PLANKTONIC RESPIRATION THE DARK SIDE OF THE MOON

Size: px
Start display at page:

Download "PLANKTONIC RESPIRATION THE DARK SIDE OF THE MOON"

Transcription

1 Agouron_PW_lecture_4 1/1 PLANKTONIC RESPIRATION THE DARK SIDE OF THE MOON A) WHAT IS RESPIRATION [CH 2 O] + C + H 2 O [CH 2 O] + NO 3 - C + N - + H 2 O H 2 S / 2 H 2 SO 4 + H 2 O (note no consumed) (note no C produced) Definition of Respiration: Respiration is a catabolic reaction involving the transfer of protons (and electrons) between a proton donor and a proton acceptor Respiration - fundamental reaction Proton donor e.g. H + + e - Proton acceptor Respiration end products H 2 O Respiration byproducts e.g. C Photosynthesis - fundamental reaction Proton donor H 2 O Proton acceptor C H + + e - Photosynthesis byproduct Photosynthesis end product [CH 2 O] Proton (& electron) donors Respiration end product Proton (& electron) acceptors Respiration byproduct H 2 O C [CH 2 O] HNO 3 HN HN HNO 3 HN N 2 or NH 3 NH 3 HN H 2 S H 2 S H 2 S H 2 S C CH 4 CH 4 C Also others Mn, U, Cr, Se, As, perchlorate Also others

2 Agouron_PW_lecture_4 2/1 B) FORMS OF RESPIRATION There are 6 or more oxygen consuming reactions, not all would be considered as forms of respiration. From Table 3.2, Raven & Beardall (in del Giorgio and Williams et al. 25) Oxygen consuming reactions Property Mehlerperoxidase reaction RUBISCO oxygenase Glycolate oxidase Chlororespiration Cytochrome oxidase Alternate oxidase V max (catalytic capacity at saturation) V max for gross evolution.15 of V max of RUBISCO carboxylase or gross evolution.8 of V max of gross evolution ~.1 of V max of gross ~.1 of V max of gross evolution (range.2-.3) As for cytochrome oxidase, but not additive with it. K ½(O2) mmol m ? In vivo effect of full non-cyclic chain Absolute requirement Absolute requirement Absolute requirement Inhibition Variable (inhibits or stimulates) Variable (inhibits or stimulates) In vivo coupling to C evolution No Via the pathways of glycolate metabolism Via the pathway of glyoxylate metabolism Via the pathways of supply of NAD(P)H Via the pathways that supply NAD(P)H Via the pathways that supply NAD(P)H Rate of 16 uptake relative to rate of 18 uptake ?

3 Agouron_PW_lecture_4 3/1 Two relevant forms in plankton rate measurements 1) Classical mitochondrial dehydrogenation 2) Mehler Reaction 1) Classical mitochondrial dehydrogenation Broad Outline ADP + P i ATP Substrate 2H + + 2e - Electron Transport System (ETS) H 2 O Overall Scheme of the Biochemistry of Respiration Proteins Carbohydrates Lipids -1ATP External Products & Reactants NH 3 Glycolysis +2ATP Reduced Pyridine Nucleotides NADH+H + C NADH+H + Acetyl-Co A +1GTP 2C TCA Cycle 3NADH+3H + FADH 2 3 6H 2 O Terminal Oxidation Sysyem +17ATP 5NADH+5H + FADH 2

4 Agouron_PW_lecture_4 4/1 Light 2) Mehler Reaction 2H 2 O H 2 O 2H + + 2e - Mehler reaction 2H + + 2e - NADP NADPH 2 C NADP [CH 2 O] The Mehler reaction is essentially a safety valve to release the congestion due to excess proton/electron production, it is not strictly a respiration reaction as it yields very little energy. Its biochemistry is complex: NADPH (d) NADP + GSSG 2 GSH AsA ( c) DHA (b) NADPH NADP + MDAR 2 MDA 2 AsA sapx H 2 O H 2 B 2 - SOD (a) PS II NADPH O O 2 2 NADP + - FD 2 SOD PS I 2 AsA H 2 tapx 2 MDA H 2 O A 2 H 2 O

