Physics 2210 Homework 18 Spring 2015


 Alice Anne Shepherd
 2 years ago
 Views:
Transcription
1 Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle θ = 30.The sphere has mass M = 8 kg and radius R = 0.19 m. The coefficient of static friction between the sphere and the plane is µ = What is the magnitude of the frictional force on the sphere? See Figure 1. Figure 1: Sphere Incline Solution II.Newton law gives F net = M a 1
2 The net force is composed of the three forces F net = N + F g + f Since the sphere is moving along the incline, only its parallel component will be nonzero, i.e. F net = Mg sin θ f On the other hand, for rotation we have Taking the center as origin, we get 1 No slipping condition requires Combining the above results 2 τ net = I α τ net = Rf a = Rα Mg sin θ f M = F net M = R τnet I = R 2 f (2/5)MR 2 Solving for f f = 2 Mg sin θ 7 f = N Gymnast Wording A gymnast with mass m 1 = 41 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m 2 = 108 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam. See Figure 2. Figure 2: Gymnast 1 1 Only the frictional force gives nonzero contribution. 2 Moment of inertia for solid sphere is I = 2 5 MR2. 2
3 Figure 3: Gymnast 2 1. What is the force the left support exerts on the beam? 2. What is the force the right support exerts on the beam? 3. How much extra mass could the gymnast hold before the beam begins to tip? 4. Now the gymnast (not holding any additional mass) walks directly above the right support. What is the force the left support exerts on the beam? See Figure What is the force the right support exerts on the beam? 6. At what location does the gymnast need to stand to maximize the force on the right support? Solution Forces supports push up are F L and F R. Since the system is at rest, we got Since it s not rotating, it s true that 3 0 = F net = F L + F R m 1 g m 2 g 0 = τ net = L 6 F R L 6 F L + L 2 m 1g 1) Solving for the left force F L = 1 2 (4m 1 + m 2 )g F L = N 2) Solving for the right force F R = 1 2 (m 2 2m 1 )g F R = N 3 Taking the center of the beam as the origin. 3
4 3) The beam starts to tip when F R = 0, thus 0 = 1 2 (m 2 2m 1)g m 1 = m 2 /2 And so m 1 = m 1 m 1 = m 2 2 m 1 m 1 = 13 kg 4) Again we have 0 = F net = F R + F L m 1 g m 2 g Site of the force has changed, thus 4 0 = τ net = L 6 F R L 6 F L L 6 m 1g Thus the new left force F L = 1 2 (2m 1 + m 2 )g F L = N 5) Solving for the new right force F R = 1 2 m 2g F R = N 6) Hanging Beam Wording At the right edge of the beam A purple beam is hinged to a wall to hold up a blue sign. The beam has a mass of m b = 6.1 kg and the sign has a mass of m s = 16.8 kg. The length of the beam is L = 2.44 m. The sign is attached at the very end of the beam, but the horizontal wire holding up the beam is attached 2/3 of the way to the end of the beam. The angle the wire makes with the beam is θ = See Figure 4. 4 Origin at the beam s center. 4
5 Figure 4: Hanging Beam 1. What is the tension in the wire? 2. What is the net force the hinge exerts on the beam? 3. The maximum tension the wire can have without breaking is T = 977 N. What is the maximum mass sign that can be hung from the beam? 4. What else could be done in order to be able to hold a heavier sign? Solution Since the beam is not moving, we have In coordinates 5 0 = F net = F b + T + F s + F h 0 = τ net = τ b + τ t + τ s + τ h 0 = T F hx (1) 0 = F hy m s g m b g (2) 0 = L 2 m bg cos θ 2L 3 T sin θ + Lm sg cos θ (3) 1) Solving for tension(from the Eq. (3)) T = 3(m b + 2m s )g 4 tan θ T = N 5 Taking the position of the hinge as the origin. 5
6 2) Components of the hinge force are F hx = T F hy = (m s + m b )g And thus its magnitude F h = (F hx ) 2 + (F hy ) 2 = T 2 + (m s + m b ) 2 g 2 or 9(mb + 2m s ) F h = g 2 16 tan 2 + (m s + m b ) θ 2 F h = N 3) Turning around the formula for the tension m s,max = 2T max tan θ 3g m s,max = kg m b 2 4) while still keeping it horizontal, attach the wire to the end of the beam keeping the wire attached at the same location on the beam, make the wire perpendicular to the beam attach the sign on the beam closer to the wall Meterstick Wording A meterstick (L = 1 m) has a mass of m = kg. Initially it hangs from two short strings: one at the 25 cm mark and one at the 75 cm mark. See Figure 5. Figure 5: Meterstick 1 1. What is the tension in the left string? 6
