PY105 Assignment 10 ( )


 Phyllis Holland
 2 years ago
 Views:
Transcription
1 1 of /10/30 8:27 AM PY105 Assignment 10 ( ) 0/20 Tue Nov :15 PM EST Question Points /2 0/6 0/2 0/2 0/2 0/5 0/1 Total 0/20 Description This assignment is worth 20 points. Each part is worth 1 point. Assume the numbers given in each problem are accurate to three significant figures. WebAssign expects your answers to be accurate within 1%. If you don't round off until the end, and then round off to three significant figures, you should be fine. Occasionally there are errors in WebAssign. If you are convinced your answer is correct and WebAssign is grading you incorrectly please check with Professor Duffy. 1. 0/2 pointsduffy_ep_ch11_p54 [ ] A solid sphere rolls without slipping when it is released from rest at the top of a ramp that is inclined at 38.0 degrees with respect to the horizontal, but, if the angle exceeds 38.0 degrees, the sphere slips as it rolls. Use g = 10.0 m/s 2. (a)calculate the magnitude of the sphere's acceleration, when the angle of the incline is 38.0 degrees. 4.4 m/s 2. (b)calculate the coefficient of static friction between the sphere and the incline /6 pointsduffy_ep_ch11_p56 [ ] A bowling ball of mass M and radius R = 20.0 cm is released with an initial translational velocity of v i = 15.0 m/s to the right and an initial angular velocity of zero. The bowling ball can be treated as a uniform solid sphere. The coefficient of kinetic friction between the ball and the surface is The force of kinetic friction causes a linear acceleration, as well as a torque that causes the ball to spin. The ball rolls while slipping along the horizontal surface for some time, and then rolls without slipping at constant velocity after that. Use g = 10 m/s 2.
2 2 of /10/30 8:27 AM (a) Which freebody diagram above shows all the forces acting on the ball while it is sliding? FBD 1 FBD 2 FBD 3 FBD 4 FBD 5 (b) What is the magnitude of the acceleration of the ball while it is sliding? 1.5 m/s 2 (c) What is the magnitude of the angular acceleration of the ball while it is sliding? 18.8 rad/s 2 (d) How far does the ball travel while it is sliding? 10.7 m (e) What is the constant speed of the ball when the ball rolls without slipping? 13.9 m/s (f) Which freebody diagram above shows all the forces acting on the ball after it starts rolling without slipping, moving at a constant velocity? FBD 1 FBD 2
3 3 of /10/30 8:27 AM FBD 3 FBD 4 FBD /2 pointsduffy_ep_ch11_p57 [ ] The figure below shows the side view of a meter stick that can rotate without friction about an axis passing through the left end. Pennies (of negligible mass in comparison to the mass of the meter stick) have been placed on the meter stick at regular intervals. Initially, you hold it so that the stick is at rest in a horizontal position. When you let go, the meter stick rotates about the axis. Some of the pennies remain in contact with the meter stick while some lose contact with it. Use g = 9.8 m/s 2. (a) Determine the angular acceleration of the meter stick about the axis through the left end, immediately after you release the meter stick from rest rad/s 2 (b) Determine the linear acceleration, immediately after you release the meter stick from rest, of the point on the meter stick that is a distance of 85.0 cm from the axis. Note that the linear acceleration of the penny at that point on the meter stick is at most g m/s /2 pointsduffy_ep_ch11_p36 [498324] A pulley has a mass M, a radius R, and is in the form of a uniform solid disk. The pulley can rotate without friction about a horizontal axis through its center. As shown in the diagram, the string wrapped around the outside edge of the pulley is subjected to an 8.00 N force in case 1, while in case 2 a block with a weight of 8.00 N hangs down from the string. Use g = 9.8 m/s 2. If M = 2.60 kg and R = 80.0 cm, calculate the magnitude of the angular acceleration of the pulley in (a) case 1. (b) case rad/s rad/s /2 pointsduffy_ep_ch11_p53 [ ]
