Physics 131: Lecture 21. Today s Agenda


 Clarissa Fletcher
 1 years ago
 Views:
Transcription
1 Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1
2 Newton s second law in rotation land Sum of the torques will equal the moment of inertia times the angular acceleration = An unbalanced net torque will result in an angular acceleration Physics 01: Lecture 10, Pg
3 Disk and box A box of mass 40 kg is tied to a light string wound around a wheel that has a mass of 30 kg and radius 0.5 m. Find the acceleration of the box. a =? Physics 01: Lecture 10, Pg 3
4 Clicker Question 1: A box of m B = 40 kg is tied to a light string wound around a wheel that has a m W = 30 kg and radius 0.5 m. Which is the correct equation of motion for the box? (a) T = m B g + m B a (b) T = m B g  m B a () (c) T = m B g (d) T = m W g  m W a (e) T=m B g  m W a a =? Physics 01: Lecture 10, Pg 4
5 Clicker Question 1: Let s use Newton s second law on the box F = m B a m B g T = m B a T = m B gm B a T a =? m B g Physics 01: Lecture 10, Pg 5
6 Clicker Question : A box of m B = 40 kg is tied to a light string wound around a wheel that has a m W = 30 kg and radius 0.5 m. Which is the correct equation of motion for the wheel? (a) TR = m W R (b) TR = (1/)m W R () (c) TR = (1/)m W 4R (d) TR = (3/4)m W R (e) TR = (1/)m W R a =? Physics 01: Lecture 10, Pg 6
7 Clicker Question : The string will pull with a tension T at a distance of R from the axis of rotation for the disk. so : =TR That is the only torque So = TR = =(1/)m W R TR = (1/)m W R T =(1/)m W R a =? Physics 01: Lecture 10, Pg 7
8 Clicker Question 3: A box of m B = 40 kg is tied to a light string wound around a wheel that has a m W = 30 kg and radius 0.5 m. How do the angular acceleration of the wheel and the linear acceleration a of the box compare? (a) (b) a = R a= R (c) a = 4R (d) a = R/ a =? (e) a = R/4 Physics 01: Lecture 10, Pg 8
9 Constraints Due to Ropes and Pulleys A rope passes over a pulley and is connected to an object in linear motion. The rope does not slip as the pulley rotates. Tangential velocity and acceleration of the rim of the pulley must match the motion of the object: Physics 01: Lecture 10, Pg 9
10 Disk and box Now we remember a T = R So we can relate and a T =(1/)m W R T = m B gm B a a =? a 1 m B g m W m B Physics 01: Lecture 10, Pg 10
11 Clicker Question 4: Block A slides upon a frictionless table, as shown. It is connected to a string, the other end of which is connected to a hanging block B. The string goes over a frictionless, massive pulley. As the two blocks move, the string does not slip on the pulley. At the moment shown in the figure, which of the following statements is true about the tension in the top part of the string, T 1, the tension in the lower part of the string, T, and the force of gravity on block B, mg? (a) T 1 = T = mg (b) T 1 = T < mg (c) T 1 < T = mg (d) T 1 = T > mg (e) T 1 < T < mg Physics 01: Lecture 10, Pg 11
12 Clicker Question 4: Physics 01: Lecture 10, Pg 1
13 Course Evaluations I believe you ve been contacted by concerning online course evaluations These are very important in helping us improve the course experience Please ensure that students are checking their utoronto.ca address and not a departmental t or other address, and that t they check their spam folder, as s have sometimes been directed to those folders. Physics 01: Lecture 10, Pg 13
14 Rolling A wheel is spinning clockwise such that the speed of the outer rim is m/s. What is the velocity of the top of the wheel relative to the ground? What is the velocity of the bottom of the wheel relative to the ground? m/s y x m/s Physics 01: Lecture 10, Pg 14
15 Rolling You now carry the spinning wheel to the right at m/s. What is the velocity of the top of the wheel relative to the ground? A) 4 m/s B)  m/s C) 0 m/s D) +m/s E) +4 m/s What is the velocity of the bottom of the wheel relative e to the ground? A) 4 m/s B)  m/s C) 0 m/s D) +m/s E) +4 m/s m/s m/s V CM = m/s Physics 01: Lecture 10, Pg 15
16 Rolling without slipping The linear velocity is the same as the tangential velocity on the edge of the rolling object So we can use the viewer equation v CM = r Physics 01: Lecture 10, Pg 16