7 Figure 6: Meterstick 2 2. Now the right string is cut! What is the magnitude of the initial angular acceleration of the meterst about its pivot point? (You may assume the rod pivots about the left string, and the string remains vertical) 3. What is the tension in the left string right after the right string is cut? 4. After the right string is cut, the meterstick swings down to where it is vertical for an instant before it swings back up in the other direction. What is the angular speed when the meterstick is vertical? See Figure What is the magnitude of the acceleration of the center of mass of the meterstick when it is vertical? 6. What is the tension in the string when the meterstick is vertical? 7. Where is the angular acceleration of the meterstick a maximum? Solution 1) Since the stick is stable so 6 0 = F net = T L mg + T R 0 = τ net = (L/4)T R (L/4)T L Solving for the tension in the left string T L = 1 2 mg T L = N 2) The torque about the pivot is τ = lf sin φ = (L/4)mg 6 Origin is in the middle of the stick. 7
8 The second Newton law for rotation τ = Iα Moment of inertia of the rod about this pivot can be obtained by parallel axis theorem I = I 0 + md 2 = 1 12 ml2 + m(l/4) 2 = 7 12 ml2 So solving for the angular acceleration α = τ I = 12g 7L α = rad/s 2 3) At this moment, the acceleration of the center of mass is a = (L/4)α. So the second Newton law gives mg T L = F net = ma = m(l/4)α Solving for the tension T L = 4 7 mg T L = N 4) Using conservation of energy Solving for the angular speed Iω2 = mg L 4 mgl ω = = 2I 6g 7L ω = rad/s 5) Acceleration of the center of mass is completely centripetal 8 and hence a c = ω 2 l = 6g 7L L 4 a c = 3 14 g a c = m/s 2 7 Using the moment of inertia about the pivot  see above. 8 The radius of rotation being l = L/4. 8
9 6) Once again, II.Newton law tells us T mg = F net = ma c So the tension is and finally T = m(g + a c ) = m(g + (3/14)g) T = mg T = N 7) IE Sign Wording Right after the string is cut and the meterstick is still horizontal A sign has a mass of 1050 kg, a height h = 1 m, and a width W = 4 m. It is held by a light rod of length 5 m that is perpendicular to a rough wall. A guy wire at 23 to the horizontal holds the sign to the wall. Note that the distance from the left edge of the sign to the wall is 1 m. See Figure 7. Suppose we rely upon friction between the wall and the rod to hold up the sign (there is no hinge attaching the rod to the wall). What is the smallest value of the coefficient of friction µ such that the sign will remain in place? Figure 7: IE Sign 9
10 Solution The rod is not moving, so 0 = F net 0 = τ net The sign is exerting two equal 9 forces of (M/2)g at D and D W, where D is the length of the rod, while the wire pulls with tension T. Taking origin at the point of contact, our requirements translate into 10 0 = T sin θ (M/2)g (M/2)g + f 0 = N T cos θ 0 = D(M/2)g (D W )(M/2)g + DT sin θ And, of course, f = µn, where f is the force of friction and N is the normal force. Solving for the coefficient of static friction Ladder Wording µ = ( W 2D W µ = ) tan θ A ladder of length L = 2.6 m and mass m = 15 kg rests on a floor with coefficient of static friction µ s = Assume the wall is frictionless. See Figure 8. Figure 8: Ladder 1 1. What is the normal force the floor exerts on the ladder? 9 This can be explicitly shown, but but shoud be intuitively clear. 10 The xaxis points to the right, while the yaxis points upwards. That also makes the zaxis 10