4 4 of /10/30 8:27 AM For this problem, use M = 4.00 kg, R = 28.0 cm, and g = 10.0 m/s 2. A spool consists of two disks, each of radius R and mass M, connected by a cylindrical axle of radius R/2 and mass M. When an upward force of tension, of magnitude F T, is exerted on a string wrapped around the axle, the spool will roll without slipping as long as F T is not too large. (a) Calculate the spool s rotational inertia about an axis through its center kg m 2 (b) If the coefficient of static friction between the spool and the horizontal surface it is on is 0.900, what is the maximum value F T can be for the spool to roll without slipping? 85.5 N 6. 0/5 pointsduffy_ep_ch11_p32 [ ] A beetle with a mass of 20.0 g is initially at rest on the outer edge of a horizontal turntable that is also initially at rest. The turntable, which is free to rotate with no friction about an axis through its center, has a mass of 75.0 g and can be treated as a uniform disk. The beetle then starts to walk around the edge of the turntable, traveling at an angular velocity of rad/s clockwise with respect to the turntable. (a) What does the turntable do while the beetle is walking? The turntable remains at rest. at the same angular velocity (same magnitude and direction) as the beetle. clockwise, with a larger angular speed than the beetle's. clockwise, with a smaller angular speed than the beetle's. counterclockwise, but with the same angular speed as counterclockwise, with a larger angular speed than counterclockwise, with a smaller angular speed than
5 5 of /10/30 8:27 AM (b) With respect to you, motionless as you watch the beetle and turntable, what is the angular velocity of the beetle? Use a positive sign if the answer is clockwise, and a negative sign if the answer is counterclockwise rad/s (c) What is the angular velocity of the turntable (with respect to you)? Use a positive sign if the answer is clockwise, and a negative sign if the answer is counterclockwise rad/s (d) If a mark is placed on the turntable at the beetle s starting point, how long does it take the beetle to reach the mark again? 157 s (e) Upon reaching the mark, the beetle stops. What does the turntable do? also comes to rest. keeps rotating at the same angular velocity. slows down, but does not come to rest. speeds up. reverses direction, but keeps the same angular speed. 's angular velocity changes to the original angular velocity of the beetle. 7. 0/1 pointsduffy_ep_ch11_p34 [ ] A particular horizontal turntable can be modeled as a uniform disk with a mass of 200 g and a radius of 20.0 cm that rotates without friction about a vertical axis passing through its center. The angular speed of the turntable is 3.00 rad/s. A ball of clay, with a mass of 40.0 g, is dropped from a height of 25.0 cm above the turntable. It hits the turntable at a distance of 15.0 cm from the middle, and sticks where it hits. Assuming the turntable is firmly supported by its axle so it remains horizontal at all times, find the final angular speed of the turntableclay system rad/s Assignment Details
EndofChapter Exercises
EndofChapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. Figure 11.21 shows four different cases involving a
More information0/20. Mon Oct :15 PM EDT. Question Points. 0/10/30/30/30/40/30/3 Total 0/20. Description
1 of 6 8/24/2009 5:07 PM 0/20 Mon Oct 5 2009 10:15 PM EDT Question Points 1 2 3 4 5 6 7 0/10/30/30/30/40/30/3 Total 0/20 Description This assignment is worth 20 points. Each part is worth 1 point. Assume
More information1 MR SAMPLE EXAM 3 FALL 2013
SAMPLE EXAM 3 FALL 013 1. A merrygoround rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,
More informationTest 7 wersja angielska
Test 7 wersja angielska 7.1A One revolution is the same as: A) 1 rad B) 57 rad C) π/2 rad D) π rad E) 2π rad 7.2A. If a wheel turns with constant angular speed then: A) each point on its rim moves with
More information0/20. Mon Nov :15 PM EST. Question Points. 0/20/20/20/10/10/20/10/30/20/20/2 Total 0/20. Description
1 of 6 10/20/2009 3:20 PM 0/20 Mon Nov 2 2009 10:15 PM EST Question Points 1 2 3 4 5 6 7 8 9 10 11 0/20/20/20/10/10/20/10/30/20/20/2 Total 0/20 Description This assignment is worth 20 points. Each part
More informationWebreview Torque and Rotation Practice Test
Please do not write on test. ID A Webreview  8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30mradius automobile
More informationThis assignment is worth 20 points. Each part is worth 1 point, except for the last problem, in which each part is worth half a point.