17 Rolling Kinetic Energy When a disk rolls we assume it does not slip and the outside of the ball moves with a velocity such that: v = r KE TOT = ½mv + ½ =v/r = 1/ mr 1 1 KE TOT MV I KE TOT 1 1 V MV R 1 V 1 1 MR MV MV 4 KE 3 4 MV Physics 01: Lecture 10, Pg 17
18 Conceptual Problem When a hollow sphere rolls without slipping with a velocity of v, what kinetic energy does it have? KE = + TOT ½mv ½ =v/r = /3 mr KE TOT KE TOT 1 1 MV I 1 1 V 1 1 MV MR MV 3 R MV 3 KE 5 MV 6 Physics 01: Lecture 10, Pg 18
19 Clicker Question 5: A hollow cylinder of mass m rolls down an incline of height m. We want to find the velocity of its center of mass when it reaches the bottom of the incline. Since it s rolling without slipping how would we represent it s total KE? (a) (3/6)mv (b) (3/5)mv (c) (7/6)mv (d) mv m (e) (3/4)mv Physics 01: Lecture 10, Pg 19
20 Conceptual Problem When a hollow sphere rolls without slipping with a velocity of v, what kinetic energy does it have? KE = + TOT ½mv ½ =v/r = mr 1 1 MV I KE TOT 1 1 V 1 1 KE TOT MV MR MV MV R KE MV Physics 01: Lecture 10, Pg 0
21 Clicker Question 6: A hollow cylinder of mass m rolls down an incline of height m. What velocity will its center of mass have at the bottom of the incline? (a) 9.0 m/s (b) 7.13 m/s () (c) m/s (d) 4.0 m/s (e) 56m/s 5.6 m Physics 01: Lecture 10, Pg 1
22 Clicker Question 6: A hollow cylinder of mass m rolls down an incline of height m. What velocity will its center of mass have at the bottom of the incline? m Physics 01: Lecture 10, Pg
23 Clicker Question 7: Two uniform cylinders are machined out of solid aluminum. One has twice the radius of the other. If both are placed at the top of the same ramp and released, which is moving faster at the bottom? (a) bigger one (b) smaller one (c) same Physics 01: Lecture 10, Pg 3
24 Clicker Question 8: Consider the following three objects, each of the same mass and radius: (1) a solid sphere () a solid disk (3) a hoop All three are released from rest at the top of an inclined plane. The three objects proceed down the incline undergoing rolling motion without slipping. In which order do the objects reach the bottom of the incline? (a) 1,, 3 hoop = mr (b), 3, 1 SS = /5 mr (c) 3, 1, (d) 3,, 1 SD = ½ mr (e) All three reach the bottom at the same time. Physics 01: Lecture 10, Pg 4
25 KE TOT 1 MV 1 Clicker Question 8: I I FMR KE TOT KE 1 MV 1 (F F 1) MV V 1 F FMR MV MV R Only depends on the fraction F! ( F 1) MV gh V F 1 MgH Physics 01: Lecture 10, Pg 5
26 An Unfair Race A frictionless block and a rolling (without slipping) disk are released at the top of identical inclined planes. Which will reach the bottom first? (a) (b) (c) Frictionless block Rolling Disk The same time H H Physics 01: Lecture 10, Pg 6
Physics 131: Lecture 21. Today s Agenda
Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia
More information= 2 5 MR2. I sphere = MR 2. I hoop = 1 2 MR2. I disk
A sphere (green), a disk (blue), and a hoop (red0, each with mass M and radius R, all start from rest at the top of an inclined plane and roll to the bottom. Which object reaches the bottom first? (Use
More informationChap. 10: Rotational Motion
Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics  Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N
More informationPhys 106 Practice Problems Common Quiz 1 Spring 2003
Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed
More informationWork and kinetic Energy
Work and kinetic Energy Problem 66. M=4.5kg r = 0.05m I = 0.003kgm 2 Q: What is the velocity of mass m after it dropped a distance h? (No friction) h m=0.6kg mg Work and kinetic Energy Problem 66. M=4.5kg
More informationPhysics 23 Exam 3 April 2, 2009
1. A string is tied to a doorknob 0.79 m from the hinge as shown in the figure. At the instant shown, the force applied to the string is 5.0 N. What is the torque on the door? A) 3.3 N m B) 2.2 N m C)
More informationExam 3 Practice Solutions
Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at
More information= o + t = ot + ½ t 2 = o + 2
Chapters 89 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the
More informationTutorBreeze.com 7. ROTATIONAL MOTION. 3. If the angular velocity of a spinning body points out of the page, then describe how is the body spinning?
