# AP Physics Multiple Choice Practice Torque

Size: px
Start display at page:

## Transcription

1 AP Physics Multiple Choice Practice Torque 1. A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. Where should one hang a mass of 0.50 kg to balance the stick? (A) 16 cm (B) 36 cm (C) 44 cm (D) 46 cm (E) 54 cm 2. A uniform meterstick is balanced at its midpoint with several forces applied as shown below. If the stick is in equilibrium, the magnitude of the force X in newtons (N) is (A) 50 N (B) 100 N (C) 200 N (D) 300 N (E) impossible to determine without the weight of the stick 3. A door (seen from above in the figures below) has hinges on the left hand side. Which force produces the largest torque? The magnitudes of all forces are equal. 4. A meterstick is supported at each side by a spring scale. A heavy mass is then hung on the meterstick so that the spring scale on the left hand side reads four times the value of the spring scale on the right hand side. If the mass of the meterstick is negligible compared to the hanging mass, how far from the right hand side is the large mass hanging. (A) 25 cm (B) 50 cm (C) 67 cm (D) 75 cm (E) 80 cm 5. A uniform meter stick has a 45.0 g mass placed at the 20 cm mark as shown in the figure. If a pivot is placed at the 42.5 cm mark and the meter stick remains horizontal in static equilibrium, what is the mass of the meter stick? (A) 18.0 g (B) 45.0 g (C) 72.0 g (D) g (E) g

2 6. A massless rigid rod of length 3d is pivoted at a fixed point W, and two forces each of magnitude F are applied vertically upward as shown. A third vertical force of magnitude F may be applied, either upward or downward, at one of the labeled points. With the proper choice of direction at each point, the rod can be in equilibrium if the third force of magnitude F is applied at point (A) W only (B) Y only (C) V or X only (D) V or Y only (E) V, W, or X 7. A 5-meter uniform plank of mass 100 kilograms rests on the top of a building with 2 meters extended over the edge as shown. How far can a 50-kilogram person venture past the edge of the building on the plank before the plank just begins to tip? (A) 0.5 m (B) 1 m (C) 1.5 m ( D) 2 m (E) It is impossible to make the plank tip since the person would have to be more than 2 meters from the edge of the building. 8. To weigh a fish, a person hangs a tackle box of mass 3.5 kilograms and a cooler of mass 5 kilograms from the ends of a uniform rigid pole that is suspended by a rope attached to its center. The system balances when the fish hangs at a point 1/4 of the rod s length from the tackle box. What is the mass of the fish? (A) 1.5 kg (B) 2 kg (C) 3 kg (D) 6 kg (E) 6.5 kg 9. Two objects, of masses 6 and 8 kilograms, are hung from the ends of a stick that is 70 cm long and has marks every 10 cm, as shown. If the mass of the stick is negligible, at which of the points indicated should a cord be attached if the stick is to remain horizontal when suspended from the cord? (A) A (B) B (C) C (D) D (E) E

3 10. A wheel of radius R and negligible mass is mounted on a horizontal frictionless axle so that the wheel is in a vertical plane. Three small objects having masses m, M, and 2M, respectively, are mounted on the rim of the wheel, as shown. If the system is in static equilibrium, what is the value of m in terms of M? (A) M/2 (B) M (C) 3M/2 (D) 2M (E) 5M/2 11. A rod on a horizontal tabletop is pivoted at one end and is free to rotate without friction about a vertical axis, as shown. A force F is applied at the other end, at an angle to the rod. If F were to be applied perpendicular to the rod, at what distance from the axis should it be applied in order to produce the same torque? (A) L sin (B) L cos (C) L (D) L tan (E) 2 L Questions A horizontal, uniform board of weight 125 N and length 4 m is supported by vertical chains at each end. A person weighing 500 N is sitting on the board. The tension in the right chain is 250 N. 12. What is the tension in the left chain? (A) 250 N (B) 375 N (C) 500 N (D) 625 N (E) 875 N 13. How far from the left end of the board is the person sitting? (A) 0.4 m (B) 1.5 m (C) 2 m (D) 2.5 m (E) 3 m 14. Torque is the rotational analogue of (A) kinetic energy (B) linear momentum (C) acceleration (D) force (E) mass 15. A square piece of plywood on a horizontal tabletop is subjected to the two horizontal forces shown. Where should a third force of magnitude 5 newtons be applied to put the piece of plywood into equilibrium?

