Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum


 Kristina O’Neal’
 1 years ago
 Views:
Transcription
1 Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a point with position vector r relative to the hinge (pivot). Torque τ is defined by τ = r F, τ = rf sin θ, where θ is the angle between vector r and vector F. If θ = 90, torque τ = rf. Note that the perpendicular distance r has to be measured from the rotation axis to the line of force F. Consider a rotating body about a fixed axis as in Figure. Let I be moment of inertia and ω be the angular speed of the rotation about an axis. The angular momentum L is defined by L = Iω. Figure : Applying torque on an object Figure : Angular momentum of rigid body Note the direction of L coincides with the direction of ω. The angular momentum of the body changes upon at action of torque. Torque is equal to the rate of change of the angular momentum: τ = dl dt = d Iω dt = I dω dt = Iα, where α = dω dt is the angular acceleration. Consider Figure 3; a particle (point mass) travelling with velocity v at position vector r from O where the rotation axis passes through. The angular momentum of the particle is given by Figure 3: Angular momentum of a particle L = r p L = r mv, where p = mv is the linear momentum of the particle. If the velocity v is perpendicular to r, the formula for the angular momentum of a particle becomes. L = mvr.
2 Example A solid sphere of mass m = 0 kg and radius R = 0.35 m is rotating about axis through its center by the action three forces in the figure. a) Calculate the moment of inertia of this sphere. b) Calculate net torque and angular acceleration. Example A string is wrapped around a pulley, a disc of mass m and radius r, which can rotate about a fixed horizontal axis. A mass m hangs from the free end of the string. Show that the acceleration of the mass when it is let go is a = g/3. Example The input and output gears have their moment of inertia I = kg m and I = 3 kg m respectively. The ratio of the diameters of the input gear to the output gear is. The input gear is rotating with angular speed ω = 0.6 rad s . a) Find the angular speed of the output gear. b) Calculate the net angular momentum of the system.
3 3 Conservation of angular momentum Upon action of zero net torque, the total angular momentum L = Iω must be conserved: L before = L after. This is illustrated in Figure 3. In Figure 3(a), the ice skater has her arms extended, increasing the momentum of inertia of her body. By pulling in her arms in as in Figure 3(b), the moment of inertia decreases. Therefore, the angular speed of rotation increases. Example A thinner disc of moment of inertia 0.55 kg m is slowly placed on a thicker rotating disc with moment of inertia of.05 kg m and angular speed of ω 0 =.0 rad s . Calculate the angular speed ω f of the combined discs. Figure 4: Conservation of angular momentum Example A merrygoround has moment of inertia I = 00 kg m about its rotation axis. A kid running at speed v = ms  tangential to the rim jumps on the merrygoround at distance r = m from the center. The kid is modeled as a particle of mass m = 40 kg. Determine the angular speed of the merrygoround when the kid is on it.
4 4 Rotational kinetic energy Consider rotation of particles about a fixed axis in Figure 5. The total kinetic energy of the particles is E k = m i iv i. Since v i = ωr i, the above expression becomes E k = i m i ω r i = i m i r i ω = Iω. This equation can also be applied to a rigid body rotating about a fixed axis. The rotational kinetic energy of a rigid body is given by m 3 v 3 r 3 O r r v m m v Figure 5: Collection of particles rotating about fixed axis at O E rot = Iω. If there is not work done, the total energy of the system must be conserved. Example Calculate the rotational kinetic energy of a solid sphere of mass m = 5.0 kg and radius R = 0. m rotating with frequency f = 0 Hz about an axis passing through the center of the sphere. Example A uniform rod of mass M and length L is pivoted at one end. The rod is released when it is horizontal. a) Determine the angular speed of the rod when the rod is vertical. b) Find the speed of the center of mass when the rod is vertical.