1. rpm is about rad/s. 7. ROTATIONAL MOTION 2. A wheel rotates with constant angular acceleration of π rad/s 2. During the time interval from t 1 to t 2, its angular displacement is π rad. At time t 2
More informationAP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems
AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is
More informationFall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton
Fall 007 RED Barcode Here Physics 105, sections 1 and Exam 3 Please write your CID Colton 3669 3 hour time limit. One 3 5 handwritten note card permitted (both sides). Calculators permitted. No books.
More informationUse the following to answer question 1:
Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to
More informationChapter 10 Rotational Kinematics and Energy. Copyright 2010 Pearson Education, Inc.
Chapter 10 Rotational Kinematics and Energy Copyright 010 Pearson Education, Inc. 101 Angular Position, Velocity, and Acceleration Copyright 010 Pearson Education, Inc. 101 Angular Position, Velocity,
More informationConcept Question: Normal Force
Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical
More informationAngular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion
Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for
More informationDescription: Using conservation of energy, find the final velocity of a "yo yo" as it unwinds under the influence of gravity.
Chapter 10 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 10 Due: 11:59pm on Sunday, November 6, 2016 To understand how points are awarded, read the Grading Policy for
More informationTranslational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work
Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational
More informationChapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.
Agenda Today: Homework quiz, moment of inertia and torque Thursday: Statics problems revisited, rolling motion Reading: Start Chapter 8 in the reading Have to cancel office hours today: will have extra
More informationPHYSICS 231 INTRODUCTORY PHYSICS I
PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces
More informationRotational Motion. Rotational Motion. Rotational Motion
I. Rotational Kinematics II. Rotational Dynamics (Netwton s Law for Rotation) III. Angular Momentum Conservation 1. Remember how Newton s Laws for translational motion were studied: 1. Kinematics (x =
More informationSolution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:
8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,
More informationVersion A (01) Question. Points
Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4
More informationRotational Kinetic Energy
Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body
More informationSummer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.
Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope
More informationLecture 11  Advanced Rotational Dynamics
Lecture 11  Advanced Rotational Dynamics A Puzzle... A moldable blob of matter of mass M and uniform density is to be situated between the planes z = 0 and z = 1 so that the moment of inertia around the
More informationChapter 8. Rotational Motion
Chapter 8 Rotational Motion Rotational Work and Energy W = Fs = s = rθ Frθ Consider the work done in rotating a wheel with a tangential force, F, by an angle θ. τ = Fr W =τθ Rotational Work and Energy
More informationPS 11 GeneralPhysics I for the Life Sciences
PS 11 GeneralPhysics I for the Life Sciences ROTATIONAL MOTION D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T F E B R U A R Y 0 1 4 Questions and Problems
More informationPhysics 53 Exam 3 November 3, 2010 Dr. Alward
1. When the speed of a reardrive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all
More information第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel
More informationRotation Work and Power of Rotation Rolling Motion Examples and Review
Rotation Work and Power of Rotation Rolling Motion Examples and Review Lana Sheridan De Anza College Nov 22, 2017 Last time applications of moments of inertia Atwood machine with massive pulley kinetic
More informationRecall: Gravitational Potential Energy
Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 101 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height
More information112 A General Method, and Rolling without Slipping
112 A General Method, and Rolling without Slipping Let s begin by summarizing a general method for analyzing situations involving Newton s Second Law for Rotation, such as the situation in Exploration
More informationCHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY
CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WENBIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational
More informationGeneral Physics (PHY 2130)
General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:
More informationUpthrust and Archimedes Principle
1 Upthrust and Archimedes Principle Objects immersed in fluids, experience a force which tends to push them towards the surface of the liquid. This force is called upthrust and it depends on the density
More informationAP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
More informationAdvanced Higher Physics. Rotational motion
Wallace Hall Academy Physics Department Advanced Higher Physics Rotational motion Problems AH Physics: Rotational Motion 1 2013 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration
More informationTwo Hanging Masses. ) by considering just the forces that act on it. Use Newton's 2nd law while
Student View Summary View Diagnostics View Print View with Answers Edit Assignment Settings per Student Exam 2  Forces [ Print ] Due: 11:59pm on Tuesday, November 1, 2011 Note: To underst how points are
More informationPhys 270 Final Exam. Figure 1: Question 1
Phys 270 Final Exam Time limit: 120 minutes Each question worths 10 points. Constants: g = 9.8m/s 2, G = 6.67 10 11 Nm 2 kg 2. 1. (a) Figure 1 shows an object with moment of inertia I and mass m oscillating
More informationLecture PowerPoints. Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli
Lecture PowerPoints Chapter 10 Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is
More informationRotational Inertia (approximately 2 hr) (11/23/15)
Inertia (approximately 2 hr) (11/23/15) Introduction In the case of linear motion, a nonzero net force will result in linear acceleration in accordance with Newton s 2 nd Law, F=ma. The moving object
More informationMidterm 3 Thursday April 13th
Welcome back to Physics 215 Today s agenda: Angular momentum Rolling without slipping Midterm Review Physics 215 Spring 2017 Lecture 122 1 Midterm 3 Thursday April 13th Material covered: Ch 9 Ch 12 Lectures
More informationWelcome back to Physics 211
Welcome back to Physics 211 Today s agenda: Work Power Physics 211 Fall 2012 Lecture 092 1 Current assignments HW#9 due this Friday at 5 pm. Short assignment SAGE (Thanks for the feedback!) I am using
More informationPhysics 221. Exam III Spring f S While the cylinder is rolling up, the frictional force is and the cylinder is rotating
Physics 1. Exam III Spring 003 The situation below refers to the next three questions: A solid cylinder of radius R and mass M with initial velocity v 0 rolls without slipping up the inclined plane. N
More informationRotational Motion. 1 Purpose. 2 Theory 2.1 Equation of Motion for a Rotating Rigid Body
Rotational Motion Equipment: Capstone, rotary motion sensor mounted on 80 cm rod and heavy duty bench clamp (PASCO ME9472), string with loop at one end and small white bead at the other end (125 cm bead
More information= F 4. O Which force produces the greatest torque about the point O (marked by the blue dot)? E. not enough information given to decide
Q10.1 The four forces shown all have the same magnitude: F 1 = F 2 = F 3 = F 4. F 1 F 3 O Which force produces the greatest torque about the point O (marked by the blue dot)? F 2 F 4 A. F 1 B. F 2 C. F
More informationA uniform rod of length L and Mass M is attached at one end to a frictionless pivot. If the rod is released from rest from the horizontal position,
A dentist s drill starts from rest. After 3.20 s of constant angular acceleration, it turns at a rate of 2.51 10 4 rev/min. (a) Find the drill s angular acceleration. (b) Determine the angle (in radians)
More informationFALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003
FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is
More informationHint 1. The direction of acceleration can be determined from Newton's second law
Chapter 5 [ Edit ] Overview Summary View Diagnostics View Print View with Answers Chapter 5 Due: 11:59pm on Sunday, October 2, 2016 To understand how points are awarded, read the Grading Policy for this
More information4) Vector = and vector = What is vector = +? A) B) C) D) E)
1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In
More informationChapter 10 Practice Test
Chapter 10 Practice Test 1. At t = 0, a wheel rotating about a fixed axis at a constant angular acceleration of 0.40 rad/s 2 has an angular velocity of 1.5 rad/s and an angular position of 2.3 rad. What
More informationLecture 18: Work and Energy. Today s Agenda
Lecture 18: Work and Energy Work and Energy Definition of work Examples Today s Agenda Definition of Mechanical Energy Conservation of Mechanical Energy Conservative forces Physics 201: Lecture 10, Pg
More informationQ9.1. A. t = 1 s B. t = 2 s C. t = 3 s D. t = 4 s E. t = 5 s Pearson Education, Inc.
