before each hits the floor ( v A vb )? The easiest way to solve this problem is using conservation of energy. Using the kinematic equations is challenging because each spool is in the air for a different amount of time. Both spools start with the same gravitational potential energy, mgh, where h is the height of the spool above the floor. This energy is shared between rotational and translational motion as the spool falls. Since spool B will not rotate, it will have a higher velocity. 1 2 mv2 B = mgh v B = 2gh 13
14 Spool A will rotate: 1 2 mv2 A Iω2 A = mgh 1 2 mv2 A mr2 ( v A R )2 = mgh 1 2 mv2 A mr2 ( v A R )2 = mgh 3 4 v2 A = mgh 4gh v A = 3 The ratio of the velocities is v A v B = 4gh (3)2gh =
Rolling, Torque & Angular Momentum
PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More information11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.
A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More information= y(x, t) =A cos (!t + kx)
A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8
More informationI pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2
Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton 3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.
More informationChapter 10. Rotation
Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGrawPHY 45 Chap_10HaRotationRevised
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationPHYSICS 149: Lecture 21
PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30
More informationVersion A (01) Question. Points
Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationPhysics 2210 Homework 18 Spring 2015
Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle
More informationCHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque
7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity
More information= 2 5 MR2. I sphere = MR 2. I hoop = 1 2 MR2. I disk
A sphere (green), a disk (blue), and a hoop (red0, each with mass M and radius R, all start from rest at the top of an inclined plane and roll to the bottom. Which object reaches the bottom first? (Use
More informationQuiz Number 4 PHYSICS April 17, 2009
Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given
More informationFALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003
FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is
More informationWeek 3 Homework  Solutions
University of Alabama Department of Physics and Astronomy PH 05 LeClair Summer 05 Week 3 Homework  Solutions Problems for 9 June (due 0 June). On a frictionless table, a mass m moving at speed v collides
More informationRolling, Torque, and Angular Momentum
AP Physics C Rolling, Torque, and Angular Momentum Introduction: Rolling: In the last unit we studied the rotation of a rigid body about a fixed axis. We will now extend our study to include cases where
More informationPhys 270 Final Exam. Figure 1: Question 1
Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating
More informationPhys 106 Practice Problems Common Quiz 1 Spring 2003
Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More informationChapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis
Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis... 2 21.1 Introduction... 2 21.2 Translational Equation
More informationChapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity
Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular
More informationVersion 001 Rolling & Angular Momentum ramadoss (171) 1
Version 001 olling & Angular omentum ramadoss (171 1 This printout should have 76 questions ultiplechoice questions may continue on the next column or page find all choices before answering One version
More informationAngular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion
Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for
More informationRotational Dynamics Smart Pulley
Rotational Dynamics Smart Pulley The motion of the flywheel of a steam engine, an airplane propeller, and any rotating wheel are examples of a very important type of motion called rotational motion. If
More informationReview PHYS114 Chapters 47
Review PHYS114 Chapters 47 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does
More informationAngular Momentum. L r p. For a particle traveling with velocity v relative to a point O, the particle has an angular momentum
Angular Momentum Angular Momentum For a particle traveling with velocity v relative to a point O, the particle has an angular momentum y v θ L r p O r x z When is the angular momentum for a particle 0?
More informationPhys 1401: General Physics I
1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?
More informationWritten Homework problems. Spring (taken from Giancoli, 4 th edition)
Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m
More information(a) On the dots below that represent the students, draw and label freebody diagrams showing the forces on Student A and on Student B.
2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on
More informationBig Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular
Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only
More informationMechanics II. Which of the following relations among the forces W, k, N, and F must be true?
Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationPractice Problems for Exam 2 Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 008 Practice Problems for Exam Solutions Part I Concept Questions: Circle your answer. 1) A springloaded toy dart gun
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More informationPHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems.
Note: To simplify calculations, you may use PHYSICS 1 Section I 40 Questions Time 90 minutes 2 g = 10 m s in all problems. Directions: Each of the questions or incomplete statements below is followed by
More informationRotational Kinetic Energy
Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body
More informationFigure 1 Answer: = m
Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel
More informationChapter 910 Test Review
Chapter 910 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular
More information第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel
More informationfrictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o
AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.
