Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.


 Amy Hood
 2 years ago
 Views:
Transcription
1 Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the final speed of the 70 kg ball.
2 Ch. 8: Impulse, momentum, collisions Momentum, p = mv (inertia of moving object) 2 Impulse: J = F t or Fdt 1 gives momentum change: J = p2 p1 Momentum Conservation: total P = p + p +... conserved for closed systems. Elastic vs. inelastic collisions: K conserved for elastic m1r 1 + m2r Center of mass, rcm = m1 + m CM velocity: CM moves as particle with momentum P = Mv cm (also CM has important role for acceleration of solid rotors) A B
3 Exam 3 formula sheet (2 nd page is moments of inertia)
4 Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is moving vertically with speed v/2. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the final speed and direction of the 70 kg ball.
5 A thinwalled hollow sphere, m = 12 kg & diameter = 48.0 cm, is rotating according to, θ = At 2 + Bt 4, with A = 1.50 and B = 1.00, t given in seconds. (a) What are the units of A and B? (b) At t = 2.00 s, find the angular momentum, and the torque on the sphere.
6 Chapter 9: Rotations Angular velocity, acceleration: ω = dθ angular velocity, α = dω angular acceleration. dt dt 2 Linear vs. angular relations, Vectors: v = rω atan = rα arad = ω r ω, α along axis in right hand rule direction. Constant angular acceleration: familiar formulas. θ = θ 0 + ω 0 t αt 2 analog of similar for other constanta relations. Energy and Moment of inertia: x = x 0 + v 0 x t a x t 2 K = 1 2 Iω 2 analog of K = 1 2 mv2 I 1 = 2 mr 2 moment of inertia.
7 I = mr 2 moments of inertia same as for KE.
8 A solid spool, mass M, radius R, is held steady by a string wound around its perimeter. Spool rests with no slipping on 45 ramp. Find T in the string and the friction force. Other questions: (a) Suppose hollow cylinder instead of solid spool, but same mass M. Is T same or different? (b) Suppose string pulled s.t. string has constant velocity v, and spool rolls uphill with no slipping. Find T in this case.
9 Rotational Mechanics & Equilibrium KE = 1 2 Iω 2 (energy) τ = Iα W = τθ L = Iω (torque) Rotational form of F = ma (work) W = Fs (momentum) p = mv Substitute: θ for x I for m τ for F ω for v α for a L for p Equilibrium: F x = 0 F y = 0 τ = 0 (any axis) same as CM x = w x w = m x m cg i i i i i i
10 A solid spool, mass M, radius R, held steady by a string wound around its perimeter. Spool rests with no slipping on 45 ramp. String is cut allowing ball to roll downward without slipping. (a) Find acceleration down the ramp. (b) Find the friction force.
11 A mass is hanging from the end of a horizontal bar which pivots about an axis through it center, but it being held stationary. The bar is released and begins to rotate. As the bar rotates from horizontal to vertical, the magnitude of the angular acceleration α of the bar.. A) increases B) decreases C) remains constant
12 A mass is hanging from the end of a horizontal bar which pivots about an axis through it center, but it being held stationary. The bar is released and begins to rotate. As the bar rotates from horizontal to vertical, the magnitude of the torque on the bar.. A) increases B) decreases C) remains constant
13 Ball has m = 3.0 kg and initial v = 2.0 m/s. The rotor has total m = 5.0 kg, consists of a 3.0 kg rod, length L = 1.0 m, with a small 2.0 kg mass attached at the end. The ball strikes the rotor at its midpoint & sticks to it. pivot v (a) Is energy conserved in the collision? (b) What is the angular velocity of the rotor just after the collision? (c) What maximum angle does rotor attain?
14 Exam 3 formula sheet (2 nd page is moments of inertia)
15 Find the center of mass. 30 m 50 kg 40 m 20 kg 30 kg
16 Find the center of mass velocity, if the lower two masses are stationary. 30 m 50 kg 15 m/s 40 m 20 kg 30 kg
17 Consider a sudden elastic collision between the ball and the block. What is the maximum angle of rise of the ball when it rebounds after collision? (a) same as original θ. (b) larger. (c) smaller.