Q9.1 The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding up at the greatest rate? A. t = 1 s B. t = 2
More informationExercise Torque Magnitude Ranking Task. Part A
Exercise 10.2 Calculate the net torque about point O for the two forces applied as in the figure. The rod and both forces are in the plane of the page. Take positive torques to be counterclockwise. τ 28.0
More informationChapter 4: Newton s Second Law F = m a. F = m a (4.2)
Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.
More informationPractice Test 3. Name: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.
Name: Date: _ Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20
More informationPractice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010
Practice Problems from Chapters 1113, for Midterm 2. Physics 11a Fall 2010 Chapter 11 1. The Ferris wheel shown below is turning at constant speed. Draw and label freebody diagrams showing the forces
More informationUnit 2: Vector Dynamics
Multiple Choice Portion Unit 2: Vector Dynamics 1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (Assume no friction) Vertical Acceleration Horizontal
More informationPhysics 130: Questions to study for midterm #1 from Chapter 8
Physics 130: Questions to study for midterm #1 from Chapter 8 1. If the beaters on a mixer make 800 revolutions in 5 minutes, what is the average rotational speed of the beaters? a. 2.67 rev/min b. 16.8
More informationWritten Homework problems. Spring (taken from Giancoli, 4 th edition)
Written Homework problems. Spring 014. (taken from Giancoli, 4 th edition) HW1. Ch1. 19, 47 19. Determine the conversion factor between (a) km / h and mi / h, (b) m / s and ft / s, and (c) km / h and m
More informationStudent Exploration: Inclined Plane Rolling Objects
Name: Date: Student Exploration: Inclined Plane Rolling Objects [Note to teachers and students: This Gizmo was designed as a followup to the Inclined Plane Sliding Objects Gizmo. We recommend doing that
More informationY of radius 4R is made from an iron plate of thickness t. Then the relation between the
Q. No. The moment of inertia of a body does not depend on : Option The mass of the body Option The angular velocity of the body Option The axis of rotation of the body Option The distribution of the mass
More information1301W.600 Lecture 16. November 6, 2017
1301W.600 Lecture 16 November 6, 2017 You are Cordially Invited to the Physics Open House Friday, November 17 th, 2017 4:308:00 PM Tate Hall, Room B20 Time to apply for a major? Consider Physics!! Program
More informationPractice Test 3. Multiple Choice Identify the choice that best completes the statement or answers the question.
Practice Test 3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A wheel rotates about a fixed axis with an initial angular velocity of 20 rad/s. During
More informationName: AP Physics C: Kinematics Exam Date:
Name: AP Physics C: Kinematics Exam Date: 1. An object slides off a roof 10 meters above the ground with an initial horizontal speed of 5 meters per second as shown above. The time between the object's
More informationRevolve, Rotate & Roll:
I. WarmUP. Revolve, Rotate & Roll: Physics 203, Yaverbaum John Jay College of Criminal Justice, the CUNY Given g, the rate of freefall acceleration near Earth s surface, and r, the radius of a VERTICAL
More informationGeneral Physics I Work & Energy
General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example
More informationTO GET CREDIT IN PROBLEMS 2 5 YOU MUST SHOW GOOD WORK.