5 Agouron_PW_lecture_4 5/1 PRODUCTION RESPIRATION ALGAL RESPIRATION (R A ) Light ADP + P i ATP 2H 2 O H 2 O Mehler reaction Substrate 2H + + 2e - 2H + + 2e - 2H + + 2e - NADP Electron Transport System (ETS) H 2 O NADPH 2 C NADP [CH 2 O] ADP + P i ATP Substrate 2H + + 2e - Electron Transport System (ETS) H 2 O OXYGEN PRODUCTION (GPP 2 ) MEHLER REACTION (R M ) ORGANIC CARBON PRODUCTION (GPP C ) HETEROTROPH RESPIRATION (R H )

6 Agouron_PW_lecture_4 6/1 C) ECOLOGICAL TERMINOLOGY AND PHYSIOLOGICAL EQUIVALENCES D) MEASUREMENT APPROACHES Gross Community Oxygen Production = GPP 2 Gross Community Organic Production (GPP C ) = GPP 2 R M Net Community Oxygen Production (NCP) = GPP 2 (R A + R H + R M ) = GPP C (R A + R H ) Net Primary (Algal) Oxygen Production (NPP) = GPP 2 (R H + R M ) = GPP C R H GPP C = R A + R H + NCP GPP 2 = R A + R H + R M + NCP 1) Light/Dark bottle 2) In situ diel curves 3) 18 GPP/ NCP 4) ETS 5) Post Light Incubation Dark 14 C loss 6) Derivations from Biomass 1) Light/Dark bottle 24 hr Light bottle = GPP O2 (R A + R H ) 24 hr Dark bottle = -(R A + R H ) Light-Dark bottle = GPP O2 (R A + R H ) + (R A + R H ) = GPP O2 = GPP C as R M = Assumes R A and R H are the same in the light as dark Including Mehler reaction 24 hr Light bottle = NCP = GPP O2 (R A + R H + R M ) 24 hr Dark bottle = -(R A + R H ) Light-Dark bottle = GPP O2 (R A + R H + R M ) + (R A + R H ) = GPP O2 - R M = GPP C Assumptions as above

7 Agouron_PW_lecture_4 7/1 2) In situ diel curves In situ O2 change Respiration rate 5 P-R 12hr 2.5 R 12hr GPP O2 = (-12hr) - (12-24hr) Resp O2 = R A +R H = 2* (12-24hr) NCP O2 = * (-24hr) Assumes R A and R H are the same. Experimental design at high latitudes, with extensive twilight or no real dark period is far from straightforward 3) 18 GPP/ NCP If it is assumed that 18 GPP is true gross O2 production i.e. GPP O2, then 18 GPP - NCP = GPP 2 (GPP 2 (R A + R H + R M )) = R A + R H + R M This gives a measure of all forms of oxygen consumption, including the Mehler reaction, in principle R A + R H can be measured from the dark bottle, so R M can be derived. What you do with it is not clear 4) Electron transport system measurement (ETS) 5) Post Light Incubation Dark 14 C loss

8 Agouron_PW_lecture_4 8/1 6) Derivations from Biomass Typically relies upon the use of allometric relationships (see Lecture 5, A) section 11) Resp = W*R *L B Where W is the biomass in the size group L L is its size characteristic (e.g. length or individual weight) R is a scaling factor B is the allometric coefficient (typically somewhere in the region of -.75) E) RESPIRATION OBSERVATIONS IN THE OCEANS 1) Who does it Percentage Contribution of Trophic Group Bacteria 4 Phytoplankton & Protozoa 2 8 Larval & Adult Zoopl. Unresolved Autotrophs Heterotrophs 3 Biomass Calc <1 Size fractionation <1 Biomass Models <1 Food web Models <1 Geometric mean <1 Biomass Calc 1<1 Size fractionation 1<1 Biomass Models 1<1 Food web Models 1<1 Geometric mean 1<1 Biomass Calc 1<1 Size fractionation 1<1 Biomass Models 1<1 Food web Models 1<1 Geometric mean 1<1 Biomass Calc 1<1 Size fractionation 1<1 Biomass Models 1<1 Food web Models 1<1 Geometric mean 1<1