4 16. A uniform rigid bar of weight W is supported in a horizontal orientation as shown by a rope that makes a 30 angle with the horizontal. The force exerted on the bar at point O, where it is pivoted, is best represented by a vector whose direction is which of the following? (A) (B) (C) (D) (E) 17. In which of the following diagrams is the torque about point O equal in magnitude to the torque about point X in the diagram? (All forces lie in the plane of the paper.) 18. A rod of length L and of negligible mass is pivoted at a point that is off-center with lengths shown in the figure below. The figures show two cases in which masses are suspended from the ends of the rod. In each case the unknown mass m is balanced by a known mass, M 1 or M 2, so that the rod remains horizontal. What is the value of m in terms of the known masses? (A) M l + M 2 (B) ½(M l + M 2 ) (C) M l M 2 (D) ½M 1 M 2 (E) M M 1 2

5 19. A system of two wheels fixed to each other is free to rotate about a frictionless axis through the common center of the wheels and perpendicular to the page. Four forces are exerted tangentially to the rims of the wheels, as shown. The magnitude of the net torque on the system about the axis is (A) zero (B) FR (C) 2FR (D) 5FR (E) 14FR 20. For the wheel-and-axle system shown, which of the following expresses the condition required for the system to be in static equilibrium? (A) m 1 = m 2 (B) am 1 = bm 2 (C) am 2 = bm 1 (D) a 2 m l = b 2 m 2 (E) b 2 m 1 = a 2 m A meterstick of negligible mass is placed on a fulcrum at the 0.60 m mark, with a 2.0 kg mass hung at the 0 m mark and a 1.0 kg mass hung at the 1.0 m mark. The meterstick is released from rest in a horizontal position. Immediately after release, the magnitude of the net torque on the meterstick about the fulcrum is most nearly (A) 2.0 N m (B) 8.0 N m (C) 10 N m (D) 14 N m (E) 16 N m

6

### AP Physics QUIZ Chapters 10

Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

### Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

### Chapter 9 Rotational Dynamics

Chapter 9 ROTATIONAL DYNAMICS PREVIEW A force acting at a perpendicular distance from a rotation point, such as pushing a doorknob and causing the door to rotate on its hinges, produces a torque. If the

### It will be most difficult for the ant to adhere to the wheel as it revolves past which of the four points? A) I B) II C) III D) IV

AP Physics 1 Lesson 16 Homework Newton s First and Second Law of Rotational Motion Outcomes Define rotational inertia, torque, and center of gravity. State and explain Newton s first Law of Motion as it

### Pre-AP Physics Review Problems

Pre-AP Physics Review Problems SECTION ONE: MULTIPLE-CHOICE QUESTIONS (50x2=100 points) 1. The graph above shows the velocity versus time for an object moving in a straight line. At what time after t =

### Equilibrium & Elasticity

PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

### HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT STATIC EQUILIBRIUM MULTIPLE CHOICE / 33 OPEN ENDED / 80 TOTAL / 113 NAME: 1. State the condition for translational equilibrium. A. ΣF = 0 B. ΣF

### The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

### Version 001 circular and gravitation holland (2383) 1

Version 00 circular and gravitation holland (383) This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. AP B 993 MC

### CHAPTER 8 TEST REVIEW MARKSCHEME

AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response MULTIPLE CHOICE DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM

### Chapter 8 - Rotational Dynamics and Equilibrium REVIEW

Pagpalain ka! (Good luck, in Filipino) Date Chapter 8 - Rotational Dynamics and Equilibrium REVIEW TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When a rigid body

### CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

### Webreview Torque and Rotation Practice Test

Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

AP Physics 1- Torque, Rotational Inertia, and Angular Momentum Practice Problems FACT: The center of mass of a system of objects obeys Newton s second law- F = Ma cm. Usually the location of the center

### Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction

Chapter 8 Rotational Motion and Equilibrium Name 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction 1. The distance between a turning axis and the

### Student AP Physics 1 Date. Newton s Laws B FR

Student AP Physics 1 Date Newton s Laws B FR #1 A block is at rest on a rough inclined plane and is connected to an object with the same mass as shown. The rope may be considered massless; and the pulley

### Rotation review packet. Name:

Rotation review packet. Name:. A pulley of mass m 1 =M and radius R is mounted on frictionless bearings about a fixed axis through O. A block of equal mass m =M, suspended by a cord wrapped around the

### AP Physics C 1984 Multiple Choice Questions Mechanics

AP Physics C 984 ultiple Choice Questions echanics The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use

### Name: Date: Period: AP Physics C Rotational Motion HO19

1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

### 3. If you drag a rip-cord 2.0m across a wheel and it turns 10rad, what is the radius of the wheel? a. 0.1m b. 0.2m c. 0.4m d.

1. Two spheres are rolled across the floor the same distance at the same speed. Which will have the greater angular velocity? a. the smaller sphere b. the larger sphere c. the angular velocities will be

### Equilibrium Notes 1 Translational Equilibrium

Equilibrium Notes 1 Translational Equilibrium Ex. A 20.0 kg object is suspended by a rope as shown. What is the net force acting on it? Ex. Ok that was easy, now that same 20.0 kg object is lifted at a

### Suggested Problems. Chapter 1

Suggested Problems Ch1: 49, 51, 86, 89, 93, 95, 96, 102. Ch2: 9, 18, 20, 44, 51, 74, 75, 93. Ch3: 4, 14, 46, 54, 56, 75, 91, 80, 82, 83. Ch4: 15, 59, 60, 62. Ch5: 14, 52, 54, 65, 67, 83, 87, 88, 91, 93,

### is the study of and. We study objects. is the study of and. We study objects.

Static Equilibrium Translational Forces Torque Unit 4 Statics Dynamics vs Statics is the study of and. We study objects. is the study of and. We study objects. Recall Newton s First Law All objects remain

### Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.

Summer Physics 41 Pretest Name: Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required. 1. An object hangs in equilibrium suspended by two identical ropes. Which rope

### Section 2: Static Equilibrium II- Balancing Torques

Section 2: Static Equilibrium II- Balancing Torques Last Section: If (ie. Forces up = Forces down and Forces left = Forces right), then the object will have no translatory motion. In other words, the object

### 1 MR SAMPLE EXAM 3 FALL 2013

SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

### Announcements Oct 16, 2014

Announcements Oct 16, 2014 1. Prayer 2. While waiting, see how many of these blanks you can fill out: Centripetal Accel.: Causes change in It points but not Magnitude: a c = How to use with N2: Always

### Chapter 8. Rotational Equilibrium and Rotational Dynamics. 1. Torque. 2. Torque and Equilibrium. 3. Center of Mass and Center of Gravity

Chapter 8 Rotational Equilibrium and Rotational Dynamics 1. Torque 2. Torque and Equilibrium 3. Center of Mass and Center of Gravity 4. Torque and angular acceleration 5. Rotational Kinetic energy 6. Angular

### - 1 -APPH_MidTerm. Mid - Term Exam. Part 1: Write your answers to all multiple choice questions in this space. A B C D E A B C D E

Name - 1 -APPH_MidTerm AP Physics Date Mid - Term Exam Part 1: Write your answers to all multiple choice questions in this space. 1) 2) 3) 10) 11) 19) 20) 4) 12) 21) 5) 13) 22) 6) 7) 14) 15) 23) 24) 8)

