Physics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems


 Edith Griffin
 10 months ago
 Views:
Transcription
1 A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E 4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying at a height of 100 m Answer: 0.017, 3 cm RoessBoss 1
2 The platter of the hard disk of a computer rotates at 5400 rpm A) What is the angular velocity of the disk A) what is the angular velocity of the disk B) If the reading heat of the drive is located 3.0 cm from the rotation axis, what is the speed of the disk below it? C) What is the linear acceleration of this point D) if a single bit requires 5.0 µm of length along the motion direction, how many bits per second can the writing head write when it is 3.0 cm from the axis? E)If the disk took 3.6 s to spin up to 5400 rpm from rest, what was the average acceleration Answer: 570 rad/s; 17 m/s; 9700 m/s^2; 3.4 E 6 bits per second; 160 rad/s^2 RoessBoss 2
3 Through how many revolutions did the hard drive of the previous example turn to reach 5400 rpm during its acceleration period? Assume constant angular accleration Answer: 1.04 E 3 rad, 165 rev RoessBoss 3
4 A bicycle slows down uniformly from V0= 8.40 m/s to rest over a distance of 115 m. Each wheel and tire has an overall diameter of 68.0 cm. Determine A) the angular velocity of the wheels at the initial instant (t=0) B) the total number of revolutions each wheel rotates before coming to rest C) the angular acceleration of the wheel D) the time it took to come to a stop Answer: 24.7 rad/s; 53.8 rev; rad/s^2; 27.4 s RoessBoss 4
5 Two thin cylindrical wheels of radii R1= 30 cm and R2= 50 cm are attached to each other on an axle that passes through the center of each. Calculate the net torque on the two wheel system due to the two forces shown, each of magnitude 50 N Answer:6.7 m N RoessBoss 5
6 Two small weights of mass 5.0 kg and 7.0 kg are mounted 4.0 cm apart on a light rod (whose mass can be ignored). Calculate the moment of inertia in the system A) when rotated about an axis halfway between the weights B) when the system rotates about an axis 0.50 m to the left of the 5.0 kg mass Answer: 48 kg m^2; 143 kg m^2 RoessBoss 6
7 A 15.0 N force is applied to a cord wrapped around a pulley of Mass = 4.00 kg and radius= 33.0 cm. The pulley is observed to accelerate uniformly from rest to reach an angular speed of 30.0 rad/s in 3.00 s. If there is a frictional torque (at the axle)= 1.10 m N, determine the moment of inertia of the pulley. The pulley is assumed to rotate about its center Answer: 3.85 m N; 10.0 rad/s^2; kg m^2 RoessBoss 7
8 Consider again the pulley from the previous problem. This time suppose that instead a constant 15.0 N force being exerted on the cord, we now have a bucket of weight 15.0 N hanging from the cord, which we assume not to stretch or slip on the pulley. A) calculate the angular acceleration of the pulley and the linear acceleration of the bucket B) Determine the angular velocity of the pulley and the linear velocity of the bucket at t=3.00 s if the pulley (and bucket) start from rest at t=0 Answer: 6.98 rad/s^2; 2.30 m/s^2; 20.9 rad/s; 6.91 m/s RoessBoss 8
9 Suppose a 60 kg person stands on the edge of a 6.0 m diameter circular platform, which is mounted on frictionless bearings and has a moment of inertia of 1800 kg m^2. The platform is at rest initially, but when the person begins running at a speed of 4.2 m/s around its edge, the platform begins to rotate in the opposite direction. Calculate the angular velocity of the platform Answer: 0.42 rad/s RoessBoss 9
10 Flywheels are simply large rotating disks, have been suggested as a means of storing energy for solar powered generating systems. Estimate the kinetic energy that can be stored in a 20,000 kg (10 ton) flywheel with a diameter of 20 m. Assume it could hold together at 100 rpm Answer: 10.5 rad/s; 5.2 E 6 J; 3.6 E J RoessBoss 10
11 A rod of mass M is pivoted on a frictionless hinge at one end. The rod is held at rest horizontally and then released. Determine the angular velocity of the rod when it reaches the vertical position, and the speed of the rod s tip at this moment Answer: RoessBoss 11
12 What will be the speed of a solid sphere of mass M and radius R0 when it reaches the bottom of an incline if it starts from rest at a vertical height H and rolls without slipping? Ignore losses due to dissipative forces, and compare your result to that of an object sliding down a frictionless incline. Answer: RoessBoss 12
Phys 106 Practice Problems Common Quiz 1 Spring 2003
Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationChapter 10 Practice Test
Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What
More informationLecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli
Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is
More informationPhysics 23 Exam 3 April 2, 2009
1. A string is tied to a doorknob 0.79 m from the hinge as shown in the figure. At the instant shown, the force applied to the string is 5.0 N. What is the torque on the door? A) 3.3 N m B) 2.2 N m C)
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationName Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?
NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass
More informationCHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY
CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational
More informationPS 11 GeneralPhysics I for the Life Sciences
PS 11 GeneralPhysics I for the Life Sciences ROTATIONAL MOTION D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T F E B R U A R Y 0 1 4 Questions and Problems
More information第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More informationAdvanced Higher Physics. Rotational motion
Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration
More informationEquilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:
Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: F v = 0 and no net torque: v τ = 0 Worksheet A uniform rod with a length L and a mass
More informationMidterm 3 Thursday April 13th
Welcome back to Physics 215 Today s agenda: Angular momentum Rolling without slipping Midterm Review Physics 215 Spring 2017 Lecture 122 1 Midterm 3 Thursday April 13th Material covered: Ch 9 Ch 12 Lectures
More informationAngular Speed and Angular Acceleration Relations between Angular and Linear Quantities
Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities 1. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the
More informationExercise Torque Magnitude Ranking Task. Part A
Exercise 10.2 Calculate the net torque about point O for the two forces applied as in the figure. The rod and both forces are in the plane of the page. Take positive torques to be counterclockwise. τ 28.0
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the
More informationPHYSICS 218 FINAL EXAM Friday, December 11, 2009
PHYSICS 218 FINAL EXAM Friday, December 11, 2009 NAME: SECTION: 525 526 527 528 Note: 525 Recitation Wed 9:1010:00 526 Recitation Wed 11:3012:20 527 Recitation Wed 1:502:40 528 Recitation Mon 11:3012:20
More informationPHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 111, 1314
Final Review: Chapters 111, 1314 These are selected problems that you are to solve independently or in a team of 23 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This
More informationChapter 12. Rotation of a Rigid Body
Chapter 12. Rotation of a Rigid Body Not all motion can be described as that of a particle. Rotation requires the idea of an extended object. This diver is moving toward the water along a parabolic trajectory,
More informationPhysics 2210 Homework 18 Spring 2015
Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle
More informationAP Physics Multiple Choice Practice Torque
AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44
More informationP211 Spring 2004 Form A
1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with
More informationRotational Motion. Rotational Motion. Rotational Motion
I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =
More informationPhysics 130: Questions to study for midterm #1 from Chapter 8
Physics 130: Questions to study for midterm #1 from Chapter 8 1. If the beaters on a mixer make 800 revolutions in 5 minutes, what is the average rotational speed of the beaters? a. 2.67 rev/min b. 16.8
More informationA uniform rod of length L and Mass M is attached at one end to a frictionless pivot. If the rod is released from rest from the horizontal position,
A dentist s drill starts from rest. After 3.20 s of constant angular acceleration, it turns at a rate of 2.51 10 4 rev/min. (a) Find the drill s angular acceleration. (b) Determine the angle (in radians)
More informationChapter 10. Rotation
Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGrawPHY 45 Chap_10HaRotationRevised
More information[1.] This problem has five multiple choice questions. Circle the best answer in each case.
[1.] This problem has five multiple choice questions. Circle the best answer in each case. [1A.] A force given by 1 2 3, acts on a particle positioned at 2 6. What is its torque about the origin? [a] 18
More informationAP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).
AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationDynamics of Rotational Motion: Rotational Inertia
Connexions module: m42179 1 Dynamics of Rotational Motion: Rotational Inertia OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License
More informationVersion A (01) Question. Points
Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4
More informationUniversity of Houston Mathematics Contest: Physics Exam 2017
Unless otherwise specified, please use g as the acceleration due to gravity at the surface of the earth. Vectors x, y, and z are unit vectors along x, y, and z, respectively. Let G be the universal gravitational
More informationPractice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010
Practice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010 Chapter 11 1. The Ferris wheel shown below is turning at constant speed. Draw and label freebody diagrams showing the forces
More informationLecture 11  Advanced Rotational Dynamics
Lecture 11  Advanced Rotational Dynamics A Puzzle... A moldable blob of matter of mass M and uniform density is to be situated between the planes z = 0 and z = 1 so that the moment of inertia around the
More informationRevolve, Rotate & Roll:
I. WarmUP. Revolve, Rotate & Roll: Physics 203, Yaverbaum John Jay College of Criminal Justice, the CUNY Given g, the rate of freefall acceleration near Earth s surface, and r, the radius of a VERTICAL
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationChap. 10: Rotational Motion
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N
More informationExam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationPractice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20
More informationGet Solution of These Packages & Learn by Video Tutorials on EXERCISE1 (C) (C) ml2
EXERCISE1 1. A thin rod of length 4 l, mass 4m is bent at the points as shown in the fig. What is the moment of inertia of the rod about the axis passing point O & perpendicular to the plane of the paper.
