Static Equilibrium; Torque

Size: px
Start display at page:

Download "Static Equilibrium; Torque"

Transcription

1 Static Equilibrium; Torque

2 The Conditions for Equilibrium An object with forces acting on it, but that is not moving, is said to be in equilibrium.

3 The first condition for equilibrium is that the net force on the object is zero. This is known as translational equilibrium.the conditions can be stated as follows: Generally: F Net = 0 Using components: ΣF x = 0 ΣF y = 0

4 Example: A 10.0 kg chandelier is suspended by wires as shown. What are the tensions in all the wires (Θ 1 = 30 0 and Θ 2 =60 0 )?! 2 wire (2)! 1 wire (1) wire (3)

5 Solution: F T3 According to the FBD [fig (1) ], ΣF y = 0 mg=f T3 =98 N +y +x Fig (1) m mg All the wires are connected at a common point. At this point all the tensions are pulling as shown (on right [fig (2)] and the tensions must add to zero. F T2 Fig (2)! 2 mg F T1! 1 If solving with components one must break the tensions of wires (1) and (2) into x an y components [fig (3)]. Write components in terms of the magnitudes of the tensions F T2 sin! 2 F T1 sin! 1 ΣF x = 0 F T1 cosθ 1 =F T2 cosθ 2 F T1 cos30=f T2 cos60 F T2 cos! 2 Fig (3) F T1 cos! 1 ΣF y = 0 F T2 sinθ 2 +F T1 sinθ 1 =mg F T2 sin60 +F T1 sin30=(10)(9.8) mg One has two equations and two unknowns. By using substitution one can find that: F T1 = 49 N F T2 = 84.9 N You should also be able to solve this by constructing a 2-d vector diagram (head to tail method).

6 Activity: Static 2-d forces Connect masses m 1 and m 2 to mass m 3 over the pulleys as shown and a static situation is achieved. Make a note of the value of the masses and measure the angles. Assume the pulleys are massless and frictionless (and also the strings). Derive the following relationships from FBDs of the masses m 1,m 2, and m 3 : string 1 m 1 θ 1 θ 2 m 3 m2 string 2 m 1 gcosθ 1 = m 2 gcosθ 2 m 3 g = m 1 gsinθ 1 + m 2 gsinθ 2 Using the known masses and measured angles, verify the above equations (in box). The LHS of each equation in theory should equal the RHS of each equation. Perhaps the assumptions made are not entirely accurate and of course experimental error cannot be avoided.

7 Example: A heavy physics book (m= 4.50 kg) is being held by a force (F) at an angle of 60 0 (Θ) against a vertical wall with friction (μ s = 0.35) as shown. a) What is the minimum force F required to keep it from sliding down the wall? b) What is the maximum force F that can be applied without it sliding up the incline?! m " s F

8 Solution: (see mr. martin for full solution) a) F= 42.4 N b) F= 63.8 N

9 Torque The second condition of equilibrium is that there be no torque around any axis (the net torque is zero); the choice of axis is arbitrary. This is called rotational equilibrium. Lets examine what torque actually is.

10 Torque is an angular rotation of an object caused by a force. The location where the force acts on the object is important when calculating torques. Torque is a vector. There can be clockwise (cw), or counterclockwise (ccw) torques. Using a rotating wheel as an example, if it were rotating with a non-zero net torque, it would have an angular acceleration. A Wheel rotating with a constant speed, or that is stationary has a net torque of zero about its axis of rotation.

11 To make an object start rotating, a force is needed; the position and direction of the force matter as well. The perpendicular distance from the axis of rotation to the line along which the force acts is called the lever arm.

12 A longer lever arm is very helpful in rotating objects. A longer lever arm will provide a larger torque.

13 Here, the lever arm for F A is the distance from the knob to the hinge; the lever arm for F D is zero since the line of action of FD passes through the hinge; and the lever arm for F C is as shown(r C ).

14 Units of torque: Nm The torque is defined as: Where r is the perpendicular distance, measured form some location, to the line of action of the force. Or another way of stating it is: τ p = rf sinθ Where r is measured to the line of action of the force F, and the angle ϴ is the angle between the directions of r and F. The quantities r and F are vectors and have a direction. The subscript p represents the location about which the torque is calculated. It is often calculated about a pivot point (such as the hinges shown in the diagrams)but it does not have to be.