9 Agouron_PW_lecture_4 9/1 2) What are the Rates Frequency (normalised to largest occurrence a) Frequency Distribution of Volumetric Rates 1 Photosynthesis Respiration to.1.1 to to to.1.1 to to to 1 1 to to to 1 1 to to 46 Rate (as mmol m -3 d -1 ) 46 to 1 Frequency (normalised to largest occurrence b) Frequency Distribution of Depth-integrated Rates Photosynthesis Respiration 1 to to to 1 1 to to to 1 1 to 215 Rate (as mmol m -2 d -1 ) 3) How does it vary with Time a) Time series of Respiration and Photosynthesis b) Phase Plot of Respiration and Photosynthesis 1 Metabolic rate (mmol m -3 d -1 ) Respiration (mmol m -3 d -1 ) 1 Heterotrophic Sector Autotrophic Sector Time (days) Photosynthesis (mmol m -3 d -1 ) c) Time development of P/R ratio d) Log-log Plots of Respiration versus Photosynthesis AUTOTROPHIC PHASE HETEROTROPHIC PHASE 2 P/R ratio Log (Respiration) as mmol m -3 d Time (days) Log (photosynthesis) as mmol m -3 d -1

10 Agouron_PW_lecture_4 1/1 4) How does it vary in Space 6 Number of Non-Atlantic Profiles Number of profiles 4 2 Number of Atlantic Profiles Area 7-8S 6-7S 5-6S 4-5S 3-4S 2-3S 1-2S -1S -1N 1-2N 2-3N 3-4N 4-5N 5-6N 6-7N 7-8N Latitude band Latitudinal Averages Latitudinal Totals 5 4 GP Latitudinal Average Resp Latitudinal Average NCP Latitudinal Average 5 4 GP Latitudinal Total Resp Latitudinal Total NCP Latitudinal Total Mean rate (as mmol O2 m -2 d -1 ) Total rate (as 1 15 mol a -1 ) S 6-7S 5-6S 4-5S 3-4S 2-3S 1-2S -1S -1N 1-2N 2-3N 3-4N 4-5N 5-6N 6-7N 7-8N 8-9N 7-8S 6-7S 5-6S 4-5S 3-4S 2-3S 1-2S -1S -1N 1-2N 2-3N 3-4N 4-5N 5-6N 6-7N 7-8N 8-9N 5) Will History Determine the Future God help us if it does! Gaarder and Gran's early work Riley & Steemann Nielsen's O2 studies Introduction of the 14 C technique Pommeroy & Johannes papers Starting up of the JGOFS programmes Steemann Nielsen's 14 C studies Koblenz-Mishke et al's 1968 paper Present number of 14 C observations:??1, to 25, Starting up of the JGOFS programmes 2, 4, 1,5 3, 1, O2 14C ETS 2, 5 1, 1/1/19 1/1/191 1/1/192 1/1/193 1/1/194 1/1/195 1/1/196 1/1/197 1/1/198 1/1/199 1/1/2 1/1/19 1/1/191 1/1/192 1/1/193 1/1/194 1/1/195 1/1/196 1/1/197 1/1/198 1/1/199 1/1/2 We ve been running a business with estimates of revenue but little knowledge of expenditure a sure route to bankruptcy!

Be sure to understand:

Be sure to understand: Learning Targets & Focus Questions for Unit 6: Bioenergetics Chapter 8: Thermodynamics Chapter 9: Cell Resp Focus Q Ch. 10: Photosynthesis Chapter 8 (141-150) 1. I can explain how living systems adhere

More information

Bio102 Problems Photosynthesis

Bio102 Problems Photosynthesis Bio102 Problems Photosynthesis 1. Why is it advantageous for chloroplasts to have a very large (in surface area) thylakoid membrane contained within the inner membrane? A. This limits the amount of stroma

More information

Lecture 10. Proton Gradient-dependent ATP Synthesis. Oxidative. Photo-Phosphorylation