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 3035,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor
More informationAddis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2
Addis Ababa University Addis Ababa Institute of Technology School Of Mechanical and Industrial Engineering Extension Division Assignment 2 1. The 50kg crate is projected along the floor with an initial
More informationPHYSICS 218 EXAM 2 Tuesday, October 26, 2010
PHYSICS 218 EXAM 2 Tuesday, October 26, 2010 NAME: SECTION: 513 514 515 516 Note: 513 Recitation & lab Wed 8:0010:50 am 514 Recitation & lab Wed 11:30 am  2:20 pm 515 Recitation & lab Wed 3:005:50 pm
More informationPart 1 of 1. (useful for homework)
Chapter 9 Part 1 of 1 Example Problems & Solutions Example Problems & Solutions (useful for homework) 1 1. You are installing a spark plug in your car, and the manual specifies that it be tightened to
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT CIRCULAR MOTION MULTIPLE CHOICE / 30 OPEN ENDED / 65 TOTAL / 95 NAME: 1. An object travels along a path at constant speed. There is a constant
More informationChapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.
Agenda Today: Homework quiz, moment of inertia and torque Thursday: Statics problems revisited, rolling motion Reading: Start Chapter 8 in the reading Have to cancel office hours today: will have extra
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationEquilibrium & Elasticity
PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block
More informationPhysics 106 Common Exam 2: March 5, 2004
Physics 106 Common Exam 2: March 5, 2004 Signature Name (Print): 4 Digit ID: Section: Instructions: nswer all questions. Questions 1 through 10 are multiple choice questions worth 5 points each. You may
More informationRotational Kinetic Energy
Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body
More informationWritten Homework problems. Spring (taken from Giancoli, 4 th edition)
Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m
More information第 1 頁, 共 7 頁 Chap5 1. Test Bank, Question 9 The term "mass" refers to the same physical concept as: weight inertia force acceleration volume 2. Test Bank, Question 17 Acceleration is always in the direction:
More informationTranslational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work
Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More informationPLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION
PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational
More information112 A General Method, and Rolling without Slipping
112 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration
More information4) Vector = and vector = What is vector = +? A) B) C) D) E)
1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In
More informationUnit 2: Vector Dynamics
Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal
More informationMoment of Inertia: Rotational Energy
Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Moment of Inertia: Rotational Energy Name Partners PreLab You are required to finish this section before coming to the lab; it will
More informationRotational Inertia (approximately 2 hr) (11/23/15)
Inertia (approximately 2 hr) (11/23/15) Introduction In the case of linear motion, a nonzero net force will result in linear acceleration in accordance with Newton s 2 nd Law, F=ma. The moving object
More informationName (Print): Signature: PUID:
Machine Graded Portion (70 points total) Name (Print): Signature: PUID: You will lose points if your explanations are incomplete, if we can t read your handwriting, or if your work is sloppy. 1. A playground
More informationQuiz Number 4 PHYSICS April 17, 2009
Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given
More informationPractice 2nd test 123
Practice 2nd test 123 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Rupel pushes a box 5.00 m by applying a 25.0N horizontal force. What work does she
More informationFall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton
Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton 3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.