15 Torque and line of action: In this situation if you calculated the torques either measuring along l 1 or l 2 to the line of action of the force they would be equal. In most cases if it is a beam such as this it is easier to measure along the beam (l 1 ). l is equivalent to r. F τ p = l 1 F sinθ 1 = l 2 F sinθ 2 l 1 θ 1 P l 2 θ 2 Line of action

16 Example: Calculate the torque about point p due to the individual force and state whether it is a clockwise or counterclockwise torque. solution: T= (3)(20)(sin 40)= 39 Nm counter clockwise. What angle would cause the greatest torque about p?

17 If an object were stationary it is obviously not moving or rotating. The condition for rotational equilibrium is that the net torque is zero ( τ P Net = 0 ) as was stated earlier in the power point. This condition is often stated in the following way: Σ τ P CW = Σ τ P CCW This just means that the sum of all clockwise torques must equal the sum of all counter clockwise torques about location p. The location about which torques are taken is completely arbitrary in equilibrium. However there are more convenient locations commonly used.

18 Example: If there are only two forces acting on the object below as shown: a) What is the torque about P caused by F 1? b) What is the torque about P caused by F 2? c) Would the beam be in rotational equilibrium if these were the only forces acting on it?

19 Solution: a) 37.5 Nm cw b) 96.4 Nm ccw c) No. There is a non-zero net torque ( 58.9 Nm counterclockwise)

20 Center of Mass When drawing FBD s when using torque is important to label precisely where the forces act. The gravitational force acting on the object is labeled at its centre of mass, which is usually the object's geometric centre. This assumes that the object has a uniform density. Further investigation: What is the difference between the centre of mass and centre of gravity (CG)? For the situations we are considering there is no difference.

21 Solving Statics Problems 1. Choose one object at a time, and make a free-body diagram showing all the forces on it and where they act. 2. Choose a coordinate system and resolve forces into components. 3. Write equilibrium equations for the forces. 4. Choose any axis (location p) perpendicular to the plane of the forces and write the torque equilibrium equation. A clever choice here can simplify the problem enormously. 5. Solve. *Some problems may only require forces, or only torque, while others require both.

22 Example: A 5.00 kg mass is placed on top of a horizontal 4.00 m long beam, 1.50 m from the right end of the beam. In turn the beam (mass 10.0 kg ) is supported by two supports at it s ends kg A 1.50 m B a) Draw the FBD of the beam. b) Determine the forces exerted from the supports (A and B) on the beam.

23 Solution: a) F A P m 2 g F B A 1.50 m B m 1 g b) Translational equilibrium: ΣF y = 0 F A +F B = m 1 g+m 2 g= 147 Rotational equilibrium: Στ P CW = Στ P CCW 2(10)(9.8)sin (2.5)(5)(9.8)sin90 0 =4F B F B = 79.6 N Sub back into to force equation to find F A F A = 67.4 N

24 Example: A metre stick (m 1 = 25 grams) is resting horizontally on a support, and the meter stick supports a suspended 15 gram mass 10.0 cm from its right end. Where is the support positioned relative to the left end of the metre stick? Start by drawing the FBD of the metre stick. X=? m 2

25 Solution: F N p 50cm 40-L L 10 cm m 1 g One can take torques about point p, and will define L the distance from p to the force m 2 g. Its not always necessary to convert units to the mks system. I will leave the length units in cm. The condition: Στ P CW = Στ P CCW m 2 g And recalling that: τ p = rf sinθ L(15)g=(40-L)25g, L= 25 cm, and x= 65 cm *Another option could be to solve for F N using forces, then take torque about the left end of the meter stick to find x.

26 Example: A 5.00 m long beam of mass 10.0 kg is supported by a horizontal wire with a tension 1500 N connected 2.00 m (x) from its end. The beam is also supported by the frictionless hinge at the bottom of the beam. The beam supports an unknown suspended mass M and its end. The angle ϴ is a) Draw the FBD b) What is the value of mass M? c) What force does the hinge exert on the beam? State magnitude and direction. x m M ϴ hinge

27 Solution: a) It is convenient to label the reaction force R with two unknown component vectors. Once the components are found the magnitude and direction of R can be determined N Ry 30 0 Mg b) To find M one can take torque about position p and measure along the length of the beam. The force exerted by the hinge would not appear in the relationship. Στ P CW = Στ P CCW p 60 0 Rx mg (2.5)(10)(9.8)sin30 + (5)M(9.8)sin30 = 3(1500)sin60 M = 154 Kg c) Using forces one can determine Rx and Ry. You need to define the +y and +x direction for forces. +y +x

