Physics 2210 Homework 18 Spring 2015


 Alice Anne Shepherd
 11 months ago
 Views:
Transcription
1 Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle θ = 30.The sphere has mass M = 8 kg and radius R = 0.19 m. The coefficient of static friction between the sphere and the plane is µ = What is the magnitude of the frictional force on the sphere? See Figure 1. Figure 1: Sphere Incline Solution II.Newton law gives F net = M a 1
2 The net force is composed of the three forces F net = N + F g + f Since the sphere is moving along the incline, only its parallel component will be nonzero, i.e. F net = Mg sin θ f On the other hand, for rotation we have Taking the center as origin, we get 1 No slipping condition requires Combining the above results 2 τ net = I α τ net = Rf a = Rα Mg sin θ f M = F net M = R τnet I = R 2 f (2/5)MR 2 Solving for f f = 2 Mg sin θ 7 f = N Gymnast Wording A gymnast with mass m 1 = 41 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m 2 = 108 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam. See Figure 2. Figure 2: Gymnast 1 1 Only the frictional force gives nonzero contribution. 2 Moment of inertia for solid sphere is I = 2 5 MR2. 2
3 Figure 3: Gymnast 2 1. What is the force the left support exerts on the beam? 2. What is the force the right support exerts on the beam? 3. How much extra mass could the gymnast hold before the beam begins to tip? 4. Now the gymnast (not holding any additional mass) walks directly above the right support. What is the force the left support exerts on the beam? See Figure What is the force the right support exerts on the beam? 6. At what location does the gymnast need to stand to maximize the force on the right support? Solution Forces supports push up are F L and F R. Since the system is at rest, we got Since it s not rotating, it s true that 3 0 = F net = F L + F R m 1 g m 2 g 0 = τ net = L 6 F R L 6 F L + L 2 m 1g 1) Solving for the left force F L = 1 2 (4m 1 + m 2 )g F L = N 2) Solving for the right force F R = 1 2 (m 2 2m 1 )g F R = N 3 Taking the center of the beam as the origin. 3
4 3) The beam starts to tip when F R = 0, thus 0 = 1 2 (m 2 2m 1)g m 1 = m 2 /2 And so m 1 = m 1 m 1 = m 2 2 m 1 m 1 = 13 kg 4) Again we have 0 = F net = F R + F L m 1 g m 2 g Site of the force has changed, thus 4 0 = τ net = L 6 F R L 6 F L L 6 m 1g Thus the new left force F L = 1 2 (2m 1 + m 2 )g F L = N 5) Solving for the new right force F R = 1 2 m 2g F R = N 6) Hanging Beam Wording At the right edge of the beam A purple beam is hinged to a wall to hold up a blue sign. The beam has a mass of m b = 6.1 kg and the sign has a mass of m s = 16.8 kg. The length of the beam is L = 2.44 m. The sign is attached at the very end of the beam, but the horizontal wire holding up the beam is attached 2/3 of the way to the end of the beam. The angle the wire makes with the beam is θ = See Figure 4. 4 Origin at the beam s center. 4
5 Figure 4: Hanging Beam 1. What is the tension in the wire? 2. What is the net force the hinge exerts on the beam? 3. The maximum tension the wire can have without breaking is T = 977 N. What is the maximum mass sign that can be hung from the beam? 4. What else could be done in order to be able to hold a heavier sign? Solution Since the beam is not moving, we have In coordinates 5 0 = F net = F b + T + F s + F h 0 = τ net = τ b + τ t + τ s + τ h 0 = T F hx (1) 0 = F hy m s g m b g (2) 0 = L 2 m bg cos θ 2L 3 T sin θ + Lm sg cos θ (3) 1) Solving for tension(from the Eq. (3)) T = 3(m b + 2m s )g 4 tan θ T = N 5 Taking the position of the hinge as the origin. 5
6 2) Components of the hinge force are F hx = T F hy = (m s + m b )g And thus its magnitude F h = (F hx ) 2 + (F hy ) 2 = T 2 + (m s + m b ) 2 g 2 or 9(mb + 2m s ) F h = g 2 16 tan 2 + (m s + m b ) θ 2 F h = N 3) Turning around the formula for the tension m s,max = 2T max tan θ 3g m s,max = kg m b 2 4) while still keeping it horizontal, attach the wire to the end of the beam keeping the wire attached at the same location on the beam, make the wire perpendicular to the beam attach the sign on the beam closer to the wall Meterstick Wording A meterstick (L = 1 m) has a mass of m = kg. Initially it hangs from two short strings: one at the 25 cm mark and one at the 75 cm mark. See Figure 5. Figure 5: Meterstick 1 1. What is the tension in the left string? 6