18 A grinding wheel is spinning freely at 30.0 rpm. Then, an iron bar is pushed against its edge at constant force, causing it to stop in 4.5 s. (a) Is the angular acceleration constant? (b) Find the total angle through which the wheel turns while stopping.
19 Consider masses arranged as below, with M > m. The pulley has mass m p, and is a solid disk, radius r. No friction a) Compute the acceleration and tensions T 1 and T 2 on opposite sides of the pulley.
20 Consider masses arranged as below, with M > m. The pulley has mass m p, and is a solid disk, radius r. No friction a) Compute the acceleration and tensions T 1 and T 2 on opposite sides of the pulley.
21 Consider masses arranged as below, with M > m. The pulley has mass m p, and is a solid disk, radius r. No friction a) Compute the acceleration and tensions T 1 and T 2 on opposite sides of the pulley.
22 Consider masses arranged as below, with M > m. The pulley has mass m p, and is a solid disk, radius r. No friction a) Compute the acceleration and tensions T 1 and T 2 on opposite sides of the pulley. b) Using energy methods, find the velocity after M has fallen a distance h.
23 Consider masses arranged as below, with M > m. The pulley has mass m p, and is a solid disk, radius r. No friction a) Compute the acceleration and tensions T 1 and T 2 on opposite sides of the pulley. b) Using energy methods, find the velocity after M has fallen a distance h.
24 Consider masses arranged as below, with M > m. The pulley has mass m p, and is a solid disk, radius r. No friction a) Compute the acceleration and tensions T 1 and T 2 on opposite sides of the pulley. b) Using energy methods, find the velocity after M has fallen a distance h. Note acceleration methods also work to find solution
25 The nonuniform bar has mass 30 kg and its CM is 0.75 m from the left end. The bar length is 2.00 m. Cables are attached to left end and 0.4 m from right end. Find the cable tensions.
26
27 The ideal pulley is massless, and attached to a fixed axle. The rope supports a mass M 2 as shown. The other end of the rope is tied to the plank, making an angle of 30. The plank is also supported by a fulcrum at a distance L/4 from the left end of the plank, as shown. In terms of M 1, find the value of M 2 that will allow equilibrium. M 2 M 1
28 The ideal pulley is massless, and attached to a fixed axle. The rope supports a mass M 2 as shown. The other end of the rope is tied to the plank, making an angle of 30. The plank is also supported by a fulcrum at a distance L/4 from the left end of the plank, as shown. In terms of M 1, find the value of M 2 that will allow equilibrium. Also find force on fulcrum. M 2 M 1
29 If box is 3m high and 2m wide, find initial angular acceleration. Assume the box does not slip on the support point. Also find the instantaneous force components exerted by the fulcrum. M
30 I = mr 2 moments of inertia same as for KE.
31 A tire (illustrated) has fallen from a cart and is rolling on a horizontal road with constant center of mass velocity v. Find the instantaneous velocity vector and acceleration vector for the part of the tread at the edge of the tire (arrow) at the front edge even with the center of the tire. M
31 ROTATIONAL KINEMATICS
31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have
More information1 MR SAMPLE EXAM 3 FALL 2013
SAMPLE EXAM 3 FALL 013 1. A merrygoround rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,
More informationRotation review packet. Name:
Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the
More informationSuggested Problems. Chapter 1
Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,
More informationName: Date: Period: AP Physics C Rotational Motion HO19
1.) A wheel turns with constant acceleration 0.450 rad/s 2. (99) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions
More informationExam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More informationA) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.