28 c) continued ΣF x = 0 Rx= 1500 N ΣF y = 0 Ry = mg + Mg = N Adding the components of R head to tail one finds: R= 2.2x10 3 N, ϴ= 47 0 ϴ R Rx Ry

29 Example: A 3.00 m long ladder (m= 20.0 kg) leans against the wall as shown(θ=40 0 ). If one assumes no friction between the wall and the ladder what is the minimum coefficient of friction required between the ground and the ladder to stop it from sliding? Start by drawing the FBD. ϴ

30 Solution: ΣF x = F N1 F N1 = f, recall f = µf N 2 ΣF y = 0 mg = F N 2 = 20(9.8)= 196 N Στ P CW = Στ P CCW 50 0 mg f 40 0 F N2 p (3)F N1 sin40=1.5(20)(9.8)sin50, F N1 = N F N1 = f = µf N 2 µ = F N1 F N 2 = /196= 0.596

31 The previous technique may not fully solve all statics problems, but it is a good starting point.

32 If a force in your solution comes out negative (as F A will here), it just means that it s in the opposite direction from the one you chose. This is trivial to fix, so don t worry about getting all the signs of the forces right before you start solving.

33 If there is a cable or cord in the problem, it can support forces only along its length. Forces perpendicular to that would cause it to bend.

34 Example: A 6.00 m long beam (m 1 = 10.0 kg) is supported by a wire ( 1.00 m from end) and a hinge. In turn the beam supports a hanging 5.00 kg (m 2 ) mass 2.00 m from the hinge. a) Draw the FBD of the beam. b) Determine the tension (F T ) in the wire, and the force (F) that the hinge exerts on the beam. hinge 2 m wire kg m

35 Solution: a) Fy Fx F T 2 m m m 2 g Taking torque about the hinge: m 1 g 40 0 Στ P CW = Στ P CCW 2[(5)(9.8)]sin50 + 3[(10)(9.8)]sin50 =5F T sin30 F T = 120 N ΣF x = 0 Fx = F T cos70 = N ΣF y = 0 Fy + F T sin70 = 5(9.8) + 10(9.8) Fy= N F Fy! Fx F = 53.4 N, Θ =

36 These same principles can be used to understand forces within the body.

37 The angle at which this man s back is bent places an enormous force on the disks at the base of his spine, as the lever arm for F M is so small.

38 Stability and Balance If the forces on an object are such that they tend to return it to its equilibrium position, it is said to be in stable equilibrium.

39 If, however, the forces tend to move it away from its equilibrium point, it is said to be in unstable equilibrium.

40 An object in stable equilibrium may become unstable if it is tipped so that its center of gravity is outside the pivot point. Of course, it will be stable again once it lands!

41 People carrying heavy loads automatically adjust their posture so their center of mass is over their feet. This can lead to injury if the contortion is too great.

HATZIC SECONDARY SCHOOL

HATZIC SECONDARY SCHOOL HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT STATIC EQUILIBRIUM MULTIPLE CHOICE / 33 OPEN ENDED / 80 TOTAL / 113 NAME: 1. State the condition for translational equilibrium. A. ΣF = 0 B. ΣF

More information

Chapter 12 Static Equilibrium; Elasticity and Fracture

Chapter 12 Static Equilibrium; Elasticity and Fracture 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination

More information

Static Equilibrium. Lecture 22. Chapter 12. Physics I Department of Physics and Applied Physics

Static Equilibrium. Lecture 22. Chapter 12. Physics I Department of Physics and Applied Physics Lecture 22 Chapter 12 Physics I 12.02.2013 Static Equilibrium Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1fall.html

More information

Chapter 9- Static Equilibrium

Chapter 9- Static Equilibrium Chapter 9- Static Equilibrium Changes in Office-hours The following changes will take place until the end of the semester Office-hours: - Monday, 12:00-13:00h - Wednesday, 14:00-15:00h - Friday, 13:00-14:00h

More information

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5.