11 Figure 9: Ladder 2 2. What is the minimum angle the ladder must make with the floor to not slip? 3. A person with mass M = 65 kg now stands at the very top of the ladder. What is the normal force the floor exerts on the ladder? See Figuer What is the minimum angle to keep the ladder from sliding? Solution There are four forces at play: Normal force from the floor : N 1  pushing upwards Frictional force: f  pushing to the right Gravitational force (effectively) acting at the center of the ladder: mg  pointing down Normal force from the wall: N 2  pushing to the left 1) For the ladder not to move, the net force needs to be zero, thus, in components 11 0 = f N 2 (4) 0 = N 1 mg (5) Thus we have N 1 = mg N 1 = N 11 The xaxis to the right, the yaxis upwards. 11
12 2) For the ladder not to rotate, the net torque needs to be zero 12, i.e. and so 0 = L 2 mg cos θ + LN 2 sin θ (6) tan θ = mg 2N 2 Using Eq. (4) with frictional force formula, we get N 2 = f = µn 1 = µmg so now ( ) 1 θ min = arctan 2µ θ min = ) At this, we introduced an additional force  weight of the person, which acts at the top end of the ladder. Thus, we need to modify the Eq. (5) to 0 = N 1 mg Mg which leads to N 1 = (m + M)g N 1 = N 4) Likewise, we need to modify Eq (6) to which yields while Eq. (4) is still applicable 0 = L 2 mg cos θ + LN 2 sin θ LMg cos θ tan θ = (m + 2M)g 2N 2 N 2 = f = µn 1 and thus θ min = arctan [( ) ] m + 2M 1 m + M 2µ θ min = With the origin at the bottom end of the ladder. 12
Physics 201. Professor P. Q. Hung. 311B, Physics Building. Physics 201 p. 1/1
Physics 201 p. 1/1 Physics 201 Professor P. Q. Hung 311B, Physics Building Physics 201 p. 2/1 Rotational Kinematics and Energy Rotational Kinetic Energy, Moment of Inertia All elements inside the rigid
More informationExam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More informationTorque and Static Equilibrium
Torque and Static Equilibrium Rigid Bodies Rigid body: An extended object in which the distance between any two points in the object is constant in time. Examples: sphere, disk Effect of external forces
More informationHandout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum
Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a
More informationChapter 9 Static Equilibrium
Chapter 9 Static Equilibrium Changes in Officehours The following changes will take place until the end of the semester Officehours:  Monday, 12:0013:00h  Wednesday, 14:0015:00h  Friday, 13:0014:00h
More informationPhysics 211 Week 10. Statics: Walking the Plank (Solution)
Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports
More informationPhysics 2211 M Quiz #2 Solutions Summer 2017
Physics 2211 M Quiz #2 Solutions Summer 2017 I. (16 points) A block with mass m = 10.0 kg is on a plane inclined θ = 30.0 to the horizontal, as shown. A balloon is attached to the block to exert a constant
More informationRotational motion problems
Rotational motion problems. (Massive pulley) Masses m and m 2 are connected by a string that runs over a pulley of radius R and moment of inertia I. Find the acceleration of the two masses, as well as
More informationPhysics 4A Solutions to Chapter 10 Homework
Physics 4A Solutions to Chapter 0 Homework Chapter 0 Questions: 4, 6, 8 Exercises & Problems 6, 3, 6, 4, 45, 5, 5, 7, 8 Answers to Questions: Q 04 (a) positive (b) zero (c) negative (d) negative Q 06
More informationAngular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion
Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for
More informationWe define angular displacement, θ, and angular velocity, ω. What's a radian?
We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise
More informationEquilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:
Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: F v = 0 and no net torque: v τ = 0 Worksheet A uniform rod with a length L and a mass
More informationYour Comments. That s the plan
Your Comments I love physics as much as the next gal, but I was wondering. Why don't we get class off the day after an evening exam? What if the ladder has friction with the wall? Things were complicated
More informationMechanics II. Which of the following relations among the forces W, k, N, and F must be true?
Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which
More informationAP Physics Multiple Choice Practice Torque
AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44
More informationRotational N.2 nd Law
Lecture 0 Chapter 1 Physics I Rotational N. nd Law Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational dynamics Today
More informationTorque. Introduction. Torque. PHY torque  J. Hedberg
Torque PHY 207  torque  J. Hedberg  2017 1. Introduction 2. Torque 1. Lever arm changes 3. Net Torques 4. Moment of Rotational Inertia 1. Moment of Inertia for Arbitrary Shapes 2. Parallel Axis Theorem
More informationReview for 3 rd Midterm
Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The momentofinertia about the centerofmass
More information1 MR SAMPLE EXAM 3 FALL 2013
SAMPLE EXAM 3 FALL 013 1. A merrygoround rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,
More informationPhys101 Second Major173 Zero Version Coordinator: Dr. M. AlKuhaili Thursday, August 02, 2018 Page: 1. = 159 kw
Coordinator: Dr. M. AlKuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the
More informationChapter 9. Rotational Dynamics
Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular
More informationRotational Kinetic Energy
Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body
More informationHATZIC SECONDARY SCHOOL
HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT STATIC EQUILIBRIUM MULTIPLE CHOICE / 33 OPEN ENDED / 80 TOTAL / 113 NAME: 1. State the condition for translational equilibrium. A. ΣF = 0 B. ΣF
More informationCircular Motion, Pt 2: Angular Dynamics. Mr. Velazquez AP/Honors Physics
Circular Motion, Pt 2: Angular Dynamics Mr. Velazquez AP/Honors Physics Formulas: Angular Kinematics (θ must be in radians): s = rθ Arc Length 360 = 2π rads = 1 rev ω = θ t = v t r Angular Velocity α av
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences
More informationDefinition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)
Torque Definition is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) = r F = rfsin, r = distance from pivot to force, F is the applied force
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationRotation. PHYS 101 Previous Exam Problems CHAPTER
PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that
More informationPHYSICS  CLUTCH CH 13: ROTATIONAL EQUILIBRIUM.
!! www.clutchprep.com EXAMPLE: POSITION OF SECOND KID ON SEESAW EXAMPLE: A 4 mlong seesaw 50 kg in mass and of uniform mass distribution is pivoted on a fulcrum at its middle, as shown. Two kids sit on
More informationPHYSICS 149: Lecture 21
PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30
More information24/06/13 Forces ( F.Robilliard) 1
R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle
More informationAP Physics 1 Torque, Rotational Inertia, and Angular Momentum Practice Problems FACT: The center of mass of a system of objects obeys Newton s second law F = Ma cm. Usually the location of the center
More informationPhysics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)
Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Multiple choice Section. Circle the correct answer. No work need be shown and no partial
More informationChapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:
CHAPTER 8 3. If a net torque is applied to an object, that object will experience: a. a constant angular speed b. an angular acceleration c. a constant moment of inertia d. an increasing moment of inertia
More informationIII. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 28 with rotatiing objects. Eqs. of motion. Energy.
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Toward Exam 3 Eqs. of motion o To study angular
More informationProblem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer
8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology Problem Set 10 1. Moment of Inertia: Disc and Washer (a) A thin uniform disc of mass M and radius R is mounted on an axis passing
More informationPROBLEM 16.4 SOLUTION
PROBLEM 16.4 The motion of the.5kg rod AB is guided b two small wheels which roll freel in horizontal slots. If a force P of magnitude 8 N is applied at B, determine (a) the acceleration of the rod, (b)
More informationPhysics 2210 Fall smartphysics Rotational Statics 11/18/2015
Physics 2210 Fall 2015 smartphysics 1718 Rotational Statics 11/18/2015 τ TT = L T 1 sin 150 = 1 T 2 1L Poll 111801 τ TT = L 2 T 2 sin 150 = 1 4 T 2L 150 150 τ gg = L 2 MM sin +90 = 1 2 MMM +90 MM τ
More informationPHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011
PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a righthanded Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this
More informationTorque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB
Physics 6A Torque is what causes angular acceleration (just like a force causes linear acceleration) Torque is what causes angular acceleration (just like a force causes linear acceleration) For a torque
More informationChapter 10. Rotation
Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGrawPHY 45 Chap_10HaRotationRevised
More informationAnnouncements Oct 16, 2014
Announcements Oct 16, 2014 1. Prayer 2. While waiting, see how many of these blanks you can fill out: Centripetal Accel.: Causes change in It points but not Magnitude: a c = How to use with N2: Always
More informationChapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:
linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)
More informationPhysics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy
ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 89 pm in NSC 118/119 Sunday, 6:308 pm in CCLIR 468 Announcements This
More informationPhysics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium
Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Strike (Day 10) Prelectures, checkpoints, lectures continue with no change. Takehome quizzes this week. See Elaine Schulte s email. HW
More information31 ROTATIONAL KINEMATICS
31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More informationis acting on a body of mass m = 3.0 kg and changes its velocity from an initial
PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block
More informationLecture 5 Review. 1. Rotation axis: axis in which rigid body rotates about. It is perpendicular to the plane of rotation.