7 Figure 6: Meterstick 2 2. Now the right string is cut! What is the magnitude of the initial angular acceleration of the meterst about its pivot point? (You may assume the rod pivots about the left string, and the string remains vertical) 3. What is the tension in the left string right after the right string is cut? 4. After the right string is cut, the meterstick swings down to where it is vertical for an instant before it swings back up in the other direction. What is the angular speed when the meterstick is vertical? See Figure What is the magnitude of the acceleration of the center of mass of the meterstick when it is vertical? 6. What is the tension in the string when the meterstick is vertical? 7. Where is the angular acceleration of the meterstick a maximum? Solution 1) Since the stick is stable so 6 0 = F net = T L mg + T R 0 = τ net = (L/4)T R (L/4)T L Solving for the tension in the left string T L = 1 2 mg T L = N 2) The torque about the pivot is τ = lf sin φ = (L/4)mg 6 Origin is in the middle of the stick. 7
8 The second Newton law for rotation τ = Iα Moment of inertia of the rod about this pivot can be obtained by parallel axis theorem I = I 0 + md 2 = 1 12 ml2 + m(l/4) 2 = 7 12 ml2 So solving for the angular acceleration α = τ I = 12g 7L α = rad/s 2 3) At this moment, the acceleration of the center of mass is a = (L/4)α. So the second Newton law gives mg T L = F net = ma = m(l/4)α Solving for the tension T L = 4 7 mg T L = N 4) Using conservation of energy Solving for the angular speed Iω2 = mg L 4 mgl ω = = 2I 6g 7L ω = rad/s 5) Acceleration of the center of mass is completely centripetal 8 and hence a c = ω 2 l = 6g 7L L 4 a c = 3 14 g a c = m/s 2 7 Using the moment of inertia about the pivot  see above. 8 The radius of rotation being l = L/4. 8
9 6) Once again, II.Newton law tells us T mg = F net = ma c So the tension is and finally T = m(g + a c ) = m(g + (3/14)g) T = mg T = N 7) IE Sign Wording Right after the string is cut and the meterstick is still horizontal A sign has a mass of 1050 kg, a height h = 1 m, and a width W = 4 m. It is held by a light rod of length 5 m that is perpendicular to a rough wall. A guy wire at 23 to the horizontal holds the sign to the wall. Note that the distance from the left edge of the sign to the wall is 1 m. See Figure 7. Suppose we rely upon friction between the wall and the rod to hold up the sign (there is no hinge attaching the rod to the wall). What is the smallest value of the coefficient of friction µ such that the sign will remain in place? Figure 7: IE Sign 9
10 Solution The rod is not moving, so 0 = F net 0 = τ net The sign is exerting two equal 9 forces of (M/2)g at D and D W, where D is the length of the rod, while the wire pulls with tension T. Taking origin at the point of contact, our requirements translate into 10 0 = T sin θ (M/2)g (M/2)g + f 0 = N T cos θ 0 = D(M/2)g (D W )(M/2)g + DT sin θ And, of course, f = µn, where f is the force of friction and N is the normal force. Solving for the coefficient of static friction Ladder Wording µ = ( W 2D W µ = ) tan θ A ladder of length L = 2.6 m and mass m = 15 kg rests on a floor with coefficient of static friction µ s = Assume the wall is frictionless. See Figure 8. Figure 8: Ladder 1 1. What is the normal force the floor exerts on the ladder? 9 This can be explicitly shown, but but shoud be intuitively clear. 10 The xaxis points to the right, while the yaxis points upwards. That also makes the zaxis 10
11 Figure 9: Ladder 2 2. What is the minimum angle the ladder must make with the floor to not slip? 3. A person with mass M = 65 kg now stands at the very top of the ladder. What is the normal force the floor exerts on the ladder? See Figuer What is the minimum angle to keep the ladder from sliding? Solution There are four forces at play: Normal force from the floor : N 1  pushing upwards Frictional force: f  pushing to the right Gravitational force (effectively) acting at the center of the ladder: mg  pointing down Normal force from the wall: N 2  pushing to the left 1) For the ladder not to move, the net force needs to be zero, thus, in components 11 0 = f N 2 (4) 0 = N 1 mg (5) Thus we have N 1 = mg N 1 = N 11 The xaxis to the right, the yaxis upwards. 11