Coordinator: Dr. W. AlBasheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes
More informationQ1. For a completely inelastic twobody collision the kinetic energy of the objects after the collision is the same as:
Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic twobody collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the
More informationName Date Period PROBLEM SET: ROTATIONAL DYNAMICS
Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget
More informationCHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque
7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity
More informationChapter 10. Rotation
Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGrawPHY 45 Chap_10HaRotationRevised
More informationPhysics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)
Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Multiple choice Section. Circle the correct answer. No work need be shown and no partial
More informationPHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium
PHY218 SPRING 2016 Review for Exam#3: Week 12 Review: Linear Momentum, Collisions, Rotational Motion, and Equilibrium These are selected problems that you are to solve independently or in a team of 23
More informationPHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011
PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a righthanded Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More informationBig Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1
Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50kg boy and a 40kg girl sit on opposite ends of a 3meter seesaw. How far from the girl should the fulcrum be placed in order for the
More informationProblem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer
8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology Problem Set 10 1. Moment of Inertia: Disc and Washer (a) A thin uniform disc of mass M and radius R is mounted on an axis passing
More informationName SOLUTION Student ID Score Speed of blocks is is decreasing. Part III. [25 points] Two blocks move on a frictionless
Name SOLUTION Student ID Score last first Speed of blocks is is decreasing. Part III. [25 points] Two blocks move on a frictionless v o incline with initial speed v o, as shown, while a hand pushes with
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationWe define angular displacement, θ, and angular velocity, ω. What's a radian?
We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise
More informationYour Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon
1 Your Name: PHYSICS 101 MIDTERM October 26, 2006 2 hours Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon Problem Score 1 /13 2 /20 3 /20 4
More informationDepartment of Physics
Department of Physics PHYS101051 FINAL EXAM Test Code: 100 Tuesday, 4 January 006 in Building 54 Exam Duration: 3 hrs (from 1:30pm to 3:30pm) Name: Student Number: Section Number: Page 1 1. A car starts
More informationCircular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics
Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av
More informationPHYSICS 218 Final Exam Fall, 2014
PHYSICS 18 Final Exam Fall, 014 Name: Signature: Email: Section Number: No calculators are allowed in the test. Be sure to put a box around your final answers and clearly indicate your work to your grader.
More informationHandout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum
Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationIt will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV
AP Physics 1 Lesson 16 Homework Newton s First and Second Law of Rotational Motion Outcomes Define rotational inertia, torque, and center of gravity. State and explain Newton s first Law of Motion as it
More informationOn my honor, I have neither given nor received unauthorized aid on this examination.
Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.
More informationRolling, Torque & Angular Momentum
PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the
More informationRotation. PHYS 101 Previous Exam Problems CHAPTER
PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01 Physics I Fall Term 2009 Review Module on Solving N equations in N unknowns
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.01 Physics I Fall Term 2009 Review Module on Solving N equations in N unknowns Most students first exposure to solving N linear equations in N
More informationCHAPTER 8 TEST REVIEW MARKSCHEME
AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM
More information8.012 Physics I: Classical Mechanics Fall 2008
IT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical echanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. ASSACHUSETTS INSTITUTE
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationUNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics
UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 16, 2000 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences
More informationSlide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?
1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 1 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 2 / 133 3 A ball rotates
More informationSlide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133
Slide 1 / 133 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 2 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 3 / 133
More informationPhysics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating
Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationMoment of Inertia Race
Review Two points, A and B, are on a disk that rotates with a uniform speed about an axis. Point A is closer to the axis than point B. Which of the following is NOT true? 1. Point B has the greater tangential
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More informationPlane Motion of Rigid Bodies: Momentum Methods
Plane Motion of Rigid Bodies: Momentum Methods Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,
More informationRotational Motion and Torque
Rotational Motion and Torque Introduction to Angular Quantities Sections 8 to 82 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationDo not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:
Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Email: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You
More informationAngular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion
Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for
More informationPhysics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 201
Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 201 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated
More informationPhysics 207: Lecture 24. Announcements. No labs next week, May 2 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here.
Physics 07: Lecture 4 Announcements No labs next week, May 5 Exam 3 review session: Wed, May 4 from 8:00 9:30 pm; here Today s Agenda ecap: otational dynamics and torque Work and energy with example Many
More informationUniversity Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1
University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1 Name: Date: 1. For a wheel spinning on an axis through its center, the ratio of the radial acceleration of a point on
More informationChapter 8. Rotational Motion
Chapter 8 Rotational Motion Rotational Work and Energy W = Fs = s = rθ Frθ Consider the work done in rotating a wheel with a tangential force, F, by an angle θ. τ = Fr W =τθ Rotational Work and Energy
More informationPhys101 Third Major161 Zero Version Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1
Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see Figure
More informationPhysics 121, Final Exam Do not turn the pages of the exam until you are instructed to do so.