PHYSICAL SCIENCES 1 Concepts Lecture 5 Review Fall 017 1. Rotation axis: axis in which rigid body rotates about. It is perpendicular to the plane of rotation.. Angle θ: The angle at which the rigid body
More informationChapter 9 Rotational Dynamics
Chapter 9 ROTATIONAL DYNAMICS PREVIEW A force acting at a perpendicular distance from a rotation point, such as pushing a doorknob and causing the door to rotate on its hinges, produces a torque. If the
More informationChapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity
Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular
More informationChapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balancethetorques lab as an inquiry introduction
Chapter 8 Rotational Motion and Equilibrium Name 1. Give explanation of torque in own words after doing balancethetorques lab as an inquiry introduction 1. The distance between a turning axis and the
More informationQ1. For a completely inelastic twobody collision the kinetic energy of the objects after the collision is the same as:
Coordinator: Dr.. Naqvi Monday, January 05, 015 Page: 1 Q1. For a completely inelastic twobody collision the kinetic energy of the objects after the collision is the same as: ) (1/) MV, where M is the
More informationRolling, Torque & Angular Momentum
PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the
More informationRotational Dynamics. Slide 2 / 34. Slide 1 / 34. Slide 4 / 34. Slide 3 / 34. Slide 6 / 34. Slide 5 / 34. Moment of Inertia. Parallel Axis Theorem
Slide 1 / 34 Rotational ynamics l Slide 2 / 34 Moment of Inertia To determine the moment of inertia we divide the object into tiny masses of m i a distance r i from the center. is the sum of all the tiny
More informationPhysics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems
A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E 4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying
More informationChapter 8 Rotational Motion and Dynamics Reading Notes
Name: Chapter 8 Rotational Motion and Dynamics Reading Notes Section 81: Angular quantities A circle can be split into pieces called degrees. There are 360 degrees in a circle. A circle can be split into
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationGravitational potential energy
Gravitational potential energ m1 Consider a rigid bod of arbitrar shape. We want to obtain a value for its gravitational potential energ. O r1 1 x The gravitational potential energ of an assembl of N pointlike
More informationChapter 8. Rotational Motion
Chapter 8 Rotational Motion The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of
More informationEquilibrium: Forces and Torques
Practice 15B Answers are available in the classroom and on the website. Scan this QR code for a direct link. Equilibrium: Forces and Torques 16. Lynn walks across a 9.0 m long plank bridge. The mass of
More informationGyroscopes and statics
Gyroscopes and statics Announcements: Welcome back from Spring Break! CAPA due Friday at 10pm We will finish Chapter 11 in H+R on angular momentum and start Chapter 12 on stability. Friday we will begin
More informationChapter 10: Dynamics of Rotational Motion
Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.
More informationPHYSICS 2210 Fall Exam 4 Review 12/02/2015
PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal
More informationEquilibrium & Elasticity
PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block
More informationNAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%
NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity
More informationUpthrust and Archimedes Principle
1 Upthrust and Archimedes Principle Objects immersed in fluids, experience a force which tends to push them towards the surface of the liquid. This force is called upthrust and it depends on the density
More information= y(x, t) =A cos (!t + kx)
A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8
More informationPhys 1401: General Physics I
1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?
More informationPHYSICS 221 SPRING EXAM 2: March 31, 2016; 8:15pm 10:15pm
PHYSICS 221 SPRING 2016 EXAM 2: March 31, 2016; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # Student ID# INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit
More informationReview questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.
Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the
More informationCHAPTER 8 TEST REVIEW MARKSCHEME
AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is
More informationChapter 12 Static Equilibrium
Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions
More information= 2 5 MR2. I sphere = MR 2. I hoop = 1 2 MR2. I disk
A sphere (green), a disk (blue), and a hoop (red0, each with mass M and radius R, all start from rest at the top of an inclined plane and roll to the bottom. Which object reaches the bottom first? (Use
More informationChapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.