12 2) For the ladder not to rotate, the net torque needs to be zero 12, i.e. and so 0 = L 2 mg cos θ + LN 2 sin θ (6) tan θ = mg 2N 2 Using Eq. (4) with frictional force formula, we get N 2 = f = µn 1 = µmg so now ( ) 1 θ min = arctan 2µ θ min = ) At this, we introduced an additional force  weight of the person, which acts at the top end of the ladder. Thus, we need to modify the Eq. (5) to 0 = N 1 mg Mg which leads to N 1 = (m + M)g N 1 = N 4) Likewise, we need to modify Eq (6) to which yields while Eq. (4) is still applicable 0 = L 2 mg cos θ + LN 2 sin θ LMg cos θ tan θ = (m + 2M)g 2N 2 N 2 = f = µn 1 and thus θ min = arctan [( ) ] m + 2M 1 m + M 2µ θ min = With the origin at the bottom end of the ladder. 12
Exam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More informationPhysics 211 Week 10. Statics: Walking the Plank (Solution)
Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports
More informationAngular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion
Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for
More informationEquilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:
Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: F v = 0 and no net torque: v τ = 0 Worksheet A uniform rod with a length L and a mass
More informationAP Physics Multiple Choice Practice Torque
AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44
More informationYour Comments. That s the plan
Your Comments I love physics as much as the next gal, but I was wondering. Why don't we get class off the day after an evening exam? What if the ladder has friction with the wall? Things were complicated
More informationRotational N.2 nd Law
Lecture 0 Chapter 1 Physics I Rotational N. nd Law Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational dynamics Today
More informationRotational Kinetic Energy
Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationChapter 10. Rotation
Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGrawPHY 45 Chap_10HaRotationRevised
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More informationPhysics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems
A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E 4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying
More informationEquilibrium & Elasticity
PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block
More information= y(x, t) =A cos (!t + kx)
A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8
More information112 A General Method, and Rolling without Slipping
112 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration
More information= 2 5 MR2. I sphere = MR 2. I hoop = 1 2 MR2. I disk
A sphere (green), a disk (blue), and a hoop (red0, each with mass M and radius R, all start from rest at the top of an inclined plane and roll to the bottom. Which object reaches the bottom first? (Use
More informationChapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.
Agenda Today: Homework quiz, moment of inertia and torque Thursday: Statics problems revisited, rolling motion Reading: Start Chapter 8 in the reading Have to cancel office hours today: will have extra
More informationUpthrust and Archimedes Principle
1 Upthrust and Archimedes Principle Objects immersed in fluids, experience a force which tends to push them towards the surface of the liquid. This force is called upthrust and it depends on the density
More informationPhysics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating
Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N
More informationt = g = 10 m/s 2 = 2 s T = 2π g
Annotated Answers to the 1984 AP Physics C Mechanics Multiple Choice 1. D. Torque is the rotational analogue of force; F net = ma corresponds to τ net = Iα. 2. C. The horizontal speed does not affect the
More informationAngular Speed and Angular Acceleration Relations between Angular and Linear Quantities
Angular Speed and Angular Acceleration Relations between Angular and Linear Quantities 1. The tires on a new compact car have a diameter of 2.0 ft and are warranted for 60 000 miles. (a) Determine the
More informationName Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?
NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass
More informationRotational Motion. Rotational Motion. Rotational Motion
I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =
More informationChapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = kx
Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = kx When the mass is released, the spring will pull
More informationChap. 10: Rotational Motion
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N
More informationUNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law
UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES Objectives To understand and be able to apply Newton s Third Law To be able to determine the object that is exerting a particular force To understand
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More informationAP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force).
AP Physics C: Mechanics Practice (Newton s Laws including friction, resistive forces, and centripetal force). 1981M1. A block of mass m, acted on by a force of magnitude F directed horizontally to the
More informationChapter 8. Rotational Motion
Chapter 8 Rotational Motion Rotational Work and Energy W = Fs = s = rθ Frθ Consider the work done in rotating a wheel with a tangential force, F, by an angle θ. τ = Fr W =τθ Rotational Work and Energy
More informationPHYS 1303 Final Exam Example Questions
PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 3035,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor
More informationFriction is always opposite to the direction of motion.
6. Forces and MotionII Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationPhysics 6A Winter 2006 FINAL
Physics 6A Winter 2006 FINAL The test has 16 multiple choice questions and 3 problems. Scoring: Question 116 Problem 1 Problem 2 Problem 3 55 points total 20 points 15 points 10 points Enter the solution
More informationPractice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.
Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During
More informationGeneral Physics (PHY 2130)
General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:
More informationPHYSICS 231 Laws of motion PHY 231
PHYSICS 231 Laws of motion 1 Newton s Laws First Law: If the net force exerted on an object is zero the object continues in its original state of motion; if it was at rest, it remains at rest. If it was
More informationLecture 4. Newton s 3rd law and Friction
Lecture 4 Newton s 3rd law and Friction Newtons First Law or Law of Inertia If no net external force is applied to an object, its velocity will remain constant ("inert"). OR A body cannot change its state
More informationRevolve, Rotate & Roll:
I. WarmUP. Revolve, Rotate & Roll: Physics 203, Yaverbaum John Jay College of Criminal Justice, the CUNY Given g, the rate of freefall acceleration near Earth s surface, and r, the radius of a VERTICAL
More informationPHYS 101 Previous Exam Problems. Force & Motion I
PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0kg block is lowered with a downward
More informationPractice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the
More information4) Vector = and vector = What is vector = +? A) B) C) D) E)
1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More information第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel
More informationPHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 111, 1314
Final Review: Chapters 111, 1314 These are selected problems that you are to solve independently or in a team of 23 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This
More informationLecture 11  Advanced Rotational Dynamics
Lecture 11  Advanced Rotational Dynamics A Puzzle... A moldable blob of matter of mass M and uniform density is to be situated between the planes z = 0 and z = 1 so that the moment of inertia around the
More informationVersion A (01) Question. Points
Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4
More informationStatic Equilibrium and Torque
10.3 Static Equilibrium and Torque SECTION OUTCOMES Use vector analysis in two dimensions for systems involving static equilibrium and torques. Apply static torques to structures such as seesaws and bridges.
More informationTranslational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work
Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational
More informationPhysics Mechanics. Lecture 11 Newton s Laws  part 2
Physics 170  Mechanics Lecture 11 Newton s Laws  part 2 Newton s Second Law of Motion An object may have several forces acting on it; the acceleration is due to the net force: Newton s Second Law of
More information4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.