Lecture 10. Proton Gradient-dependent ATP Synthesis. Oxidative. Photo-Phosphorylation Lecture 10 Proton Gradient-dependent ATP Synthesis Oxidative Phosphorylation Photo-Phosphorylation Model of the Electron Transport Chain (ETC) Glycerol-3-P Shuttle Outer Mitochondrial Membrane G3P DHAP

More information

Forms of stored energy in cells

Forms of stored energy in cells Forms of stored energy in cells Electrochemical gradients Covalent bonds (ATP) Reducing power (NADH) During photosynthesis, respiration and glycolysis these forms of energy are converted from one to another

More information

Photosynthesis and Life

Photosynthesis and Life 7-1 Chapter 7 Photosynthesis and Life During photosynthesis Organisms use the energy of light to build highenergy organic molecules. Plants, algae, and some bacteria can do this. Can make their own food

More information

Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe.

Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe. Section 1 How Organisms Obtain Energy Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe. Section 1 How Organisms

More information

Oxidative Phosphorylation versus. Photophosphorylation

Oxidative Phosphorylation versus. Photophosphorylation Photosynthesis Oxidative Phosphorylation versus Photophosphorylation Oxidative Phosphorylation Electrons from the reduced cofactors NADH and FADH 2 are passed to proteins in the respiratory chain. In eukaryotes,

More information

A + B = C C + D = E E + F = A

A + B = C C + D = E E + F = A Photosynthesis - Plants obtain energy directly from the sun - Organisms that do this are autotrophs (make their own food from inorganic forms) - Photosynthesis is a series of chemical reactions where the

More information

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully. Outline: Metabolism Part I: Fermentations Part II: Respiration Part III: Metabolic Diversity Learning objectives are: Learn about respiratory metabolism, ATP generation by respiration linked (oxidative)

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

Energy for biological processes

Energy for biological processes 1 Energy transfer When you have finished revising this topic, you should: be able to explain the difference between catabolic and anabolic reactions be able to describe the part played by in cell metabolism

More information

Cellular Energy Section 8.1 How Organisms Obtain Energy

Cellular Energy Section 8.1 How Organisms Obtain Energy Cellular Energy Section 8.1 How Organisms Obtain Energy Scan Section 1 of the chapter and make a list of three general ways in which cells use energy. 1. 2. 3. Review metabolism Use your book or dictionary

More information

Ch. 10- Photosynthesis: Life from Light and Air

Ch. 10- Photosynthesis: Life from Light and Air Ch. 10- Photosynthesis: Life from Light and Air 2007-2008 Ch. 10 Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers Heterotrophs

More information

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body METABOLISM What is metabolism? METABOLISM Total of all chemical reactions occurring within the body Categories of metabolic reactions Catabolic reactions Degradation pathways Anabolic reactions Synthesis

More information

THIS IS. In photosynthesis A) Carbon gets oxidized B) Carbon gets reduced C) Carbon gets metabolized D) Carbon gets digested

THIS IS. In photosynthesis A) Carbon gets oxidized B) Carbon gets reduced C) Carbon gets metabolized D) Carbon gets digested THIS IS With Your Host... table Column A Column B Column C Column D Column E Column F 100 100 100 100 100 100 200 200 200 200 200 200 300 300 300 300 300 300 400 400 400 400 400 400 In photosynthesis A)

More information

Change to Office Hours this Friday and next Monday. Tomorrow (Abel): 8:30 10:30 am. Monday (Katrina): Cancelled (05/04)

Change to Office Hours this Friday and next Monday. Tomorrow (Abel): 8:30 10:30 am. Monday (Katrina): Cancelled (05/04) Change to Office Hours this Friday and next Monday Tomorrow (Abel): 8:30 10:30 am Monday (Katrina): Cancelled (05/04) Lecture 10 Proton Gradient-dependent ATP Synthesis Oxidative Phosphorylation Photo-Phosphorylation

More information

Concept 10.1 Photosynthesis converts light energy to the chemical energy of food

Concept 10.1 Photosynthesis converts light energy to the chemical energy of food Name Period Chapter 10: Photosynthesis This chapter is as challenging as the one you just finished on cellular respiration. However, conceptually it will be a little easier because the concepts learned