1 of 6 11/20/2009 3:43 PM 0/20 Tue Dec 1 2009 10:15 PM EST Question Points 1 2 3 4 5 6 7 8 9 0/20/20/30/10/30/10/20/20/4 Total 0/20 Description This assignment is worth 20 points. Each part is worth 1
More informationBig Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular
Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only
More informationA) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.
Coordinator: Dr. W. AlBasheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes
More informationSuggested Problems. Chapter 1
Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,
More informationPhysics for Scientist and Engineers third edition Rotational Motion About a Fixed Axis Problems
A particular bird s eye can just distinguish objects that subtend an angle no smaller than about 3 E 4 rad, A) How many degrees is this B) How small an object can the bird just distinguish when flying
More informationChapter 10 Practice Test
Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What
More informationIt will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV
AP Physics 1 Lesson 16 Homework Newton s First and Second Law of Rotational Motion Outcomes Define rotational inertia, torque, and center of gravity. State and explain Newton s first Law of Motion as it
More informationIII. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 28 with rotatiing objects. Eqs. of motion. Energy.
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Toward Exam 3 Eqs. of motion o To study angular
More informationRolling, Torque & Angular Momentum
PHYS 101 Previous Exam Problems CHAPTER 11 Rolling, Torque & Angular Momentum Rolling motion Torque Angular momentum Conservation of angular momentum 1. A uniform hoop (ring) is rolling smoothly from the
More information6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.
1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular
More informationCHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque
7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity
More informationRotation. PHYS 101 Previous Exam Problems CHAPTER
PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that
More informationEquilibrium: Forces and Torques
Practice 15B Answers are available in the classroom and on the website. Scan this QR code for a direct link. Equilibrium: Forces and Torques 16. Lynn walks across a 9.0 m long plank bridge. The mass of
More informationAP practice ch 78 Multiple Choice
AP practice ch 78 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to
More information112 A General Method, and Rolling without Slipping
112 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration
More informationCentripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la
The Language of Physics Angular displacement The angle that a body rotates through while in rotational motion (p. 241). Angular velocity The change in the angular displacement of a rotating body about
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationBig Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1
Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50kg boy and a 40kg girl sit on opposite ends of a 3meter seesaw. How far from the girl should the fulcrum be placed in order for the
More informationPHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm
PHYSICS 221 SPRING 2017 EXAM 2: March 30, 2017; 8:15pm 10:15pm Name (printed): Recitation Instructor: Section # Student ID# INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit
More information3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?