1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional
More informationFALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003
FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is
More informationDynamics of Rotational Motion: Rotational Inertia
Connexions module: m42179 1 Dynamics of Rotational Motion: Rotational Inertia OpenStax College This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More informationChapter 12. Rotation of a Rigid Body
Chapter 12. Rotation of a Rigid Body Not all motion can be described as that of a particle. Rotation requires the idea of an extended object. This diver is moving toward the water along a parabolic trajectory,
More informationPhys101 Lecture 5 Dynamics: Newton s Laws of Motion
Phys101 Lecture 5 Dynamics: Newton s Laws of Motion Key points: Newton s second law is a vector equation Action and reaction are acting on different objects FreeBody Diagrams Ref: 41,2,3,4,5,6,7. Page
More informationExam 2: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term 2012 Exam 2: Equation Summary Newton s Second Law: Force, Mass, Acceleration: Newton s Third Law: Center of Mass: Velocity
More informationInClass Problems 3032: Moment of Inertia, Torque, and Pendulum: Solutions
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 TEAL Fall Term 004 InClass Problems 303: Moment of Inertia, Torque, and Pendulum: Solutions Problem 30 Moment of Inertia of a
More informationPhysics x141 Practice Final Exam
Physics x141 Practice Final Exam Name: Partial credit will be awarded. However, you must show/explain your work. A correct answer without explanatory material will not receive full credit. Clearly indicate
More informationChapter 4: Newton s Second Law F = m a. F = m a (4.2)
Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.
More informationChapter 10 Practice Test
Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What
More informationQuiz Number 4 PHYSICS April 17, 2009
Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given
More informationChapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis
Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis... 2 21.1 Introduction... 2 21.2 Translational Equation
More informationUNIVERSITY OF TORONTO Faculty of Arts and Science
UNIVERSITY OF TORONTO Faculty of Arts and Science DECEMBER 2013 EXAMINATIONS PHY 151H1F Duration  3 hours Attempt all questions. Each question is worth 10 points. Points for each partquestion are shown
More informationElectric Force and Field Chapter Questions
Electric Force and Field Chapter Questions 1. What happens to a plastic rod when it is rubbed with a piece of animal fur? What happens to the piece of fur? 2. How many types of electric charge are there?
More informationConcept of Force and Newton s Laws of Motion
Concept of Force and Newton s Laws of Motion 8.01 W02D2 Chapter 7 Newton s Laws of Motion, Sections 7.17.4 Chapter 8 Applications of Newton s Second Law, Sections 8.18.4.1 Announcements W02D3 Reading
More informationWork and kinetic Energy
Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg
More informationNewton s 3 Laws of Motion
Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of
More informationPhysics 23 Exam 3 April 2, 2009
1. A string is tied to a doorknob 0.79 m from the hinge as shown in the figure. At the instant shown, the force applied to the string is 5.0 N. What is the torque on the door? A) 3.3 N m B) 2.2 N m C)
More informationA uniform rod of length L and Mass M is attached at one end to a frictionless pivot. If the rod is released from rest from the horizontal position,
A dentist s drill starts from rest. After 3.20 s of constant angular acceleration, it turns at a rate of 2.51 10 4 rev/min. (a) Find the drill s angular acceleration. (b) Determine the angle (in radians)
More informationPhysics for Scientists and Engineers. Chapter 6 Dynamics I: Motion Along a Line
Physics for Scientists and Engineers Chapter 6 Dynamics I: Motion Along a Line Spring, 008 Ho Jung Paik Applications of Newton s Law Objects can be modeled as particles Masses of strings or ropes are negligible
More informationFind the value of λ. (Total 9 marks)
1. A particle of mass 0.5 kg is attached to one end of a light elastic spring of natural length 0.9 m and modulus of elasticity λ newtons. The other end of the spring is attached to a fixed point O 3 on
More informationAP Physics 1 Review. On the axes below draw the horizontal force acting on this object as a function of time.
P Physics Review. Shown is the velocity versus time graph for an object that is moving in one dimension under the (perhaps intermittent) action of a single horizontal force. Velocity, m/s Time, s On the
More informationExercise Torque Magnitude Ranking Task. Part A
Exercise 10.2 Calculate the net torque about point O for the two forces applied as in the figure. The rod and both forces are in the plane of the page. Take positive torques to be counterclockwise. τ 28.0
More informationFall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton
Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton 3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.
More informationUniversity of Houston Mathematics Contest: Physics Exam 2017
Unless otherwise specified, please use g as the acceleration due to gravity at the surface of the earth. Vectors x, y, and z are unit vectors along x, y, and z, respectively. Let G be the universal gravitational
More informationWritten Homework problems. Spring (taken from Giancoli, 4 th edition)
Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m
More information3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?