, Final Exam Do not turn the pages of the exam until you are instructed to do so. You are responsible for reading the following rules carefully before beginning. Exam rules: You may use only a writing
More informationNAME. (2) Choose the graph below that represents the velocity vs. time for constant, nonzero acceleration in one dimension.
(1) The figure shows a lever (which is a uniform bar, length d and mass M), hinged at the bottom and supported steadily by a rope. The rope is attached a distance d/4 from the hinge. The two angles are
More informationPY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I
PY205N Spring 2013 Final exam, practice version MODIFIED This practice exam is to help students prepare for the final exam to be given at the end of the semester. Please note that while problems on this
More informationAssignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ.
Assignment 9 1. A heavy cylindrical container is being rolled up an incline as shown, by applying a force parallel to the incline. The static friction coefficient is µ s. The cylinder has radius R, mass
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More informationRotational Dynamics continued
Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2
More informationPhysics 211 Spring 2014 Final Practice Exam
Physics 211 Spring 2014 Final Practice Exam This exam is closed book and notes. A formula sheet will be provided for you at the end of the final exam you can download a copy for the practice exam from
More informationPHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 111, 1314
Final Review: Chapters 111, 1314 These are selected problems that you are to solve independently or in a team of 23 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This
More information6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.
1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular
More informationDYNAMICS ME HOMEWORK PROBLEM SETS
DYNAMICS ME 34010 HOMEWORK PROBLEM SETS Mahmoud M. Safadi 1, M.B. Rubin 2 1 safadi@technion.ac.il, 2 mbrubin@technion.ac.il Faculty of Mechanical Engineering Technion Israel Institute of Technology Spring
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationPHYSICS 149: Lecture 21
PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30
More informationChapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.
Agenda Today: Homework quiz, moment of inertia and torque Thursday: Statics problems revisited, rolling motion Reading: Start Chapter 8 in the reading Have to cancel office hours today: will have extra
More informationWebreview Torque and Rotation Practice Test
Please do not write on test. ID A Webreview  8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30mradius automobile
More informationPHYSICS 221 SPRING EXAM 2: March 31, 2016; 8:15pm 10:15pm
PHYSICS 221 SPRING 2016 EXAM 2: March 31, 2016; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # Student ID# INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit
More informationChapter 10: Dynamics of Rotational Motion
Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.
More informationChapter 8 continued. Rotational Dynamics
Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :
More informationRotation. Rotational Variables
Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that
More informationWrite your name legibly on the top right hand corner of this paper
NAME Phys 631 Summer 2007 Quiz 2 Tuesday July 24, 2007 Instructor R. A. Lindgren 9:00 am 12:00 am Write your name legibly on the top right hand corner of this paper No Books or Notes allowed Calculator
More informationEquilibrium: Forces and Torques
Practice 15B Answers are available in the classroom and on the website. Scan this QR code for a direct link. Equilibrium: Forces and Torques 16. Lynn walks across a 9.0 m long plank bridge. The mass of
More informationAP Physics 1: Rotational Motion & Dynamics: Problem Set
AP Physics 1: Rotational Motion & Dynamics: Problem Set I. Axis of Rotation and Angular Properties 1. How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 2. How many degrees are
More informationExam 2 Solutions. PHY2048 Spring 2017
Exam Solutions. The figure shows an overhead view of three horizontal forces acting on a cargo canister that was initially stationary but that now moves across a frictionless floor. The force magnitudes
More informationRolling, Torque, and Angular Momentum
AP Physics C Rolling, Torque, and Angular Momentum Introduction: Rolling: In the last unit we studied the rotation of a rigid body about a fixed axis. We will now extend our study to include cases where
More informationRotational Dynamics. Slide 2 / 34. Slide 1 / 34. Slide 4 / 34. Slide 3 / 34. Slide 6 / 34. Slide 5 / 34. Moment of Inertia. Parallel Axis Theorem