### 6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

### Rotation. Rotational Variables

Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

### You may use g = 10 m/s 2, sin 60 = 0.87, and cos 60 = 0.50.

1. A child pulls a 15kg sled containing a 5kg dog along a straight path on a horizontal surface. He exerts a force of a 55N on the sled at an angle of 20º above the horizontal. The coefficient of friction

### Use the following to answer question 1:

Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

### Physics 2210 Homework 18 Spring 2015

Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle

### University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1

University Physics (Prof. David Flory) Chapt_11 Thursday, November 15, 2007 Page 1 Name: Date: 1. For a wheel spinning on an axis through its center, the ratio of the radial acceleration of a point on

### Equilibrium: Forces and Torques

Practice 15B Answers are available in the classroom and on the website. Scan this QR code for a direct link. Equilibrium: Forces and Torques 16. Lynn walks across a 9.0 m long plank bridge. The mass of

### PHYSICS - CLUTCH CH 13: ROTATIONAL EQUILIBRIUM.

!! www.clutchprep.com EXAMPLE: POSITION OF SECOND KID ON SEESAW EXAMPLE: A 4 m-long seesaw 50 kg in mass and of uniform mass distribution is pivoted on a fulcrum at its middle, as shown. Two kids sit on

### PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

### PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

### TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations:

TOPIC E: OSCILLATIONS EXAMPLES SPRING 2019 Mathematics of Oscillating Systems Q1. Find general solutions for the following differential equations: Undamped Free Vibration Q2. A 4 g mass is suspended by

### A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at

Option B Quiz 1. A Ferris wheel in Japan has a radius of 50m and a mass of 1. x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at rest, what is the wheel s angular acceleration?

### AP Physics C: Rotation II. (Torque and Rotational Dynamics, Rolling Motion) Problems

AP Physics C: Rotation II (Torque and Rotational Dynamics, Rolling Motion) Problems 1980M3. A billiard ball has mass M, radius R, and moment of inertia about the center of mass I c = 2 MR²/5 The ball is

### Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14

Static equilibrium Objectives State the conditions of static equilibrium in terms of forces and torques. Draw a free-body diagram of a lever showing all forces. Use the condition of equilibrium to solve

### PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

### Physics 53 Exam 3 November 3, 2010 Dr. Alward

1. When the speed of a rear-drive car (a car that's driven forward by the rear wheels alone) is increasing on a horizontal road the direction of the frictional force on the tires is: A) forward for all

### Physics 2210 Fall Review for Midterm Exam 2 10/07/2015

Physics 2210 Fall 2015 Review for Midterm Exam 2 10/07/2015 Problem 1 (1/3) A spring of force constant k = 800 N/m and a relaxed length L 0 = 1.10 m has its upper end fixed/attached to a pivot in the ceiling.

### Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

### Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer

8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology Problem Set 10 1. Moment of Inertia: Disc and Washer (a) A thin uniform disc of mass M and radius R is mounted on an axis passing

### Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

Warm up A remote-controlled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics

### Rotational Equilibrium

Rotational Equilibrium In this laboratory, we study the conditions for static equilibrium. Axis Through the Center of Gravity Suspend the meter stick at its center of gravity, with its numbers increasing

### Section 2: Static Equilibrium II- Balancing Torques

Section 2: Static Equilibrium II- Balancing Torques Last Section: If (ie. Forces up = Forces down and Forces left = Forces right), then the object will have no translatory motion. In other words, the object

### PHYS 101 Previous Exam Problems. Force & Motion I

PHYS 101 Previous Exam Problems CHAPTER 5 Force & Motion I Newton s Laws Vertical motion Horizontal motion Mixed forces Contact forces Inclines General problems 1. A 5.0-kg block is lowered with a downward

### CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY. Conditions for static equilibrium Center of gravity (weight) Examples of static equilibrium

CHAPTER 12 STATIC EQUILIBRIUM AND ELASTICITY As previously defined, an object is in equilibrium when it is at rest or moving with constant velocity, i.e., with no net force acting on it. The following

### Unit 4 Statics. Static Equilibrium Translational Forces Torque

Unit 4 Statics Static Equilibrium Translational Forces Torque 1 Dynamics vs Statics Dynamics: is the study of forces and motion. We study why objects move. Statics: is the study of forces and NO motion.

### AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

### Fr h mg rh h. h 2( m)( m) ( (0.800 kg)(9.80 m/s )

5. We consider the wheel as it leaves the lower floor. The floor no longer exerts a force on the wheel, and the only forces acting are the force F applied horizontally at the axle, the force of gravity

### 4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional

### Figure 5.1a, b IDENTIFY: Apply to the car. EXECUTE: gives.. EVALUATE: The force required is less than the weight of the car by the factor.

51 IDENTIFY: for each object Apply to each weight and to the pulley SET UP: Take upward The pulley has negligible mass Let be the tension in the rope and let be the tension in the chain EXECUTE: (a) The

### Concept of Force Challenge Problem Solutions

Concept of Force Challenge Problem Solutions Problem 1: Force Applied to Two Blocks Two blocks sitting on a frictionless table are pushed from the left by a horizontal force F, as shown below. a) Draw

### Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

### Circle the correct answer. For those questions involving calculations, working MUST be shown to receive credit.

Dynamics Assignment 3 Name: Multiple Choice. Circle the correct answer. For those questions involving calculations, working MUST be shown to receive credit. 1. Which statement is always true regarding

### AP Physics Free Response Practice Oscillations

AP Physics Free Response Practice Oscillations 1975B7. A pendulum consists of a small object of mass m fastened to the end of an inextensible cord of length L. Initially, the pendulum is drawn aside through

### SECTION A Torque and Statics

AP Physics C Multiple Choice Practice Rotation SECTON A Torque and Statics 1. A square piece o plywood on a horizontal tabletop is subjected to the two horizontal orces shown above. Where should a third

### A. B. C. D. E. v x. ΣF x

Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

### Solution Only gravity is doing work. Since gravity is a conservative force mechanical energy is conserved:

8) roller coaster starts with a speed of 8.0 m/s at a point 45 m above the bottom of a dip (see figure). Neglecting friction, what will be the speed of the roller coaster at the top of the next slope,

### Chapter 9. Rotational Dynamics

Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

### Physics 6A Lab Experiment 6

Biceps Muscle Model Physics 6A Lab Experiment 6 APPARATUS Biceps model Large mass hanger with four 1-kg masses Small mass hanger for hand end of forearm bar with five 100-g masses Meter stick Centimeter

### Q16.: A 5.0 kg block is lowered with a downward acceleration of 2.8 m/s 2 by means of a rope. The force of the block on the rope is:(35 N, down)

Old Exam Question Ch. 5 T072 Q13.Two blocks of mass m 1 = 24.0 kg and m 2, respectively, are connected by a light string that passes over a massless pulley as shown in Fig. 2. If the tension in the string

### PHYSICS 221 SPRING 2013

PHYSICS 221 SPRING 2013 EXAM 2: April 4, 2013 8:15-10:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions plus 2 extra credit questions,

### Equilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:

Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: F v = 0 and no net torque: v τ = 0 Worksheet A uniform rod with a length L and a mass

### Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:

CHAPTER 8 3. If a net torque is applied to an object, that object will experience: a. a constant angular speed b. an angular acceleration c. a constant moment of inertia d. an increasing moment of inertia

### Rotational Kinetic Energy

Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

### 2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE

THREE ORCES IN EQUILIBRIUM 1 Candidates should be able to : TRIANGLE O ORCES RULE Draw and use a triangle of forces to represent the equilibrium of three forces acting at a point in an object. State that