Statics. Phys101 Lectures 19,20. Key points: The Conditions for static equilibrium Solving statics problems Stress and strain. Ref: 9-1,2,3,4,5. Phys101 Lectures 19,20 Statics Key points: The Conditions for static equilibrium Solving statics problems Stress and strain Ref: 9-1,2,3,4,5. Page 1 The Conditions for Static Equilibrium An object in static

More information

Consider two students pushing with equal force on opposite sides of a desk. Looking top-down on the desk:

Consider two students pushing with equal force on opposite sides of a desk. Looking top-down on the desk: 1 Bodies in Equilibrium Recall Newton's First Law: if there is no unbalanced force on a body (i.e. if F Net = 0), the body is in equilibrium. That is, if a body is in equilibrium, then all the forces on

More information

Physics 211 Week 10. Statics: Walking the Plank (Solution)

Physics 211 Week 10. Statics: Walking the Plank (Solution) Statics: Walking the Plank (Solution) A uniform horizontal beam 8 m long is attached by a frictionless pivot to a wall. A cable making an angle of 37 o, attached to the beam 5 m from the pivot point, supports

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

PHYSICS 149: Lecture 21

PHYSICS 149: Lecture 21 PHYSICS 149: Lecture 21 Chapter 8: Torque and Angular Momentum 8.2 Torque 8.4 Equilibrium Revisited 8.8 Angular Momentum Lecture 21 Purdue University, Physics 149 1 Midterm Exam 2 Wednesday, April 6, 6:30

More information

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Strike (Day 10) Prelectures, checkpoints, lectures continue with no change. Take-home quizzes this week. See Elaine Schulte s email. HW

More information

TEST REPORT. Question file: P Copyright:

TEST REPORT. Question file: P Copyright: Date: February-12-16 Time: 2:00:28 PM TEST REPORT Question file: P12-2006 Copyright: Test Date: 21/10/2010 Test Name: EquilibriumPractice Test Form: 0 Test Version: 0 Test Points: 138.00 Test File: EquilibriumPractice

More information

Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau)

Definition. is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) Torque Definition is a measure of how much a force acting on an object causes that object to rotate, symbol is, (Greek letter tau) = r F = rfsin, r = distance from pivot to force, F is the applied force

More information

Physics 111. Lecture 22 (Walker: ) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009

Physics 111. Lecture 22 (Walker: ) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009 Physics 111 Lecture 22 (Walker: 11.1-3) Torque Rotational Dynamics Static Equilibrium Oct. 28, 2009 Lecture 22 1/26 Torque (τ) We define a quantity called torque which is a measure of twisting effort.

More information

Equilibrium Notes 1 Translational Equilibrium

Equilibrium Notes 1 Translational Equilibrium Equilibrium Notes 1 Translational Equilibrium Ex. A 20.0 kg object is suspended by a rope as shown. What is the net force acting on it? Ex. Ok that was easy, now that same 20.0 kg object is lifted at a

More information

Chapter 10. Rotation

Chapter 10. Rotation Chapter 10 Rotation Rotation Rotational Kinematics: Angular velocity and Angular Acceleration Rotational Kinetic Energy Moment of Inertia Newton s nd Law for Rotation Applications MFMcGraw-PHY 45 Chap_10Ha-Rotation-Revised

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

Applications of Statics, Including Problem-Solving Strategies

Applications of Statics, Including Problem-Solving Strategies Applications of Statics, Including Problem-Solving Strategies Bởi: OpenStaxCollege Statics can be applied to a variety of situations, ranging from raising a drawbridge to bad posture and back strain. We

More information

Physics 8 Wednesday, October 28, 2015

Physics 8 Wednesday, October 28, 2015 Physics 8 Wednesday, October 8, 015 HW7 (due this Friday will be quite easy in comparison with HW6, to make up for your having a lot to read this week. For today, you read Chapter 3 (analyzes cables, trusses,

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 130) Lecture 0 Rotational dynamics equilibrium nd Newton s Law for rotational motion rolling Exam II review http://www.physics.wayne.edu/~apetrov/phy130/ Lightning Review Last lecture:

More information

LECTURE 22 EQUILIBRIUM. Instructor: Kazumi Tolich

LECTURE 22 EQUILIBRIUM. Instructor: Kazumi Tolich LECTURE 22 EQUILIBRIUM Instructor: Kazumi Tolich Lecture 22 2 Reading chapter 11-3 to 11-4 Static equilibrium Center of mass and balance Static equilibrium 3 If a rigid object is in equilibrium (constant

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Unit 4 Statics. Static Equilibrium Translational Forces Torque

Unit 4 Statics. Static Equilibrium Translational Forces Torque Unit 4 Statics Static Equilibrium Translational Forces Torque 1 Dynamics vs Statics Dynamics: is the study of forces and motion. We study why objects move. Statics: is the study of forces and NO motion.