More information

Biochemical Pathways

Biochemical Pathways Biochemical Pathways Living organisms can be divided into two large groups according to the chemical form in which they obtain carbon from the environment. Autotrophs can use carbon dioxide from the atmosphere

More information

Chapter 8: Cellular Energy

Chapter 8: Cellular Energy Chapter 8: Cellular Energy Section 1: How Organisms Obtain Energy Transformation of Energy All cellular activities require Energy!! ( The ability to do work). The study of flow and the transformation of

More information

Metabolism Review. A. Top 10

Metabolism Review. A. Top 10 A. Top 10 Metabolism Review 1. Energy production through chemiosmosis a. pumping of H+ ions onto one side of a membrane through protein pumps in an Electron Transport Chain (ETC) b. flow of H+ ions across

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs self-feeders Capture free energy from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic

More information

Name Date Class. Photosynthesis and Respiration

Name Date Class. Photosynthesis and Respiration Concept Mapping Photosynthesis and Respiration Complete the Venn diagram about photosynthesis and respiration. These terms may be used more than once: absorbs, Calvin cycle, chlorophyll, CO 2, H 2 O, Krebs

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) get their energy from eating others eat food

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

PHOTOSYNTHESIS. Light Reaction Calvin Cycle PHOTOSYNTHESIS Light Reaction Calvin Cycle Photosynthesis Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds Carbon

More information

7.014 Quiz III Handout

7.014 Quiz III Handout 7.014 Quiz III Handout Quiz III: Wednesday, April 14 12:05-12:55 Walker Gym **This will be a closed book exam** Quiz Review Session: Tuesday, April 13 7:00-9:00 pm room 54-100 Open Tutoring Session: Monday,

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Outline I. Energy and Carbon Cycle II. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions Carbon Cycle All organisms

More information

Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts)

Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts) 1 Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts) Objectives 1: Describe the overall action of the Krebs cycle in generating ATP, NADH and FADH 2 from acetyl-coa 2: Understand the generation

More information

Chapter 10. Photosynthesis

Chapter 10. Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

AP Biology. Chloroplasts: sites of photosynthesis in plants

AP Biology. Chloroplasts: sites of photosynthesis in plants The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Outline I. Energy and Carbon Cycle II. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions Carbon Cycle All organisms

More information

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per Cell Energy Notes Name Per THE ENDOSYMBIOTIC THEORY The Endosymbiotic theory is the idea that a long time ago, engulfed other prokaryotic cells by. This resulted in the first First proposed by Explains

More information

Energy for Life 12/11/14. Light Absorption in Chloroplasts

Energy for Life 12/11/14. Light Absorption in Chloroplasts Energy for Life Biochemical pathways A series of reactions where the products of one reaction is used in the next reaction Light Absorption in Chloroplasts Chloroplasts Two membranes Grana- layered stacks

More information

2.A.2- Capture and Storage of Free Energy

2.A.2- Capture and Storage of Free Energy 2.A.2- Capture and Storage of Free Energy Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis. EU 2.A- Growth, reproduction

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs Capture from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic molecules (occurs

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Photosynthesis occurs in plants, algae, certain other

More information

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select.

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select. Section 1: How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration Click on a lesson name to select. Section 1 How Organisms Obtain Energy Transformation of Energy Energy

More information

Photosynthesis Equation. 6CO 2 + 6H 2 O + light C 6 H 12 O 6 + 6O 2

Photosynthesis Equation. 6CO 2 + 6H 2 O + light C 6 H 12 O 6 + 6O 2 Photosynthesis Photosynthesis Photosynthesis Equation Carbon dioxide + water + light Glucose + Oxygen 6CO 2 + 6H 2 O + light C 6 H 12 O 6 + 6O 2 What is photosynthesis? Photosynthesis is the production

More information

Photosynthesis: Life from Light AP Biology

Photosynthesis: Life from Light AP Biology Photosynthesis: Life from Light Supporting a biosphere On global scale, photosynthesis is the most important process for the continuation of life on Earth u each year photosynthesis synthesizes 160 billion

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

AP Biology Energy Exam Study Guide. Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis

AP Biology Energy Exam Study Guide. Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis AP Biology Energy Exam Study Guide Enzymes, Cellular Respiration, Metabolic Patterns, and Photosynthesis 1. In which orientation must these two amino acids be brought together to form a dipeptide bond?