5 5 Rolling without slipping So far, the rotation axis is fixe (not moving). If the rotation axis is allowed to move in one dimension, this results in translational motion of the object as well as the rotational motion. The combination of these leads to rolling motion as illustrated in Figure 6. In Figure 6(a), an object undergoes pure translation and its center of mass is moving at speed v CM. All points on the object are moving at this speed. Figure 6(b) shows rotational motion about the center of mass with angular speed ω. The tangential speed at point P and P is v = Rω. Figure 6(c) is the combination of 6(a) and 6(b). If we impose a condition that the speed at point P is zero, we conclude that v CM = Rω This condition is known as rolling without slipping. When rolling without slipping occurs, rotation of a sphere of radius R by one revolution causes the center of mass moves a distance s = πr. There are two cases when the condition of rolling without slipping is not satisfied: Figure 6: Rolling motion as a combination of translation and rotation If v CM > Rω, the motion is rolling and skidding. s > πr If v CM < Rω, the motion is rolling and slipping. s < πr In rolling motion, the total kinetic energy is composed of rotational kinetic energy and translational kinetic energy: E k = E rot + E trans = Iω + mv CM. Example A solid sphere is rolling without slipping from height H down the slope. Show that the speed of the center of mass when the sphere is at the bottom of the slope is v = 0 7 gh.
6 Example A cylinder is rolling without slipping down an inclined plane making angle θ with the horizontal. By considering forces acting on the cylinder, show that the acceleration of the center of mass a = 3 g sin θ. 6 Example A pool ball of radius r is at rest on point P. Find the height, in terms of r, at which the cue tip must hit the ball so that the ball rolls without slipping.
CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque
7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity
More informationWe define angular displacement, θ, and angular velocity, ω. What's a radian?
We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise
More informationRotational Motion and Torque
Rotational Motion and Torque Introduction to Angular Quantities Sections 8 to 82 Introduction Rotational motion deals with spinning objects, or objects rotating around some point. Rotational motion is
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More informationAngular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion
Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for
More informationCircular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics
Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More informationTranslational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work
Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational
More informationPhys 106 Practice Problems Common Quiz 1 Spring 2003
Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed
More informationPhysics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1
Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid
More informationAP Physics 1 Rotational Motion Practice Test
AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able
More informationName: Date: Period: AP Physics C Rotational Motion HO19
1.) A wheel turns with constant acceleration 0.450 rad/s 2. (99) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions
More information31 ROTATIONAL KINEMATICS
31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have
More informationChapter 8  Rotational Dynamics and Equilibrium REVIEW
Pagpalain ka! (Good luck, in Filipino) Date Chapter 8  Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body
More informationCIRCULAR MOTION AND ROTATION
1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle
More informationChapter 10: Dynamics of Rotational Motion
Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.
More informationChapter 10. Rotation of a Rigid Object about a Fixed Axis
Chapter 10 Rotation of a Rigid Object about a Fixed Axis Angular Position Axis of rotation is the center of the disc Choose a fixed reference line. Point P is at a fixed distance r from the origin. A small
More informationHandout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration
1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps
More informationRotational Dynamics continued
Chapter 9 Rotational Dynamics continued 9.4 Newton s Second Law for Rotational Motion About a Fixed Axis ROTATIONAL ANALOG OF NEWTON S SECOND LAW FOR A RIGID BODY ROTATING ABOUT A FIXED AXIS I = ( mr 2
More informationWebreview Torque and Rotation Practice Test
Please do not write on test. ID A Webreview  8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30mradius automobile
More informationGeneral Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10
Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking
More informationRotation Quiz II, review part A
Rotation Quiz II, review part A 1. A solid disk with a radius R rotates at a constant rate ω. Which of the following points has the greater angular velocity? A. A B. B C. C D. D E. All points have the
More informationChapter 8 continued. Rotational Dynamics
Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = rφ = Frφ Fr = τ (torque) = τφ r φ s F to x θ = 0 DEFINITION OF
More informationA) 1 gm 2 /s. B) 3 gm 2 /s. C) 6 gm 2 /s. D) 9 gm 2 /s. E) 10 gm 2 /s. A) 0.1 kg. B) 1 kg. C) 2 kg. D) 5 kg. E) 10 kg A) 2:5 B) 4:5 C) 1:1 D) 5:4
1. A 4 kg object moves in a circle of radius 8 m at a constant speed of 2 m/s. What is the angular momentum of the object with respect to an axis perpendicular to the circle and through its center? A)
More informationRolling without slipping Angular Momentum Conservation of Angular Momentum. Physics 201: Lecture 19, Pg 1
Physics 131: Lecture Today s Agenda Rolling without slipping Angular Momentum Conservation o Angular Momentum Physics 01: Lecture 19, Pg 1 Rolling Without Slipping Rolling is a combination o rotation and
More information6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.