Slide 1 / 34 Rotational ynamics l Slide 2 / 34 Moment of Inertia To determine the moment of inertia we divide the object into tiny masses of m i a distance r i from the center. is the sum of all the tiny
More informationTOPIC D: ROTATION EXAMPLES SPRING 2018
TOPIC D: ROTATION EXAMPLES SPRING 018 Q1. A car accelerates uniformly from rest to 80 km hr 1 in 6 s. The wheels have a radius of 30 cm. What is the angular acceleration of the wheels? Q. The University
More informationSolution to phys101t112final Exam
Solution to phys101t112final Exam Q1. An 800N man stands halfway up a 5.0m long ladder of negligible weight. The base of the ladder is.0m from the wall as shown in Figure 1. Assuming that the wallladder
More informationFALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Monday, 14 December 2015, 6 PM to 9 PM, Field House Gym
FALL TERM EXAM, PHYS 111, INTRODUCTORY PHYSICS I Monday, 14 December 015, 6 PM to 9 PM, Field House Gym NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 13 pages. Make sure none are missing. There
More information5. Plane Kinetics of Rigid Bodies
5. Plane Kinetics of Rigid Bodies 5.1 Mass moments of inertia 5.2 General equations of motion 5.3 Translation 5.4 Fixed axis rotation 5.5 General plane motion 5.6 Work and energy relations 5.7 Impulse
More informationChapter 8  Rotational Dynamics and Equilibrium REVIEW
Pagpalain ka! (Good luck, in Filipino) Date Chapter 8  Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body
More informationClass XI Chapter 7 System of Particles and Rotational Motion Physics
Page 178 Question 7.1: Give the location of the centre of mass of a (i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie
More informationName (please print): UW ID# score last first
Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100
More informationEndofChapter Exercises
EndofChapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a
More information112 A General Method, and Rolling without Slipping
112 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration
More informationChapter 8 Lecture Notes
Chapter 8 Lecture Notes Physics 2414  Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ
More informationPHYSICS 221 Fall 2016 EXAM 2: November 02, :15pm 10:15pm. Name (printed): Recitation Instructor: Section #:
PHYSICS 221 Fall 2016 EXAM 2: November 02, 2016 8:15pm 10:15pm Name (printed): Recitation Instructor: Section #: INSTRUCTIONS: This exam contains 25 multiplechoice questions, plus 2 extracredit questions,
More information16.07 Dynamics. Problem Set 10
NAME :..................... Massachusetts Institute of Technology 16.07 Dynamics Problem Set 10 Out date: Nov. 7, 2007 Due date: Nov. 14, 2007 Problem 1 Problem 2 Problem 3 Problem 4 Study Time Time Spent
More informationAP Physics 1 Torque, Rotational Inertia, and Angular Momentum Practice Problems FACT: The center of mass of a system of objects obeys Newton s second law F = Ma cm. Usually the location of the center
More informationPhysics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems
A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E 4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying
More informationRotation and Translation Challenge Problems Problem 1:
Rotation and Translation Challenge Problems Problem 1: A drum A of mass m and radius R is suspended from a drum B also of mass m and radius R, which is free to rotate about its axis. The suspension is
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationRotational Dynamics Smart Pulley
Rotational Dynamics Smart Pulley The motion of the flywheel of a steam engine, an airplane propeller, and any rotating wheel are examples of a very important type of motion called rotational motion. If
More informationPhys 2210 S18 Practice Exam 3: Ch 8 10
1. As a 1.0kg object moves from point A to point B, it is acted upon by a single conservative force which does 40 J of work during this motion. At point A the speed of the particle is 6.0 m/s and the
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More information第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel
More informationPHYSICS 218 Exam 3 Fall, 2013
PHYSICS 218 Exam 3 Fall, 2013 Wednesday, November 20, 2013 Please read the information on the cover page BUT DO NOT OPEN the exam until instructed to do so! Name: Signature: Student ID: Email: Section
More informationPH1104/PH114S MECHANICS
PH04/PH4S MECHANICS SEMESTER I EXAMINATION 0607 SOLUTION MULTIPLECHOICE QUESTIONS. (B) For freely falling bodies, the equation v = gh holds. v is proportional to h, therefore v v = h h = h h =.. (B).5i
More informationAP practice ch 78 Multiple Choice
AP practice ch 78 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to
More information