More informationPHYS 101 Previous Exam Problems. Force & Motion I
PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0kg block is lowered with a downward
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8kg block attached to a spring executes simple harmonic motion on a frictionless
More informationAbout what axis is the rotational inertia of your body the least? Answer. Vertical Axis
1 About what axis is the rotational inertia of your body the least? Vertical Axis 5 The figure shows three small spheres that rotate about a vertical axis. The perpendicular distance between the axis and
More information9. h = R. 10. h = 3 R
Version PREVIEW Torque Chap. 8 sizeore (13756) 1 This printout should have 3 questions. ultiplechoice questions ay continue on the next colun or page find all choices before answering. Note in the dropped
More informationAngular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion
Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for
More informationOscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Massspring system Energy in SHM Pendulums
PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Massspring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function
More informationPhysicsAndMathsTutor.com 1
PhysicsAndMathsTutor.com 1 Q1. A grinding wheel is used to sharpen chisels in a school workshop. A chisel is forced against the edge of the grinding wheel so that the tangential force on the wheel is a
More informationPhys 270 Final Exam. Figure 1: Question 1
Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating
More informationBryant Grigsby (Physics BSc) Vice President of Operations and New Product Introduction Lumenetix Scotts Valley, CA
PHYSICIST PROFILE Bryant Grigsby (Physics BSc) Vice President of Operations and New Product Introduction Lumenetix Scotts Valley, CA Bryant first considered a business major but found it lacking in technical
More informationSECOND MIDTERM  REVIEW PROBLEMS
Physics 10 Spring 009 George A. WIllaims SECOND MIDTERM  REVIEW PROBLEMS A solution set is available on the course web page in pdf format. A data sheet is provided. No solutions for the following problems:
More informationWork and kinetic Energy
Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest
More informationSYSTEM OF PARTICLES AND ROTATIONAL MOTION
Chapter Seven SYSTEM OF PARTICLES AND ROTATIONAL MOTION MCQ I 7.1 For which of the following does the centre of mass lie outside the body? (a) A pencil (b) A shotput (c) A dice (d) A bangle 7. Which of
More informationFriction is always opposite to the direction of motion.
6. Forces and MotionII Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:
More informationProblem Solving Circular Motion Kinematics Challenge Problem Solutions
Problem Solving Circular Motion Kinematics Challenge Problem Solutions Problem 1 A bead is given a small push at the top of a hoop (position A) and is constrained to slide around a frictionless circular
More information(a) On the dots below that represent the students, draw and label freebody diagrams showing the forces on Student A and on Student B.
2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on
More informationFALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003
FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is
More informationExam. Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You want to swim straight across a river that is 76 m wide. You find that you can do
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationWhich, if any, of the velocity versus time graphs below represent the movement of the sliding box?
Review Packet Name: _ 1. A box is sliding to the right along a horizontal surface with a velocity of 2 m/s. There is friction between the box and the horizontal surface. The box is tied to a hanging stone
More informationPLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.
PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. InClass Activities: 2. Apply the principle of work
More informationROTATIONAL MOTION FROM TRANSLATIONAL MOTION
ROTATIONAL MOTION FROM TRANSLATIONAL MOTION Velocity Acceleration 1D otion 3D otion Linear oentu TO We have shown that, the translational otion of a acroscopic object is equivalent to the translational
More information1301W.600 Lecture 16. November 6, 2017
1301W.600 Lecture 16 November 6, 2017 You are Cordially Invited to the Physics Open House Friday, November 17 th, 2017 4:308:00 PM Tate Hall, Room B20 Time to apply for a major? Consider Physics!! Program
More informationUniversity Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1
University Physics (Prof. David Flory) Chapt_06 Saturday, October 06, 2007 Page 1 Name: Date: 1. A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction
More informationω = ω 0 θ = θ + ω 0 t αt ( ) Rota%onal Kinema%cs: ( ONLY IF α = constant) v = ω r ω ω r s = θ r v = d θ dt r = ω r + a r = a a tot + a t = a r
θ (t) ( θ 1 ) Δ θ = θ 2 s = θ r ω (t) = d θ (t) dt v = d θ dt r = ω r v = ω r α (t) = d ω (t) dt = d 2 θ (t) dt 2 a tot 2 = a r 2 + a t 2 = ω 2 r 2 + αr 2 a tot = a t + a r = a r ω ω r a t = α r ( ) Rota%onal
More informationHint 1. The direction of acceleration can be determined from Newton's second law
Chapter 5 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 5 Due: 11:59pm on Sunday, October 2, 2016 To understand how points are awarded, read the Grading Policy for this
More informationPractice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.
Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During
More informationPhysics 4A Lab 11: MOMENT OF INERTIA Parts List
Part Quantity Rotating crossarm table 1 Physics 4A Lab 11: MOMENT OF INERTIA Parts List Large iron disk 1 Large iron ring 1 50 grams hanger 1 Weights 1 set Table clamp 1 1meter long rod 1 Pulleys 2 Rghtangle
More informationRotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body
Rotational Motion Equipment: Capstone, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125 cm bead
More informationRotation Work and Power of Rotation Rolling Motion Examples and Review
Rotation Work and Power of Rotation Rolling Motion Examples and Review Lana Sheridan De Anza College Nov 22, 2017 Last time applications of moments of inertia Atwood machine with massive pulley kinetic
More information