1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular
More informationChapter 8. Rotational Equilibrium and Rotational Dynamics
Chapter 8 Rotational Equilibrium and Rotational Dynamics Wrench Demo Torque Torque, τ, is the tendency of a force to rotate an object about some axis τ = Fd F is the force d is the lever arm (or moment
More informationSlide 1 / 37. Rotational Motion
Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.
More informationChapter Rotational Motion
26 Chapter Rotational Motion 1. Initial angular velocity of a circular disc of mass M is ω 1. Then two small spheres of mass m are attached gently to diametrically opposite points on the edge of the disc.
More informationChapter 8. Rotational Motion
Chapter 8 Rotational Motion Rotational Work and Energy W = Fs = s = rθ Frθ Consider the work done in rotating a wheel with a tangential force, F, by an angle θ. τ = Fr W =τθ Rotational Work and Energy
More informationChapter 8 continued. Rotational Dynamics
Chapter 8 continued Rotational Dynamics 8.4 Rotational Work and Energy Work to accelerate a mass rotating it by angle φ F W = F(cosθ)x x = s = rφ = Frφ Fr = τ (torque) = τφ r φ s F to s θ = 0 DEFINITION
More informationChapter 8 Rotational Motion and Equilibrium
Chapter 8 Rotational Motion and Equilibrium 8.1 Rigid Bodies, Translations, and Rotations A rigid body is an object or a system of particles in which the distances between particles are fixed (remain constant).
More informationUnit 8 Notetaking Guide Torque and Rotational Motion
Unit 8 Notetaking Guide Torque and Rotational Motion Rotational Motion Until now, we have been concerned mainly with translational motion. We discussed the kinematics and dynamics of translational motion
More information1 MR SAMPLE EXAM 3 FALL 2013
SAMPLE EXAM 3 FALL 013 1. A merrygoround rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More information16. Rotational Dynamics
6. Rotational Dynamics A Overview In this unit we will address examples that combine both translational and rotational motion. We will find that we will need both Newton s second law and the rotational
More informationAngular Displacement. θ i. 1rev = 360 = 2π rads. = "angular displacement" Δθ = θ f. π = circumference. diameter
Rotational Motion Angular Displacement π = circumference diameter π = circumference 2 radius circumference = 2πr Arc length s = rθ, (where θ in radians) θ 1rev = 360 = 2π rads Δθ = θ f θ i = "angular displacement"
More informationPhysics 201, Lecture 18
q q Physics 01, Lecture 18 Rotational Dynamics Torque Exercises and Applications Rolling Motion Today s Topics Review Angular Velocity And Angular Acceleration q Angular Velocity (ω) describes how fast
More informationQ1. For a completely inelastic twobody collision the kinetic energy of the objects after the collision is the same as:
Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic twobody collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the
More informationRotation review packet. Name:
Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the
More informationPhysics 111. Lecture 23 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, Kinetic Energy of Rolling Object
Physics 111 Lecture 3 (Walker: 10.6, 11.1) Conservation of Energy in Rotation Torque March 30, 009 Lecture 3 1/4 Kinetic Energy of Rolling Object Total kinetic energy of a rolling object is the sum of
More informationChapter 8 Lecture Notes
Chapter 8 Lecture Notes Physics 2414  Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ
More informationTorque. Introduction. Torque. PHY torque  J. Hedberg
Torque PHY 207  torque  J. Hedberg  2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem
More informationRolling, Torque & Angular Momentum
PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the
More informationDYNAMICS OF RIGID BODIES
DYNAMICS OF RIGID BODIES Measuring angles in radian Define the value of an angle θ in radian as θ = s r, or arc length s = rθ a pure number, without dimension independent of radius r of the circle one
More informationRotational Kinematics and Dynamics. UCVTS AIT Physics
Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,
More informationPhysics 218 Lecture 23
Physics 218 Lecture 23 Dr. David Toback Physics 218, Lecture XXIII 1 Checklist for Today Things due Monday Chapter 14 in WebCT Things that were due yesterday Chapter 15 problems as Recitation Prep Things
More informationTwoDimensional Rotational Kinematics
TwoDimensional Rotational Kinematics Rigid Bodies A rigid body is an extended object in which the distance between any two points in the object is constant in time. Springs or human bodies are nonrigid
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More information1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches
AP Physics B Practice Questions: Rotational Motion MultipleChoice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches
More informationPhys101 Third Major161 Zero Version Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1
Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see Figure
More informationUniform Circular Motion
Uniform Circular Motion Motion in a circle at constant angular speed. ω: angular velocity (rad/s) Rotation Angle The rotation angle is the ratio of arc length to radius of curvature. For a given angle,
More informationRotational Dynamics. Slide 2 / 34. Slide 1 / 34. Slide 4 / 34. Slide 3 / 34. Slide 6 / 34. Slide 5 / 34. Moment of Inertia. Parallel Axis Theorem
Slide 1 / 34 Rotational ynamics l Slide 2 / 34 Moment of Inertia To determine the moment of inertia we divide the object into tiny masses of m i a distance r i from the center. is the sum of all the tiny
More informationChapters 10 & 11: Rotational Dynamics Thursday March 8 th
Chapters 10 & 11: Rotational Dynamics Thursday March 8 th Review of rotational kinematics equations Review and more on rotational inertia Rolling motion as rotation and translation Rotational kinetic energy
More informationCHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY
CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational
More informationLecture 7 Chapter 10,11
Lecture 7 Chapter 10,11 Rotation, Inertia, Rolling, Torque, and Angular momentum Demo Demos Summary of Concepts to Cover from chapter 10 Rotation Rotating cylinder with string wrapped around it: example
More informationChap11. Angular Momentum
Chap11. Angular Momentum Level : AP Physics Teacher : Kim 11.1 The Vector Product and Torque (p.335) Properties of the Vector Product For scalar product, we are familiar with +,. Ex) 3+2=5. Numbers are
More informationChapter 910 Test Review
Chapter 910 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular
More informationTest 7 wersja angielska
Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with
More informationSuggested Problems. Chapter 1
Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,
More informationMoment of Inertia Race
Review Two points, A and B, are on a disk that rotates with a uniform speed about an axis. Point A is closer to the axis than point B. Which of the following is NOT true? 1. Point B has the greater tangential
More informationRolling, Torque, and Angular Momentum
AP Physics C Rolling, Torque, and Angular Momentum Introduction: Rolling: In the last unit we studied the rotation of a rigid body about a fixed axis. We will now extend our study to include cases where
More informationChap. 10: Rotational Motion
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N
More informationCHAPTER 8 TEST REVIEW MARKSCHEME
AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM
More informationChapter 10. Rotation
Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGrawPHY 45 Chap_10HaRotationRevised
More informationAngular Momentum. Objectives CONSERVATION OF ANGULAR MOMENTUM
Angular Momentum CONSERVATION OF ANGULAR MOMENTUM Objectives Calculate the angular momentum vector for a moving particle Calculate the angular momentum vector for a rotating rigid object where angular
More informationOn my honor, I have neither given nor received unauthorized aid on this examination.
Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.
More informationChapter 8 Rotational Kinematics Angular Variables Kinematic Equations
Chapter 8 Rotational Kinematics Angular Variables Kinematic Equations Chapter 9 Rotational Dynamics Torque Center of Gravity Newton s 2 nd Law Angular Rotational Work & Energy Angular Momentum Angular
More informationWelcome back to Physics 211
Welcome back to Physics 211 Today s agenda: Moment of Inertia Angular momentum 132 1 Current assignments Prelecture due Tuesday after Thanksgiving HW#13 due next Wednesday, 11/24 Turn in written assignment
More informationRotational Dynamics, Moment of Inertia and Angular Momentum
Rotational Dynamics, Moment of Inertia and Angular Momentum Now that we have examined rotational kinematics and torque we will look at applying the concepts of angular motion to Newton s first and second
More informationRotation. PHYS 101 Previous Exam Problems CHAPTER
PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that
More informationChapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.
Chapter 10 Rotational Kinematics and Energy 101 Angular Position, Velocity, and Acceleration 101 Angular Position, Velocity, and Acceleration Degrees and revolutions: 101 Angular Position, Velocity,
More informationChapter 10.A. Rotation of Rigid Bodies
Chapter 10.A Rotation of Rigid Bodies P. Lam 7_23_2018 Learning Goals for Chapter 10.1 Understand the equations govern rotational kinematics, and know how to apply them. Understand the physical meanings
More informationRolling, Torque, Angular Momentum
Chapter 11 Rolling, Torque, Angular Momentum Copyright 11.2 Rolling as Translational and Rotation Combined Motion of Translation : i.e.motion along a straight line Motion of Rotation : rotation about a
More informationChapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.
Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 101 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 101 Angular Position, Velocity,
More informationChapter 8 continued. Rotational Dynamics
Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :
More information1.1. Rotational Kinematics Description Of Motion Of A Rotating Body
PHY 19 PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description
More informationMechanics II. Which of the following relations among the forces W, k, N, and F must be true?
Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which
More informationReview questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.
Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the
More informationRotation. Kinematics Rigid Bodies Kinetic Energy. Torque Rolling. featuring moments of Inertia
Rotation Kinematics Rigid Bodies Kinetic Energy featuring moments of Inertia Torque Rolling Angular Motion We think about rotation in the same basic way we do about linear motion How far does it go? How
More informationBig Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular
Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only
More informationPhysics 2210 Homework 18 Spring 2015
Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle
More informationChapter 11 Rolling, Torque, and Angular Momentum
Prof. Dr. I. Nasser Chapter11I November, 017 Chapter 11 Rolling, Torque, and Angular Momentum 111 ROLLING AS TRANSLATION AND ROTATION COMBINED Translation vs. Rotation General Rolling Motion General
More informationAP Physics 1 Torque, Rotational Inertia, and Angular Momentum Practice Problems FACT: The center of mass of a system of objects obeys Newton s second law F = Ma cm. Usually the location of the center
More informationRotation Work and Power of Rotation Rolling Motion Examples and Review
Rotation Work and Power of Rotation Rolling Motion Examples and Review Lana Sheridan De Anza College Nov 22, 2017 Last time applications of moments of inertia Atwood machine with massive pulley kinetic
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationPhysics 23 Exam 3 April 2, 2009
1. A string is tied to a doorknob 0.79 m from the hinge as shown in the figure. At the instant shown, the force applied to the string is 5.0 N. What is the torque on the door? A) 3.3 N m B) 2.2 N m C)
More information Angular momentum.  Equilibrium. Final Exam. During class (13:55 pm) on 6/27, Mon Room: 412 FMH (classroom)
inal Exam During class (13:55 pm) on 6/27, Mon Room: 412 MH (classroom) Bring scientific calculators No smart phone calculators l are allowed. Exam covers everything learned in this course. tomorrow s
More informationΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω
Thur Oct 22 Assign 9 Friday Today: Torques Angular Momentum x θ v ω a α F τ m I Roll without slipping: x = r Δθ v LINEAR = r ω a LINEAR = r α ΣF = ma Στ = Iα ½mv 2 ½Iω 2 I POINT = MR 2 I HOOP = MR 2 I
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationRotational Motion. Rotational Motion. Rotational Motion
I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =
More informationChapter 10: Rotation
Chapter 10: Rotation Review of translational motion (motion along a straight line) Position x Displacement x Velocity v = dx/dt Acceleration a = dv/dt Mass m Newton s second law F = ma Work W = Fdcosφ
More informationRotation Angular Momentum
Rotation Angular Momentum Lana Sheridan De Anza College Nov 28, 2017 Last time rolling motion Overview Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum of rigid
More informationPhysics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015
Physics 2210 Fall 2015 smartphysics 1920 Conservation of Angular Momentum 11/20/2015 Poll 111803 In the two cases shown above identical ladders are leaning against frictionless walls and are not sliding.
More informationDynamics of Rotational Motion
Chapter 10 Dynamics of Rotational Motion To understand the concept of torque. To relate angular acceleration and torque. To work and power in rotational motion. To understand angular momentum. To understand
More informationTextbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8
AP Physics Rotational Motion Introduction: Which moves with greater speed on a merrygoround  a horse near the center or one near the outside? Your answer probably depends on whether you are considering
More informationare (0 cm, 10 cm), (10 cm, 10 cm), and (10 cm, 0 cm), respectively. Solve: The coordinates of the center of mass are = = = (200 g g g)
Rotational Motion Problems Solutions.. Model: A spinning skater, whose arms are outstretched, is a rigid rotating body. Solve: The speed v rω, where r 40 / 0.70 m. Also, 80 rpm (80) π/60 rad/s 6 π rad/s.
More informationConnection between angular and linear speed
Connection between angular and linear speed If a pointlike object is in motion on a circular path of radius R at an instantaneous speed v, then its instantaneous angular speed ω is v = ω R Example: A
More information