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Static Equilibrium. Lecture 24. Chapter 12. Physics I. Department of Physics and Applied Physics

Static Equilibrium. Lecture 24. Chapter 12. Physics I. Department of Physics and Applied Physics Lecture 24 Chapter 12 Physics I Static Equilibrium Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will discuss static equilibrium of an object Today we are

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

Science Olympiad. Machines. Roger Demos

Science Olympiad. Machines. Roger Demos Science Olympiad Machines. Roger Demos Some Basic Physics Concepts What do Machines do? Do they allow one to do more work? Not really, at best they make completing a task easier. So then what do Machines

More information

ΣF = 0 and Στ = 0 In 2-d: ΣF X = 0 and ΣF Y = 0 Goal: Write expression for Στ and ΣF

ΣF = 0 and Στ = 0 In 2-d: ΣF X = 0 and ΣF Y = 0 Goal: Write expression for Στ and ΣF Thur Sept 24 Assign 5 Friday Exam Mon Oct 5 Morton 235 7:15-9:15 PM Email if conflict Today: Rotation and Torques Static Equilibrium Sign convention for torques: (-) CW torque (+) CCW torque Equilibrium

More information

Applications of Statics, Including Problem-Solving Strategies

Applications of Statics, Including Problem-Solving Strategies OpenStax-CNX module: m42173 1 Applications of Statics, Including Problem-Solving Strategies OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License

More information

Rotational N.2 nd Law

Rotational N.2 nd Law Lecture 19 Chapter 12 Rotational N.2 nd Law Torque Newton 2 nd Law again!? That s it. He crossed the line! Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will

More information

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1

PHYSICS 220. Lecture 15. Textbook Sections Lecture 15 Purdue University, Physics 220 1 PHYSICS 220 Lecture 15 Angular Momentum Textbook Sections 9.3 9.6 Lecture 15 Purdue University, Physics 220 1 Last Lecture Overview Torque = Force that causes rotation τ = F r sin θ Work done by torque

More information

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius.

Torque rotational force which causes a change in rotational motion. This force is defined by linear force multiplied by a radius. Warm up A remote-controlled car's wheel accelerates at 22.4 rad/s 2. If the wheel begins with an angular speed of 10.8 rad/s, what is the wheel's angular speed after exactly three full turns? AP Physics

More information

Rotational Kinetic Energy

Rotational Kinetic Energy Lecture 17, Chapter 10: Rotational Energy and Angular Momentum 1 Rotational Kinetic Energy Consider a rigid body rotating with an angular velocity ω about an axis. Clearly every point in the rigid body

More information

Today we applied our knowledge of vectors to different kinds of problems.

Today we applied our knowledge of vectors to different kinds of problems. DAY 18 Summary of Primary Topics Covered Center of Mass and More Vector Examples Today we applied our knowledge of vectors to different kinds of problems. Working these problems is a matter of taking concepts

More information

Section 2: Static Equilibrium II- Balancing Torques

Section 2: Static Equilibrium II- Balancing Torques Section 2: Static Equilibrium II- Balancing Torques Last Section: If (ie. Forces up = Forces down and Forces left = Forces right), then the object will have no translatory motion. In other words, the object

More information

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Torque. Physics 6A. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physics 6A Torque is what causes angular acceleration (just like a force causes linear acceleration) Torque is what causes angular acceleration (just like a force causes linear acceleration) For a torque

More information

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions)

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions) Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions) Take g = 9.81 m s -2, P atm = 1.0 x 10 5 Pa unless otherwise stated Learning Outcomes (a) Sub-Topic recall and apply Hooke

More information

Equilibrium & Elasticity

Equilibrium & Elasticity PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

More information

Rotational N.2 nd Law

Rotational N.2 nd Law Lecture 0 Chapter 1 Physics I Rotational N. nd Law Torque Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational dynamics Today

More information

Torque and Static Equilibrium

Torque and Static Equilibrium Torque and Static Equilibrium Rigid Bodies Rigid body: An extended object in which the distance between any two points in the object is constant in time. Examples: sphere, disk Effect of external forces

More information

P12 Torque Notes.notebook. March 26, Torques

P12 Torque Notes.notebook. March 26, Torques Torques The size of a torque depends on two things: 1. The size of the force being applied (a larger force will have a greater effect) 2. The distance away from the pivot point (the further away from this