Agenda Today: Homework quiz, moment of inertia and torque Thursday: Statics problems revisited, rolling motion Reading: Start Chapter 8 in the reading Have to cancel office hours today: will have extra
More informationPhys 1401: General Physics I
1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?
More informationPHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009
PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009 Note: The unit vectors in the +x, +y, and +z directions of a righthanded Cartesian coordinate system are î, ĵ, and ˆk, respectively.
More informationPhysics 111. Lecture 22 (Walker: ) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009
Physics 111 Lecture 22 (Walker: 11.13) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009 Lecture 22 1/26 Torque (τ) We define a quantity called torque which is a measure of twisting effort.
More information112 A General Method, and Rolling without Slipping
112 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration
More informationPhysics 125, Spring 2006 Monday, May 15, 8:0010:30am, Old Chem 116. R01 Mon. 12:50 R02 Wed. 12:50 R03 Mon. 3:50. Final Exam
Monday, May 15, 8:0010:30am, Old Chem 116 Name: Recitation section (circle one) R01 Mon. 12:50 R02 Wed. 12:50 R03 Mon. 3:50 Closed book. No notes allowed. Any calculators are permitted. There are no trick
More informationChapter 8  Rotational Dynamics and Equilibrium REVIEW
Pagpalain ka! (Good luck, in Filipino) Date Chapter 8  Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body
More informationRotational N.2 nd Law
Lecture 19 Chapter 12 Rotational N.2 nd Law Torque Newton 2 nd Law again!? That s it. He crossed the line! Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will
More informationTorque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.
Warm up A remotecontrolled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics
More informationStatic Equilibrium; Torque
Static Equilibrium; Torque The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium. The first condition for equilibrium is that the net force
More informationPH1104/PH114S MECHANICS
PH04/PH4S MECHANICS SEMESTER I EXAMINATION 0607 SOLUTION MULTIPLECHOICE QUESTIONS. (B) For freely falling bodies, the equation v = gh holds. v is proportional to h, therefore v v = h h = h h =.. (B).5i
More informationPhysics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015
Physics 2210 Fall 2015 smartphysics 1920 Conservation of Angular Momentum 11/20/2015 Poll 111803 In the two cases shown above identical ladders are leaning against frictionless walls and are not sliding.
More informationPhysics 5A Final Review Solutions
Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone
More informationPHYSICS 221 SPRING 2014
PHYSICS 221 SPRING 2014 EXAM 2: April 3, 2014 8:1510:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit questions,
More informationMoment of Inertia & Newton s Laws for Translation & Rotation
Moment of Inertia & Newton s Laws for Translation & Rotation In this training set, you will apply Newton s 2 nd Law for rotational motion: Στ = Σr i F i = Iα I is the moment of inertia of an object: I
More informationName Date Period PROBLEM SET: ROTATIONAL DYNAMICS
Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget
More informationWrite your name legibly on the top right hand corner of this paper
NAME Phys 631 Summer 2007 Quiz 2 Tuesday July 24, 2007 Instructor R. A. Lindgren 9:00 am 12:00 am Write your name legibly on the top right hand corner of this paper No Books or Notes allowed Calculator
More informationQ1. Which of the following is the correct combination of dimensions for energy?
Tuesday, June 15, 2010 Page: 1 Q1. Which of the following is the correct combination of dimensions for energy? A) ML 2 /T 2 B) LT 2 /M C) MLT D) M 2 L 3 T E) ML/T 2 Q2. Two cars are initially 150 kilometers
More informationChapter Rotational Motion
26 Chapter Rotational Motion 1. Initial angular velocity of a circular disc of mass M is ω 1. Then two small spheres of mass m are attached gently to diametrically opposite points on the edge of the disc.
More informationPhysics 11 Fall 2012 Practice Problems 6
Physics 11 Fall 2012 Practice Problems 6 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on
More informationCHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY. Conditions for static equilibrium Center of gravity (weight) Examples of static equilibrium
CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY As previously defined, an object is in equilibrium when it is at rest or moving with constant velocity, i.e., with no net force acting on it. The following
More informationPractice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)
Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of
More informationPhysics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating
Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N
More information