### Textbook Reference: Wilson, Buffa, Lou: Chapter 8 Glencoe Physics: Chapter 8

AP Physics Rotational Motion Introduction: Which moves with greater speed on a merry-go-round - a horse near the center or one near the outside? Your answer probably depends on whether you are considering

### Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)

Torque Definition is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) = r F = rfsin, r = distance from pivot to force, F is the applied force

### AP practice ch 7-8 Multiple Choice

AP practice ch 7-8 Multiple Choice 1. A spool of thread has an average radius of 1.00 cm. If the spool contains 62.8 m of thread, how many turns of thread are on the spool? "Average radius" allows us to

### 3. A bicycle tire of radius 0.33 m and a mass 1.5 kg is rotating at 98.7 rad/s. What torque is necessary to stop the tire in 2.0 s?

Practice 8A Torque 1. Find the torque produced by a 3.0 N force applied at an angle of 60.0 to a door 0.25 m from the hinge. What is the maximum torque this force could exert? 2. If the torque required

### Unit 1: Equilibrium and Center of Mass

Unit 1: Equilibrium and Center of Mass FORCES What is a force? Forces are a result of the interaction between two objects. They push things, pull things, keep things together, pull things apart. It s really

### Physics 211 Week 10. Statics: Walking the Plank (Solution)

Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports

### Big Idea 4: Interactions between systems can result in changes in those systems. Essential Knowledge 4.D.1: Torque, angular velocity, angular

Unit 7: Rotational Motion (angular kinematics, dynamics, momentum & energy) Name: Big Idea 3: The interactions of an object with other objects can be described by forces. Essential Knowledge 3.F.1: Only

### Phys101 Second Major-131 Zero Version Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1

Coordinator: Dr. A. A. Naqvi Sunday, November 03, 2013 Page: 1 Q1. Two forces are acting on a 2.00 kg box. In the overhead view of Figure 1 only one force F 1 and the acceleration of the box are shown.

### Physics Exam 2 October 11, 2007

INSTRUCTIONS: Write your NAME on the front of the blue exam booklet. The exam is closed book, and you may have only pens/pencils and a calculator (no stored equations or programs and no graphing). Show

### Rotation. PHYS 101 Previous Exam Problems CHAPTER

PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

### Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

### The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

### AP Physics C: Work, Energy, and Power Practice

AP Physics C: Work, Energy, and Power Practice 1981M2. A swing seat of mass M is connected to a fixed point P by a massless cord of length L. A child also of mass M sits on the seat and begins to swing

### frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

AP Physics Free Response Practice Momentum and Impulse 1976B2. A bullet of mass m and velocity v o is fired toward a block of mass 4m. The block is initially at rest on a v frictionless horizontal surface.

### = o + t = ot + ½ t 2 = o + 2

Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

### Webreview practice test. Forces (again)

Please do not write on test. ID A Webreview 4.3 - practice test. Forces (again) Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 5.0-kg mass is suspended

### Chapter 8 Rotational Motion and Dynamics Reading Notes

Name: Chapter 8 Rotational Motion and Dynamics Reading Notes Section 8-1: Angular quantities A circle can be split into pieces called degrees. There are 360 degrees in a circle. A circle can be split into

### Chapter 9. Rotational Dynamics

Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

### Exam 3 PREP Chapters 6, 7, 8

PHY241 - General Physics I Dr. Carlson, Fall 2013 Prep Exam 3 PREP Chapters 6, 7, 8 Name TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) Astronauts in orbiting satellites

### variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

### Exam 3 Practice Solutions

Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

### Physics 211 Sample Questions for Exam IV Spring 2013

Each Exam usually consists of 10 Multiple choice questions which are conceptual in nature. They are often based upon the assigned thought questions from the homework. There are also 4 problems in each

### Review questions. Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right.

Review questions Before the collision, 70 kg ball is stationary. Afterward, the 30 kg ball is stationary and 70 kg ball is moving to the right. 30 kg 70 kg v (a) Is this collision elastic? (b) Find the