More informationThe Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples
The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal
More informationPractice Test for Midterm Exam
A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it
More informationAP Physics 1 Rotational Motion Practice Test
AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able
More informationFall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton
Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton 3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.
More information3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.
AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,
More informationName Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?
NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass
More information2007 Problem Topic Comment 1 Kinematics Positiontime equation Kinematics 7 2 Kinematics Velocitytime graph Dynamics 6 3 Kinematics Average velocity
2007 Problem Topic Comment 1 Kinematics Positiontime equation Kinematics 7 2 Kinematics Velocitytime graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics
More informationPhysics 106 Common Exam 2: March 5, 2004
Physics 106 Common Exam 2: March 5, 2004 Signature Name (Print): 4 Digit ID: Section: Instructions: nswer all questions. Questions 1 through 10 are multiple choice questions worth 5 points each. You may
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationPHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 111, 1314
Final Review: Chapters 111, 1314 These are selected problems that you are to solve independently or in a team of 23 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
PH 105 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Is it possible for a system to have negative potential energy? A)
More informationChapter 8  Rotational Dynamics and Equilibrium REVIEW
Pagpalain ka! (Good luck, in Filipino) Date Chapter 8  Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body
More informationREVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions
REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,
More informationAP Physics C Summer Assignment Kinematics
AP Physics C Summer Assignment Kinematics 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will the motorcycle
More informationPhysics 6A Winter 2006 FINAL
Physics 6A Winter 2006 FINAL The test has 16 multiple choice questions and 3 problems. Scoring: Question 116 Problem 1 Problem 2 Problem 3 55 points total 20 points 15 points 10 points Enter the solution
More information4) Vector = and vector = What is vector = +? A) B) C) D) E)
1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In
More informationTwentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test
Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, 2005 Mechanics Test Please answer the following questions on the supplied answer sheet. You may write on this test booklet,
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 3035,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationGeneral Physics (PHY 2130)
General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:
More informationCHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY
CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational
More informationPHY131H1S  Class 20. Preclass reading quiz on Chapter 12
PHY131H1S  Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Preclass reading quiz on Chapter 12 1 Last
More information(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III
1. A solid metal ball and a hollow plastic ball of the same external radius are released from rest in a large vacuum chamber. When each has fallen 1m, they both have the same (A) inertia (B) speed (C)
More informationTorque. Introduction. Torque. PHY torque  J. Hedberg
Torque PHY 207  torque  J. Hedberg  2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem
More informationExam 2: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term 2012 Exam 2: Equation Summary Newton s Second Law: Force, Mass, Acceleration: Newton s Third Law: Center of Mass: Velocity
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationAP Physics Review FRQ 2015
AP Physics Review FRQ 2015 2015 Mech 1. A block of mass m is projected up from the bottom of an inclined ramp with an initial velocity of magnitude v 0. The ramp has negligible friction and makes an angle
More informationPHYS 101 Previous Exam Problems. Force & Motion I
PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0kg block is lowered with a downward
More informationChapter 9 TORQUE & Rotational Kinematics
Chapter 9 TORQUE & Rotational Kinematics This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case. This car is in dynamic equilibrium
More informationExam 3 PREP Chapters 6, 7, 8
PHY241  General Physics I Dr. Carlson, Fall 2013 Prep Exam 3 PREP Chapters 6, 7, 8 Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Astronauts in orbiting satellites
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More informationName: AP Physics C: Kinematics Exam Date:
Name: AP Physics C: Kinematics Exam Date: 1. An object slides off a roof 10 meters above the ground with an initial horizontal speed of 5 meters per second as shown above. The time between the object's
More informationWe define angular displacement, θ, and angular velocity, ω. What's a radian?
We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise
More informationModule 14: Application of the Principle of Conservation of Energy
Module 14: Application of the Principle of Conservation of Energy In the preceding chapter we consider closed systems!e system = 0 in which the only interactions on the constituents of a system were due
More informationPhysics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating
Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N
More informationExtra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.
Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?