More information

Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14

Static equilibrium. Objectives. Physics terms. Assessment. Brainstorm. Equations 6/3/14 Static equilibrium Objectives State the conditions of static equilibrium in terms of forces and torques. Draw a free-body diagram of a lever showing all forces. Use the condition of equilibrium to solve

More information

PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74

PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74 PHY 1150 Doug Davis Chapter 8; Static Equilibrium 8.3, 10, 22, 29, 52, 55, 56, 74 8.3 A 2-kg ball is held in position by a horizontal string and a string that makes an angle of 30 with the vertical, as

More information

Physics 2210 Fall smartphysics Rotational Statics 11/18/2015

Physics 2210 Fall smartphysics Rotational Statics 11/18/2015 Physics 2210 Fall 2015 smartphysics 17-18 Rotational Statics 11/18/2015 τ TT = L T 1 sin 150 = 1 T 2 1L Poll 11-18-01 τ TT = L 2 T 2 sin 150 = 1 4 T 2L 150 150 τ gg = L 2 MM sin +90 = 1 2 MMM +90 MM τ

More information

τ net l = r p L = Iω = d L dt = I α ΔL Angular momentum (one) Angular momentum (system, fixed axis) Newton s second law (system)

τ net l = r p L = Iω = d L dt = I α ΔL Angular momentum (one) Angular momentum (system, fixed axis) Newton s second law (system) l = r p L = Iω = d L dt = I α ΔL = 0 Angular momentum (one) Angular momentum (system, fixed axis) Newton s second law (system) Conserva

More information

Chapter 9 TORQUE & Rotational Kinematics

Chapter 9 TORQUE & Rotational Kinematics Chapter 9 TORQUE & Rotational Kinematics This motionless person is in static equilibrium. The forces acting on him add up to zero. Both forces are vertical in this case. This car is in dynamic equilibrium

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Chapter 12 Static Equilibrium

Chapter 12 Static Equilibrium Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE

2008 FXA THREE FORCES IN EQUILIBRIUM 1. Candidates should be able to : TRIANGLE OF FORCES RULE THREE ORCES IN EQUILIBRIUM 1 Candidates should be able to : TRIANGLE O ORCES RULE Draw and use a triangle of forces to represent the equilibrium of three forces acting at a point in an object. State that

More information

Newton s Laws and Free-Body Diagrams General Physics I

Newton s Laws and Free-Body Diagrams General Physics I Newton s Laws and Free-Body Diagrams In the next few sections, we will be exploring some of the most fundamental laws of our universe, laws that govern the relationship actions and motion. These laws are

More information

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2

Lecture 8. Torque. and Equilibrium. Pre-reading: KJF 8.1 and 8.2 Lecture 8 Torque and Equilibrium Pre-reading: KJF 8.1 and 8.2 Archimedes Lever Rule At equilibrium (and with forces 90 to lever): r 1 F 1 = r 2 F 2 2 General Lever Rule For general angles r 1 F 1 sin θ

More information

The case where there is no net effect of the forces acting on a rigid body

The case where there is no net effect of the forces acting on a rigid body The case where there is no net effect of the forces acting on a rigid body Outline: Introduction and Definition of Equilibrium Equilibrium in Two-Dimensions Special cases Equilibrium in Three-Dimensions

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Equilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque:

Equilibrium. For an object to remain in equilibrium, two conditions must be met. The object must have no net force: and no net torque: Equilibrium For an object to remain in equilibrium, two conditions must be met. The object must have no net force: F v = 0 and no net torque: v τ = 0 Worksheet A uniform rod with a length L and a mass

More information

Physics 101 Lecture 12 Equilibrium

Physics 101 Lecture 12 Equilibrium Physics 101 Lecture 12 Equilibrium Assist. Prof. Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net eternal

More information

Chapter 8 continued. Rotational Dynamics

Chapter 8 continued. Rotational Dynamics Chapter 8 continued Rotational Dynamics 8.6 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

Review for 3 rd Midterm

Review for 3 rd Midterm Review for 3 rd Midterm Midterm is on 4/19 at 7:30pm in the same rooms as before You are allowed one double sided sheet of paper with any handwritten notes you like. The moment-of-inertia about the center-of-mass

More information

LECTURE 15 TORQUE AND CENTER OF GRAVITY

LECTURE 15 TORQUE AND CENTER OF GRAVITY LECTURE 15 TORQUE AND CENTER OF GRAVITY 7.3 Torque Net torque 7.4 Gravitational torque and the center of gravity Calculating the position of the center of gravity What is unusual about this door? Learning

More information

Static Equilibrium and Torque

Static Equilibrium and Torque 10.3 Static Equilibrium and Torque SECTION OUTCOMES Use vector analysis in two dimensions for systems involving static equilibrium and torques. Apply static torques to structures such as seesaws and bridges.