Practice 8A Torque 1. Find the torque produced by a 3.0 N force applied at an angle of 60.0 to a door 0.25 m from the hinge. What is the maximum torque this force could exert? 2. If the torque required
More informationRolling, Torque, Angular Momentum
Chapter 11 Rolling, Torque, Angular Momentum Copyright 11.2 Rolling as Translational and Rotation Combined Motion of Translation : i.e.motion along a straight line Motion of Rotation : rotation about a
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationChapter 910 Test Review
Chapter 910 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationPlease circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#:
Faculty of Engineering and Department of Physics ENPH 131 Final Examination Saturday, April 20, 2013; 2:00 pm 4:30 pm Universiade Pavilion Section EB01 (BEAMISH): Rows 1, 3, 5(seats 145) Section EB02
More informationCHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY
CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational
More informationChapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:
CHAPTER 8 3. If a net torque is applied to an object, that object will experience: a. a constant angular speed b. an angular acceleration c. a constant moment of inertia d. an increasing moment of inertia
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More informationPhysics 23 Exam 3 April 2, 2009
1. A string is tied to a doorknob 0.79 m from the hinge as shown in the figure. At the instant shown, the force applied to the string is 5.0 N. What is the torque on the door? A) 3.3 N m B) 2.2 N m C)
More informationAP Physics C! name I CM R 2. v cm K = m
AP Physics C! name 120pt TAKE HOME TEST Chap 11 Rolling Mot., Angular Mom., Torque 3/914/12 Show your work on the problems Box in answers No Naked Numbers! 80pts from Chap 11 in class Questions and Problems:
More informationPSI AP Physics I Rotational Motion
PSI AP Physics I Rotational Motion MultipleChoice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from
More information第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel
More informationName Date Period PROBLEM SET: ROTATIONAL DYNAMICS
Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget
More informationPlane Motion of Rigid Bodies: Forces and Accelerations
Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,
More informationPhysics 11 Fall 2012 Practice Problems 6
Physics 11 Fall 2012 Practice Problems 6 1. Two points are on a disk that is turning about a fixed axis perpendicular to the disk and through its center at increasing angular velocity. One point is on
More informationPhysics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More informationPhysics Exam 2 October 11, 2007
INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show
More information1 of 5 7/13/2015 9:03 AM HW8 due 6 pm Day 18 (Wed. July 15) (7426858) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1. Question Details OSColPhys1 10.P.028.WA. [2611790] The specifications for
More informationRotation review packet. Name:
Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the
More informationAssignment 9. to roll without slipping, how large must F be? Ans: F = R d mgsinθ.
Assignment 9 1. A heavy cylindrical container is being rolled up an incline as shown, by applying a force parallel to the incline. The static friction coefficient is µ s. The cylinder has radius R, mass
More information= 40 N. Q = 60 O m s,k
Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force
More informationINTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: SEPTEMBER 2012 SESSION
INTI INTERNATIONAL UNIVERSITY FOUNDATION IN SCIENCE (CFSI) PHY1203: GENERAL PHYSICS 1 FINAL EXAMINATION: SEPTEMBER 2012 SESSION PHY1203(F)/Page 1 of 5 Instructions: This paper consists of FIVE (5) questions.
More informationName (Print): Signature: PUID:
Machine Graded Portion (70 points total) Name (Print): Signature: PUID: You will lose points if your explanations are incomplete, if we can t read your handwriting, or if your work is sloppy. 1. A playground
More informationDr. Galeazzi PHY205 Final Exam December 12, I.D. number:
Signature: I.D. number: Name: 1 You must do the first two problems which consists of five multiple choice questions each. Then you must do four of the five long problems numbered 37. Clearly cross out
More informationNAME NUMBER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002. PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2 Q2 Q3 Total 40%
NAME NUMER SEC. PHYCS 101 SUMMER 2001/2002 FINAL EXAME:24/8/2002 PART(I) 25% PART(II) 15% PART(III)/Lab 8% ( ) 2.5 Q1 ( ) 2 Q2 Q3 Total 40% Use the followings: Magnitude of acceleration due to gravity
More informationHandout 7: Torque, angular momentum, rotational kinetic energy and rolling motion. Torque and angular momentum
Handout 7: Torque, angular momentum, rotational kinetic energy and rolling motion Torque and angular momentum In Figure, in order to turn a rod about a fixed hinge at one end, a force F is applied at a
More informationDefinition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)
Torque Definition is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) = r F = rfsin, r = distance from pivot to force, F is the applied force
More informationUniversity Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1
University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1 Name: Date: 1. For a wheel spinning on an axis through its center, the ratio of the radial acceleration of a point on
More informationPhysics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow)
Physics 201 Exam 3 (Monday, November 5) Fall 2012 (Saslow) Name (printed) Lab Section(+2 pts) Name (signed as on ID) Multiple choice Section. Circle the correct answer. No work need be shown and no partial
More informationRotation and Translation Challenge Problems Problem 1:
Rotation and Translation Challenge Problems Problem 1: A drum A of mass m and radius R is suspended from a drum B also of mass m and radius R, which is free to rotate about its axis. The suspension is
More informationReview questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.
Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the
More informationName: Date: Period: AP Physics C Rotational Motion HO19
1.) A wheel turns with constant acceleration 0.450 rad/s 2. (99) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More informationPhysics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium
Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Strike (Day 10) Prelectures, checkpoints, lectures continue with no change. Takehome quizzes this week. See Elaine Schulte s email. HW
More informationAP Physics 1 Rotational Motion Practice Test
AP Physics 1 Rotational Motion Practice Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A spinning ice skater on extremely smooth ice is able
More informationCOLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER I 2012/2013
COLLEGE OF FOUNDATION AND GENERAL STUDIES PUTRAJAYA CAMPUS FINAL EXAMINATION TRIMESTER I 2012/2013 PROGRAMME SUBJECT CODE SUBJECT : Foundation in Engineering : PHYF115 : Physics I DATE : September 2012
More informationPhysics 121k Exam 2 27 Oct 2011
Answer each question and show your work. A correct answer with no supporting reasoning may receive no credit. Unless directed otherwise, please use g=10.0 m/s 2. Name: 1. (15 points) A 3.0 kg block travels
More informationEQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body
EQUATIONS OF MOTION: GENERAL PLANE MOTION (Section 17.5) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing general plane motion. APPLICATIONS As the soil
More informationLecture 6 Physics 106 Spring 2006
Lecture 6 Physics 106 Spring 2006 Angular Momentum Rolling Angular Momentum: Definition: Angular Momentum for rotation System of particles: Torque: l = r m v sinφ l = I ω [kg m 2 /s] http://web.njit.edu/~sirenko/
More informationSlide 1 / 133. Slide 2 / 133. Slide 3 / How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m?
1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 1 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 2 / 133 3 A ball rotates
More informationI pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2
Fall 008 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton 3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.
More informationSlide 2 / 133. Slide 1 / 133. Slide 3 / 133. Slide 4 / 133. Slide 5 / 133. Slide 6 / 133
Slide 1 / 133 1 How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? Slide 2 / 133 2 How many degrees are subtended by a 0.10 m arc of a circle of radius of 0.40 m? Slide 3 / 133
More informationPhys101 Third Major161 Zero Version Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1
Coordinator: Dr. Ayman S. ElSaid Monday, December 19, 2016 Page: 1 Q1. A water molecule (H 2 O) consists of an oxygen (O) atom of mass 16m and two hydrogen (H) atoms, each of mass m, bound to it (see
More informationExam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More informationPHYSICS 221 SPRING 2015
PHYSICS 221 SPRING 2015 EXAM 2: April 2, 2015 8:1510:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiplechoice questions plus 2 extra credit questions,
More informationGeneral Physics Physics 101 Test #2 Spring 2017 Wednesday 3/1/17 Prof. Bob Ekey
General Physics Physics 101 Test #2 Spring 2017 Wednesday 3/1/17 Prof. Bob Ekey Name (print): I hereby declare upon my word of honor that I have neither given nor received unauthorized help on this work.
More informationQ2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ
Coordinator: Dr. S. Kunwar Monday, March 25, 2019 Page: 1 Q1. An object moves in a horizontal circle at constant speed. The work done by the centripetal force is zero because: A) the centripetal force
More informationName (please print): UW ID# score last first
Name (please print): UW ID# score last first Question I. (20 pts) Projectile motion A ball of mass 0.3 kg is thrown at an angle of 30 o above the horizontal. Ignore air resistance. It hits the ground 100
More informationSample Final Exam 02 Physics 106 (Answers on last page)
Sample Final Exam 02 Physics 106 (Answers on last page) Name (Print): 4 Digit ID: Section: Instructions: 1. There are 30 multiple choice questions on the test. There is no penalty for guessing, so you
More informationRolling, Torque, and Angular Momentum
AP Physics C Rolling, Torque, and Angular Momentum Introduction: Rolling: In the last unit we studied the rotation of a rigid body about a fixed axis. We will now extend our study to include cases where
More informationOn my honor, I have neither given nor received unauthorized aid on this examination.