More informationQ1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98)
Coordinator: Dr. Kunwar S. Wednesday, May 24, 207 Page: Q. A hotair balloon is ascending (going up) at the rate of 4 m/s and when the balloon is 98 m above the ground a package is dropped from it, vertically
More informationROTATIONAL DYNAMICS AND STATIC EQUILIBRIUM
ROTATIONAL DYNAMICS AND STATIC EQUILIBRIUM Chapter 11 Units of Chapter 11 Torque Torque and Angular Acceleration Zero Torque and Static Equilibrium Center of Mass and Balance Dynamic Applications of Torque
More informationChapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:
CHAPTER 8 3. If a net torque is applied to an object, that object will experience: a. a constant angular speed b. an angular acceleration c. a constant moment of inertia d. an increasing moment of inertia
More informationPhysics 2210 Fall smartphysics 16 Rotational Dynamics 11/13/2015
Physics 10 Fall 015 smartphysics 16 Rotational Dynamics 11/13/015 A rotor consists of a thin rod of length l=60 cm, mass m=10.0 kg, with two spheres attached to the ends. Each sphere has radius R=10 cm,
More informationConcept of Force Challenge Problem Solutions
Concept of Force Challenge Problem Solutions Problem 1: Force Applied to Two Blocks Two blocks sitting on a frictionless table are pushed from the left by a horizontal force F, as shown below. a) Draw
More informationQUESTION TWO: BUNGY JUMPING. Acceleration due to gravity = 9.81 m s 2
6 QUESTION TWO: BUNGY JUMPING Acceleration due to gravity = 9.81 m s Standing on a platform that is 5.0 m above a river, Emma, of height.00 m and mass m, is tied to one end of an elastic rope (the bungy)
More informationAP Physics Multiple Choice Practice Torque
AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44
More informationAAPT UNITED STATES PHYSICS TEAM AIP 2008
8 F = ma Exam AAPT UNITED STATES PHYSICS TEAM AIP 8 8 F = ma Contest 5 QUESTIONS  75 MINUTES INSTRUCTIONS DO NOT OPEN THIS TEST UNTIL YOU ARE TOLD TO BEGIN Use g = N/kg throughout this contest. You may
More informationAngular Momentum L = I ω
Angular Momentum L = Iω If no NET external Torques act on a system then Angular Momentum is Conserved. Linitial = I ω = L final = Iω Angular Momentum L = Iω Angular Momentum L = I ω A Skater spins with
More informationMoment of Inertia & Newton s Laws for Translation & Rotation
Moment of Inertia & Newton s Laws for Translation & Rotation In this training set, you will apply Newton s 2 nd Law for rotational motion: Στ = Σr i F i = Iα I is the moment of inertia of an object: I
More informationStudy Guide Final Exam Solutions. Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines
Massachusetts Institute of Technology Department of Physics 8.0T Fall 004 Study Guide Final Exam Solutions Part A: Kinetic Theory, First Law of Thermodynamics, Heat Engines Problem Energy Transformation,
More informationChap. 10: Rotational Motion
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N
More informationRevolve, Rotate & Roll:
I. WarmUP. Revolve, Rotate & Roll: Physics 203, Yaverbaum John Jay College of Criminal Justice, the CUNY Given g, the rate of freefall acceleration near Earth s surface, and r, the radius of a VERTICAL
More informationMultiple Choice  TEST III
Multiple Choice Test IIIClassical Mechanics Multiple Choice  TEST III 1) n atomic particle whose mass is 210 atomic mass units collides with a stationary atomic particle B whose mass is 12 atomic mass
More information43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms,
43. A person sits on a freely spinning lab stool that has no friction in its axle. When this person extends her arms, A) her moment of inertia increases and her rotational kinetic energy remains the same.
More informationTorque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.
Warm up A remotecontrolled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics
More informationUnit 4 Work, Power & Conservation of Energy Workbook
Name: Per: AP Physics C Semester 1  Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4  Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics
More informationUNIVERSITY OF MANITOBA. All questions are of equal value. Answer all questions. No marks are subtracted for wrong answers.
PAGE NO.: 1 of 5 All questions are of equal value. Answer all questions. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will
More informationPhysics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here.
Physics 07: Lecture 4 Announcements No labs next week, May 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here Today s Agenda ecap: otational dynamics and torque Work and energy with example Many
More informationAP PHYSICS B SUMMER REVIEW PACKET
AP PHYSICS B SUMMER REVIEW PACKET 20112012 1 Table of Contents Page(s) Table of Contents 1 Objectives and instructions 2 Content Outline 34 A. KINEMATICS 511 1) STUDENT OBJECTIVES 5 2) CONCEPT DEVELOPMENT
More information