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

1 Which of the following organisms do NOT carry on photosynthesis?

1 Which of the following organisms do NOT carry on photosynthesis? 1 Which of the following organisms do NOT carry on photosynthesis? plants algae some bacteria 2 3 animals The correct description of the relationship between photosynthesis and the living world is. herbivores,

More information

Chapter 8: Photosynthesis. Name Block

Chapter 8: Photosynthesis. Name Block Fred and Theresa Holtzclaw Updated by Chris Chou for Campbell Biology in Focus, 2nd Ed. (Oct. 2017) Name Block This chapter is as challenging as the one you just finished on cellular respiration. However,

More information

Photosynthesis 1. Light Reactions and Photosynthetic Phosphorylation. Lecture 31. Key Concepts. Overview of photosynthesis and carbon fixation

Photosynthesis 1. Light Reactions and Photosynthetic Phosphorylation. Lecture 31. Key Concepts. Overview of photosynthesis and carbon fixation Photosynthesis 1 Light Reactions and Photosynthetic Phosphorylation Lecture 31 Key Concepts Overview of photosynthesis and carbon fixation Chlorophyll molecules convert light energy to redox energy The

More information

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration AP Biology - Problem Drill 08: Photosynthesis No. 1 of 10 #01 1. What term does the statement below refer to? In a photosynthesis process, an electron is excited from P700 and delivered to its receptor,

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air http://www.youtube.com/watch?v=wi60tqa8jfe Photosynthesis: Life from Light and Air 2011-2012 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) obtain

More information

Chapter 11 Photosynthesis

Chapter 11 Photosynthesis Chapter 11 Photosynthesis 2.2 Cell Metabolism Learning Objectives 2.2.4 Photosynthesis 1. Definition, balanced equation and role of "photosynthesis". 2. An explanation of the process of photosynthesis.

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Photosynthesis and cellular respirations

Photosynthesis and cellular respirations The Introduction of Biology Defining of life Basic chemistry, the chemistry of organic molecules Classification of living things History of cells and Cells structures and functions Photosynthesis and cellular

More information

AP Biology Exam Review 5: Enzymes & Metabolism (Photosynthesis & Respiration)

AP Biology Exam Review 5: Enzymes & Metabolism (Photosynthesis & Respiration) Name: Date: AP Biology Exam Review 5: Enzymes & Metabolism (Photosynthesis & Respiration) Helpful Videos and Animations: 1. Bozeman Biology: Photosynthesis and Respiration 2. Bozeman Biology: Photosynthesis

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) 3. Plant structures: organ, tissue, cells, sub-cellular organelle,

More information

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D.

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D. Biochemical bases for energy transformations Biochemical bases for energy transformations Nutrition 202 Animal Energetics R. D. Sainz Lecture 02 Energy originally from radiant sun energy Captured in chemical

More information

BIOLOGY. Photosynthesis CAMPBELL. Concept 10.1: Photosynthesis converts light energy to the chemical energy of food. Anabolic pathways endergonic

BIOLOGY. Photosynthesis CAMPBELL. Concept 10.1: Photosynthesis converts light energy to the chemical energy of food. Anabolic pathways endergonic 10 Photosynthesis CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick energy ECOSYSTEM CO 2 H 2 O Organic O 2 powers

More information

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP:

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP: Understanding How Living Things Obtain and Use Energy. Cell Energy: The Big Picture Most Autotrophs produce food (sugar) using light energy during Photosynthesis. Then, both Autotrophs and Heterotroph

More information

Lecture Series 13 Photosynthesis: Energy from the Sun

Lecture Series 13 Photosynthesis: Energy from the Sun Lecture Series 13 Photosynthesis: Energy from the Sun Photosynthesis: Energy from the Sun A. Identifying Photosynthetic Reactants and Products B. The Two Pathways of Photosynthesis: An Overview C. Properties