Instructor(s): Profs. D. Reitze, H. Chan PHYSICS DEPARTMENT PHY 2053 Exam 2 April 2, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.
More informationMoment of Inertia & Newton s Laws for Translation & Rotation
Moment of Inertia & Newton s Laws for Translation & Rotation In this training set, you will apply Newton s 2 nd Law for rotational motion: Στ = Σr i F i = Iα I is the moment of inertia of an object: I
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationChapter 8  Rotational Dynamics and Equilibrium REVIEW
Pagpalain ka! (Good luck, in Filipino) Date Chapter 8  Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body
More informationDo not fill out the information below until instructed to do so! Name: Signature: Student ID: Section Number:
Do not fill out the information below until instructed to do so! Name: Signature: Student ID: Email: Section Number: Formulae are provided on the last page. You may NOT use any other formula sheet. You
More informationPhysics 101. Hour Exam 2 Spring Last Name: First Name NetworkID Discussion Section: Discussion TA Name:
Last Name: First Name NetworkID Discussion Section: Discussion TA Name: Instructions Turn off your cell phone and put it away. This is a closed book exam. You have ninety (90) minutes to complete it.
More informationPhysics Kinematics, Projectile Motion, FreeBody Diagrams, and Rotational Motion
Physics Kinematics, Projectile Motion, FreeBody Diagrams, and Rotational Motion Kinematics and Projectile Motion Problem Solving Steps 1. Read and ReRead the whole problem carefully before trying to
More informationPhys101 Second Major173 Zero Version Coordinator: Dr. M. AlKuhaili Thursday, August 02, 2018 Page: 1. = 159 kw
Coordinator: Dr. M. AlKuhaili Thursday, August 2, 218 Page: 1 Q1. A car, of mass 23 kg, reaches a speed of 29. m/s in 6.1 s starting from rest. What is the average power used by the engine during the
More informationYou may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.
1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction
More informationName Student ID Score Last First. I = 2mR 2 /5 around the sphere s center of mass?
NOTE: ignore air resistance in all Questions. In all Questions choose the answer that is the closest!! Question I. (15 pts) Rotation 1. (5 pts) A bowling ball that has an 11 cm radius and a 7.2 kg mass
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationP211 Spring 2004 Form A
1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More informationPHY131H1S  Class 20. Preclass reading quiz on Chapter 12
PHY131H1S  Class 20 Today: Gravitational Torque Rotational Kinetic Energy Rolling without Slipping Equilibrium with Rotation Rotation Vectors Angular Momentum Preclass reading quiz on Chapter 12 1 Last
More informationPhys 106 Practice Problems Common Quiz 1 Spring 2003
Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed
More informationΣF = ma Στ = Iα ½mv 2 ½Iω 2. mv Iω
Thur Oct 22 Assign 9 Friday Today: Torques Angular Momentum x θ v ω a α F τ m I Roll without slipping: x = r Δθ v LINEAR = r ω a LINEAR = r α ΣF = ma Στ = Iα ½mv 2 ½Iω 2 I POINT = MR 2 I HOOP = MR 2 I
More informationMechanics II. Which of the following relations among the forces W, k, N, and F must be true?
Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which
More informationAP Physics 1: Rotational Motion & Dynamics: Problem Set
AP Physics 1: Rotational Motion & Dynamics: Problem Set I. Axis of Rotation and Angular Properties 1. How many radians are subtended by a 0.10 m arc of a circle of radius 0.40 m? 2. How many degrees are
More informationReview PHYS114 Chapters 47
Review PHYS114 Chapters 47 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 27 kg object is accelerated at a rate of 1.7 m/s 2. What force does
More information31 ROTATIONAL KINEMATICS
31 ROTATIONAL KINEMATICS 1. Compare and contrast circular motion and rotation? Address the following Which involves an object and which involves a system? Does an object/system in circular motion have
More informationChapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity
Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular
More informationFigure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.
51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences
More information