More information

1. Draw a FBD of the toy plane if it is suspended from a string while you hold the string and move across the room at a constant velocity.

1. Draw a FBD of the toy plane if it is suspended from a string while you hold the string and move across the room at a constant velocity. 1. Draw a FBD of the toy plane if it is suspended from a string while you hold the string and move across the room at a constant velocity. 2. A 15 kg bag of bananas hangs from a taunt line strung between

More information

Physics 8 Wednesday, October 25, 2017

Physics 8 Wednesday, October 25, 2017 Physics 8 Wednesday, October 25, 2017 HW07 due Friday. It is mainly rotation, plus a couple of basic torque questions. And there are only 8 problems this week. For today, you read (in Perusall) Onouye/Kane

More information

Chapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs.

Chapter 6, Problem 18. Agenda. Rotational Inertia. Rotational Inertia. Calculating Moment of Inertia. Example: Hoop vs. Agenda Today: Homework quiz, moment of inertia and torque Thursday: Statics problems revisited, rolling motion Reading: Start Chapter 8 in the reading Have to cancel office hours today: will have extra

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Physics 111 Lecture 4 Newton`s Laws

Physics 111 Lecture 4 Newton`s Laws Physics 111 Lecture 4 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com he Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law q Examples Isaac

More information

CHAPTER 4 NEWTON S LAWS OF MOTION

CHAPTER 4 NEWTON S LAWS OF MOTION 62 CHAPTER 4 NEWTON S LAWS O MOTION CHAPTER 4 NEWTON S LAWS O MOTION 63 Up to now we have described the motion of particles using quantities like displacement, velocity and acceleration. These quantities

More information

Newton s 3 Laws of Motion

Newton s 3 Laws of Motion Newton s 3 Laws of Motion 1. If F = 0 No change in motion 2. = ma Change in motion Fnet 3. F = F 1 on 2 2 on 1 Newton s First Law (Law of Inertia) An object will remain at rest or in a constant state of

More information

Rotational Dynamics continued

Rotational Dynamics continued Chapter 9 Rotational Dynamics continued 9.1 The Action of Forces and Torques on Rigid Objects Chapter 8 developed the concepts of angular motion. θ : angles and radian measure for angular variables ω :

More information

Chapter 10: Dynamics of Rotational Motion

Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

Center of Mass. A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path.

Center of Mass. A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path. Center of Mass A baseball thrown into the air follows a smooth parabolic path. A baseball bat thrown into the air does not follow a smooth path. The bat wobbles about a special point. This point stays

More information

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy

Physics 111. Tuesday, November 2, Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy ics Tuesday, ember 2, 2002 Ch 11: Rotational Dynamics Torque Angular Momentum Rotational Kinetic Energy Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468 Announcements This

More information

Models and Anthropometry

Models and Anthropometry Learning Objectives Models and Anthropometry Readings: some of Chapter 8 [in text] some of Chapter 11 [in text] By the end of this lecture, you should be able to: Describe common anthropometric measurements

More information

Chapter 4: Newton s Second Law F = m a. F = m a (4.2)

Chapter 4: Newton s Second Law F = m a. F = m a (4.2) Lecture 7: Newton s Laws and Their Applications 1 Chapter 4: Newton s Second Law F = m a First Law: The Law of Inertia An object at rest will remain at rest unless, until acted upon by an external force.

More information

Physics 2210 Homework 18 Spring 2015

Physics 2210 Homework 18 Spring 2015 Physics 2210 Homework 18 Spring 2015 Charles Jui April 12, 2015 IE Sphere Incline Wording A solid sphere of uniform density starts from rest and rolls without slipping down an inclined plane with angle

More information

Rotational Equilibrium

Rotational Equilibrium Rotational Equilibrium 6-1 Rotational Equilibrium INTRODUCTION Have you ever tried to pull a stubborn nail out of a board or develop your forearm muscles by lifting weights? Both these activities involve

More information

Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction

Chapter 8 Rotational Motion and Equilibrium. 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction Chapter 8 Rotational Motion and Equilibrium Name 1. Give explanation of torque in own words after doing balance-the-torques lab as an inquiry introduction 1. The distance between a turning axis and the