Signature: I.D. number: Name: 1 You must do the first problem which consists of five multiple choice questions. Then you must do three of the four long problems numbered 25. Clearly cross out the page
More information1.1. Rotational Kinematics Description Of Motion Of A Rotating Body
PHY 19 PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description
More informationUniversity of Houston Mathematics Contest: Physics Exam 2017
Unless otherwise specified, please use g as the acceleration due to gravity at the surface of the earth. Vectors x, y, and z are unit vectors along x, y, and z, respectively. Let G be the universal gravitational
More informationNewton s Laws and FreeBody Diagrams General Physics I
Newton s Laws and FreeBody Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are
More informationPhysics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.
Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page
More informationSlide 1 / 37. Rotational Motion
Slide 1 / 37 Rotational Motion Slide 2 / 37 Angular Quantities An angle θ can be given by: where r is the radius and l is the arc length. This gives θ in radians. There are 360 in a circle or 2π radians.
More informationPhysics Fall 2006 Laboratory 5: Rotational Dynamics
1 of 7 Physics 2010  Fall 2006 Laboratory 5: Rotational Dynamics NAME Section Day (circle): M Tu W Th F Section Time: 8a 10a 12p 2p 4p TA Name: This lab will cover the concepts of moment of inertia and
More informationCircular motion, Center of Gravity, and Rotational Mechanics
Circular motion, Center of Gravity, and Rotational Mechanics Rotation and Revolution Every object moving in a circle turns around an axis. If the axis is internal to the object (inside) then it is called
More information8.012 Physics I: Classical Mechanics Fall 2008
MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE
More informationMultiple Choice  TEST III
Multiple Choice Test IIIClassical Mechanics Multiple Choice  TEST III 1) n atomic particle whose mass is 210 atomic mass units collides with a stationary atomic particle B whose mass is 12 atomic mass
More informationexample Δy gravity Δy can
Physic 3 Lecture 5 Main points of today s lecture: Newton s st law: If there is no net force, the velocity of a mass remains constant (neither the magnitude nor the direction of the velocity changes).
More informationCenter of Gravity Pearson Education, Inc.
Center of Gravity = The center of gravity position is at a place where the torque from one end of the object is balanced by the torque of the other end and therefore there is NO rotation. Fulcrum Point
More informationAP Physics. Chapters 7 & 8 Review
AP Physics Chapters 7 & 8 Review 1.A particle moves along the x axis and is acted upon by a single conservative force given by F x = ( 20 4.0x)N where x is in meters. The potential energy associated with
More information[1.] This problem has five multiple choice questions. Circle the best answer in each case.