More information

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration How do living things stay alive? Cellular Respiration Burning Happens in ALL living things inside cells and has the main goal of producing ATP the fuel of life It does not matter whether the organisms

More information

Phytoplankton Photosynthesis

Phytoplankton Photosynthesis Phytoplankton Photosynthesis RedOx Reactions Some more history Quantum Yields Photosynthetic Units Physical Structure The Z-Scheme The Calvin-Benson Cycle Measuring Photosynthesis ABSORBPTION SPECTRUM

More information

Chapter 10: Photosynthesis

Chapter 10: Photosynthesis Chapter 10: Photosynthesis This chapter is as challenging as the one you just finished on cellular respiration. However, conceptually it will be a little easier because the concepts learned in Chapter

More information

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism

BBS2710 Microbial Physiology. Module 5 - Energy and Metabolism BBS2710 Microbial Physiology Module 5 - Energy and Metabolism Topics Energy production - an overview Fermentation Aerobic respiration Alternative approaches to respiration Photosynthesis Summary Introduction

More information

Photosynthesis Part I: Overview & The Light-Dependent Reac<ons

Photosynthesis Part I: Overview & The Light-Dependent Reac<ons Photosynthesis Part I: Overview & The Light-Dependent Reac

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

Ch. 10 Photosynthesis: The Calvin Cycle Life from Air

Ch. 10 Photosynthesis: The Calvin Cycle Life from Air Ch. 10 Photosynthesis: The Calvin Cycle Life from Air 2007-2008 Whoops! Wrong Calvin The Calvin Cycle 1950s 1961 Remember what it means to be a plant Need to produce all organic molecules necessary for

More information

Active Learning Exercise 6. Photosynthesis

Active Learning Exercise 6. Photosynthesis Name Biol 211 - Group Number Active Learning Exercise 6. Photosynthesis Reference: Chapter 10 (Biology by Campbell/Reece, 8 th ed.) Note: See the last page of this ALE for a diagram that summarizes the

More information

Unit 1C Practice Exam (v.2: KEY)

Unit 1C Practice Exam (v.2: KEY) Unit 1C Practice Exam (v.2: KEY) 1. Which of the following statements concerning photosynthetic pigments (chlorophylls a and b, carotenes, and xanthophylls) is correct? (PT1-12) a. The R f values obtained

More information

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars 4.2 8.2 Overview Photosynthesis: of Photosynthesis An Overview Photosynthesis process by which plants make food using energy from the sun Plants are autotrophs that make their own source of chemical energy.

More information

REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS A. Top 10 If you learned anything from this unit, you should have learned: 1. Energy production through chemiosmosis a. pumping of H+

More information

Center for Academic Services & Advising

Center for Academic Services & Advising March 2, 2017 Biology I CSI Worksheet 6 1. List the four components of cellular respiration, where it occurs in the cell, and list major products consumed and produced in each step. i. Hint: Think about

More information

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs 8.2 Photosynthesis 8.2.1 - Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs double membrane starch grain grana thylakoid internal membrane - location of the

More information

Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová

Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová Respiratory chain (RCH) a) is found in all cells b) is located in a mitochondrion c) includes enzymes integrated in the inner

More information

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain a review Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red-660 nm are most important).

More information

MOLECULAR ACTIVITIES OF PLANT CELLS

MOLECULAR ACTIVITIES OF PLANT CELLS MOLECULAR ACTIVITIES OF PLANT CELLS An introduction to plant biochemistry JOHN W. ANDERSON BAgrSc, PhD Reader, Botany Department, School of Biological Sciences, La Trobe University, Bundoora, Victoria,

More information

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and

More information

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and

More information

In the following lab investigations, you will use algae beads (algae cells that are encapsulated in alginate) and a colorimetric CO 2

In the following lab investigations, you will use algae beads (algae cells that are encapsulated in alginate) and a colorimetric CO 2 Introduction Photosynthesis and Cellular Respiration In the following lab investigations, you will use algae beads (algae cells that are encapsulated in alginate) and a colorimetric indicator to observe

More information

Photosynthesis. Chapter 10. Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece

Photosynthesis. Chapter 10. Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece Chapter 10 Photosynthesis Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece Edited by William Wischusen, Louisiana State University

More information

1/23/2011. Grapevine Anatomy & Physiology. What is Light? WSU Viticulture Certificate Program. Photosynthesis & Respiration.