More information

Announcements Oct 16, 2014

Announcements Oct 16, 2014 Announcements Oct 16, 2014 1. Prayer 2. While waiting, see how many of these blanks you can fill out: Centripetal Accel.: Causes change in It points but not Magnitude: a c = How to use with N2: Always

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

is the study of and. We study objects. is the study of and. We study objects.

is the study of and. We study objects. is the study of and. We study objects. Static Equilibrium Translational Forces Torque Unit 4 Statics Dynamics vs Statics is the study of and. We study objects. is the study of and. We study objects. Recall Newton s First Law All objects remain

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

Connected Bodies 1. Two 10 kg bodies are attached to a spring balance as shown in figure. The reading of the balance will be 10 kg 10 kg 1) 0 kg-wt ) 10 kg-wt 3) Zero 4) 5 kg-wt. In the given arrangement,

More information

Angular Momentum L = I ω

Angular Momentum L = I ω Angular Momentum L = Iω If no NET external Torques act on a system then Angular Momentum is Conserved. Linitial = I ω = L final = Iω Angular Momentum L = Iω Angular Momentum L = I ω A Skater spins with

More information

2/28/2006 Statics ( F.Robilliard) 1

2/28/2006 Statics ( F.Robilliard) 1 2/28/2006 Statics (.Robilliard) 1 Extended Bodies: In our discussion so far, we have considered essentially only point masses, under the action of forces. We now broaden our considerations to extended

More information

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight.

4.0 m s 2. 2 A submarine descends vertically at constant velocity. The three forces acting on the submarine are viscous drag, upthrust and weight. 1 1 wooden block of mass 0.60 kg is on a rough horizontal surface. force of 12 N is applied to the block and it accelerates at 4.0 m s 2. wooden block 4.0 m s 2 12 N hat is the magnitude of the frictional

More information

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information

24/06/13 Forces ( F.Robilliard) 1

24/06/13 Forces ( F.Robilliard) 1 R Fr F W 24/06/13 Forces ( F.Robilliard) 1 Mass: So far, in our studies of mechanics, we have considered the motion of idealised particles moving geometrically through space. Why a particular particle

More information

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14

Torque. Objectives. Assessment. Assessment. Equations. Physics terms 6/2/14 Objectives Calculate torque given the lever arm (perpendicular distance) and the force. Calculate torque in newton meters and in pound feet. Interpret positive and negative signs in the context of torque.

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Physics 101 Lecture 11 Torque

Physics 101 Lecture 11 Torque Physics 101 Lecture 11 Torque Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Force vs. Torque q Forces cause accelerations q What cause angular accelerations? q A door is free to rotate about an axis

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

PHYSICS - CLUTCH CH 13: ROTATIONAL EQUILIBRIUM.

PHYSICS - CLUTCH CH 13: ROTATIONAL EQUILIBRIUM. !! www.clutchprep.com EXAMPLE: POSITION OF SECOND KID ON SEESAW EXAMPLE: A 4 m-long seesaw 50 kg in mass and of uniform mass distribution is pivoted on a fulcrum at its middle, as shown. Two kids sit on

More information

Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer

Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer 8.01x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology Problem Set 10 1. Moment of Inertia: Disc and Washer (a) A thin uniform disc of mass M and radius R is mounted on an axis passing

More information

Upthrust and Archimedes Principle

Upthrust and Archimedes Principle 1 Upthrust and Archimedes Principle Objects immersed in fluids, experience a force which tends to push them towards the surface of the liquid. This force is called upthrust and it depends on the density

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Physics 2211 ABC Quiz #3 Solutions Spring 2017

Physics 2211 ABC Quiz #3 Solutions Spring 2017 Physics 2211 ABC Quiz #3 Solutions Spring 2017 I. (16 points) A block of mass m b is suspended vertically on a ideal cord that then passes through a frictionless hole and is attached to a sphere of mass

More information

Equilibrium: Forces and Torques

Equilibrium: Forces and Torques Practice 15B Answers are available in the classroom and on the website. Scan this QR code for a direct link. Equilibrium: Forces and Torques 16. Lynn walks across a 9.0 m long plank bridge. The mass of

More information

Torque and Static Equilibrium

Torque and Static Equilibrium Torque and Static Equilibrium Ch. 7.3, 8.1 (KJF 3 rd ed.) Phys 114 Eyres Torque 1 Causing rotation: Torque Three factors affect the how a force can affect the rotation: The magnitude of the force The distance,

More information