Practice 8A Torque 1. Find the torque produced by a 3.0 N force applied at an angle of 60.0 to a door 0.25 m from the hinge. What is the maximum torque this force could exert? 2. If the torque required
More informationPractice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010
Practice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010 Chapter 11 1. The Ferris wheel shown below is turning at constant speed. Draw and label freebody diagrams showing the forces
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics ICW09D32 Group Problem Person on a Ladder Solution
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 ICW09D3 Group Problem Person on a Ladder Solution A person of mass m p is standing on a rung, one third of the way up a ladder
More informationSlide 1 / 37. Rotational Motion
Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.
More informationPage 1. Chapters 2, 3 (linear) 9 (rotational) Final Exam: Wednesday, May 11, 10:05 am  12:05 pm, BASCOM 272
Final Exam: Wednesday, May 11, 10:05 am  12:05 pm, BASCOM 272 The exam will cover chapters 1 14 The exam will have about 30 multiple choice questions Consultations hours the same as before. Another review
More informationCircular Motion & Gravitation FR Practice Problems
1) A mass m is attached to a length L of string and hung straight strainght down from a pivot. Small vibrations at the pivot set the mass into circular motion, with the string making an angle θ with the
More informationChapter 4. Oscillatory Motion. 4.1 The Important Stuff Simple Harmonic Motion
Chapter 4 Oscillatory Motion 4.1 The Important Stuff 4.1.1 Simple Harmonic Motion In this chapter we consider systems which have a motion which repeats itself in time, that is, it is periodic. In particular
More informationLagrangian Dynamics: Generalized Coordinates and Forces
Lecture Outline 1 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Sanjay Sarma 4/2/2007 Lecture 13 Lagrangian Dynamics: Generalized Coordinates and Forces Lecture Outline Solve one problem
More informationPhysics A  PHY 2048C
Physics A  PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:003:00 PM 212 Keen Building Warmup Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment
More informationPhysics 6A Lab Experiment 6
Biceps Muscle Model Physics 6A Lab Experiment 6 APPARATUS Biceps model Large mass hanger with four 1kg masses Small mass hanger for hand end of forearm bar with five 100g masses Meter stick Centimeter
More informationPhys 106 Practice Problems Common Quiz 1 Spring 2003
Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed
More informationRotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body
Rotational Motion Equipment: Capstone, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125 cm bead
More informationConcept of Force Challenge Problem Solutions
Concept of Force Challenge Problem Solutions Problem 1: Force Applied to Two Blocks Two blocks sitting on a frictionless table are pushed from the left by a horizontal force F, as shown below. a) Draw
More information1301W.600 Lecture 16. November 6, 2017
1301W.600 Lecture 16 November 6, 2017 You are Cordially Invited to the Physics Open House Friday, November 17 th, 2017 4:308:00 PM Tate Hall, Room B20 Time to apply for a major? Consider Physics!! Program
More informationChapter 4 Dynamics: Newton s Laws of Motion
Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications
More informationChapter 5 Newton s Laws of Motion. Copyright 2010 Pearson Education, Inc.
Chapter 5 Newton s Laws of Motion Force and Mass Units of Chapter 5 Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion The Vector Nature of Forces: Forces in Two Dimensions
More informationSimple and Physical Pendulums Challenge Problem Solutions
Simple and Physical Pendulums Challenge Problem Solutions Problem 1 Solutions: For this problem, the answers to parts a) through d) will rely on an analysis of the pendulum motion. There are two conventional
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT VECTOR DYNAMICS MULTIPLE CHOICE / 45 OPEN ENDED / 75 TOTAL / 120 NAME: 1. Unless acted on by an external net force, an object will stay at rest
More informationName: AP Physics C: Kinematics Exam Date:
Name: AP Physics C: Kinematics Exam Date: 1. An object slides off a roof 10 meters above the ground with an initial horizontal speed of 5 meters per second as shown above. The time between the object's
More information