[1.] This problem has five multiple choice questions. Circle the best answer in each case. [1A.] A force given by 1 2 3, acts on a particle positioned at 2 6. What is its torque about the origin? [a] 18
More informationREVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions
REVISING MECHANICS (LIVE) 30 JUNE 2015 Exam Questions Question 1 (Adapted from DBE November 2014, Question 2) Two blocks of masses 20 kg and 5 kg respectively are connected by a light inextensible string,
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) You are standing in a moving bus, facing forward, and you suddenly fall forward as the
More informationChapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis
Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Chapter 21 Rigid Body Dynamics: Rotation and Translation about a Fixed Axis... 2 21.1 Introduction... 2 21.2 Translational Equation
More informationYour Comments. That s the plan
Your Comments I love physics as much as the next gal, but I was wondering. Why don't we get class off the day after an evening exam? What if the ladder has friction with the wall? Things were complicated
More informationPHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 111, 1314
Final Review: Chapters 111, 1314 These are selected problems that you are to solve independently or in a team of 23 in order to better prepare for your Final Exam 1 Problem 1: Chasing a motorist This
More informationExam 2: Equation Summary
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 Physics Fall Term 2012 Exam 2: Equation Summary Newton s Second Law: Force, Mass, Acceleration: Newton s Third Law: Center of Mass: Velocity
More informationω = ω 0 θ = θ + ω 0 t αt ( ) Rota%onal Kinema%cs: ( ONLY IF α = constant) v = ω r ω ω r s = θ r v = d θ dt r = ω r + a r = a a tot + a t = a r
θ (t) ( θ 1 ) Δ θ = θ 2 s = θ r ω (t) = d θ (t) dt v = d θ dt r = ω r v = ω r α (t) = d ω (t) dt = d 2 θ (t) dt 2 a tot 2 = a r 2 + a t 2 = ω 2 r 2 + αr 2 a tot = a t + a r = a r ω ω r a t = α r ( ) Rota%onal
More informationQuiz Number 4 PHYSICS April 17, 2009
Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given
More informationFriction is always opposite to the direction of motion.
6. Forces and MotionII Friction: The resistance between two surfaces when attempting to slide one object across the other. Friction is due to interactions at molecular level where rough edges bond together:
More informationPlanet X has the same mass as the Earth, but 1/2 the radius. (Planet X is more dense than Earth). What is the acceleration of gravity on Planet X?
Planet X has the same mass as the Earth, but 1/2 the radius. (Planet X is more dense than Earth). What is the acceleration of gravity on Planet X? A) g (same as Earth) B) 2g C) 4g D) 8g E) None of these.
More informationPRACTICE TEST for Midterm Exam
South Pasadena AP Physics PRACTICE TEST for Midterm Exam FORMULAS Name Period Date / / d = vt d = v o t + ½ at 2 d = v o + v 2 t v = v o + at v 2 = v 2 o + 2ad v = v x 2 + v y 2 = tan 1 v y v v x = v cos
More informationPhysics 2111 Unit 7. Today s Concepts: Work & Kinetic Energy Power. Mechanics Lecture 7, Slide 1
Physics 2111 Unit 7 Today s Concepts: Work & Kinetic Energy Power Mechanics Lecture 7, Slide 1 WorkKinetic Energy Theorem The work done by force F as it acts on an object that moves between positions
More informationUNIVERSITY OF MANITOBA. All questions are of equal value. No marks are subtracted for wrong answers.
(3:30 pm 6:30 pm) PAGE NO.: 1 of 7 All questions are of equal value. No marks are subtracted for wrong answers. Record all answers on the computer score sheet provided. USE PENCIL ONLY! Black pen will
More informationNormal Force. W = mg cos(θ) Normal force F N = mg cos(θ) F N
Normal Force W = mg cos(θ) Normal force F N = mg cos(θ) Note there is no weight force parallel/down the include. The car is not pressing on anything causing a force in that direction. If there were a person
More informationSolution The light plates are at the same heights. In balance, the pressure at both plates has to be the same. m g A A A F A = F B.
43. A piece of metal rests in a toy wood boat floating in water in a bathtub. If the metal is removed from the boat, and kept out of the water, what happens to the water level in the tub? A) It does not
More informationPLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION
PLANAR KINETIC EQUATIONS OF MOTION: TRANSLATION Today s Objectives: Students will be able to: 1. Apply the three equations of motion for a rigid body in planar motion. 2. Analyze problems involving translational
More informationLecture 4. Newton s 3rd law and Friction
Lecture 4 Newton s 3rd law and Friction Newtons First Law or Law of Inertia If no net external force is applied to an object, its velocity will remain constant ("inert"). OR A body cannot change its state
More informationP211 Spring 2004 Form A
1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with
More informationCHAPTER 4 TEST REVIEW  Answer Key
AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS 50 Multiple Choice 45 Single Response 5 MultiResponse Free Response 3 Short Free Response 2 Long Free Response AP EXAM CHAPTER TEST
More information