1/23/2011. Grapevine Anatomy & Physiology. What is Light? WSU Viticulture Certificate Program. Photosynthesis & Respiration. WSU Viticulture Certificate Program Grapevine Anatomy & Physiology & Respiration Markus Keller PHOTOS: Converts sunlight to chemical energy SYNTHESIS: Uses energy to convert inorganic compounds to organic

More information

AQA Biology A-level Topic 5: Energy transfers in and between organisms

AQA Biology A-level Topic 5: Energy transfers in and between organisms AQA Biology A-level Topic 5: Energy transfers in and between organisms Notes Photosynthesis Photosynthesis is a reaction in which light energy is used to produce glucose in plants. The process requires

More information

Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis:

Overall, photosynthesis is the conversion of the Sun s energy to stored chemical energy. (glucose) The overall reaction for photosynthesis: A.P. Biology Chapter 10- Photosynthesis Scale: 0 - No understanding of the concept and chemical process of photosynthesis. 1- With help, a partial understanding of the reactants and products of the photosynthesis

More information

A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata

A. Structures of PS. Site of PS in plants: mostly in leaves in chloroplasts. Leaf cross section. Vein. Mesophyll CO 2 O 2. Stomata PS Lecture Outline I. Introduction A. Structures B. Net Reaction II. Overview of PS A. Rxns in the chloroplast B. pigments III. Closer looks A. LD Rxns B. LI Rxns 1. non-cyclic e- flow 2. cyclic e- flow

More information

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels Cellular Respiration: Harvesting Chemical Energy 9.1 Catabolic pathways yield energy by oxidizing organic fuels 9.2 Glycolysis harvests chemical energy by oxidizing glucose to pyruvate 9.3 The citric acid

More information

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up: Warm-up Objective: Explain how photosynthesis converts light energy into chemical energy. Warm-up: In the light reactions, what is the electron donor? Where do the electrons end up? 2006-2007 Photosynthesis:

More information

Next-generation Imaging Flow Cytometry

Next-generation Imaging Flow Cytometry 1 4/21/13 Next-generation Imaging Flow Cytometry New instruments, such as the Amnis system, combine flow cytometry with imaging you get the advantage of having a microscope-like image combined with lasers,

More information

AP Biology Big Idea 2 Unit Study Guide

AP Biology Big Idea 2 Unit Study Guide Name: Period: AP Biology Big Idea 2 Unit Study Guide This study guide highlights concepts and terms covered in the evolution unit. While this study guide is meant to be inclusive, any term or concept covered

More information

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg UNIT 2: Metabolic Processes Chapter 5: Photosynthesis: The Energy of Life pg. 210-240 5.2: Pathways of Photosynthesis pg. 220-228 Light Dependent Reactions Photosystem II and I are the two light capturing

More information

BIOLOGY 345 Midterm II - 15 November 2010 PART I. Multiple choice questions (4 points each, 32 points total).

BIOLOGY 345 Midterm II - 15 November 2010 PART I. Multiple choice questions (4 points each, 32 points total). BIOLOGY 345 Name Midterm II - 15 November 2010 PART I. Multiple choice questions (4 points each, 32 points total). 1. Considering the multitude of potential metabolic processes available to Bacteria and

More information

Cellular Energy (Photosynthesis & Cellular Respiration)

Cellular Energy (Photosynthesis & Cellular Respiration) (Photosynthesis & Cellular Respiration) Before You Read Before you read the chapter, respond to these statements. 1. Write an A if you agree with the statement. 2. Write a D if you disagree with the statement.

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration What you will learn: GPS Standard SB3a Explain the cycling of energy through the processes of photosynthesis and respiration. IN OTHER WORDS Photosynthesis and Cellular

More information

Energy Metabolism exergonic reaction endergonic reaction Energy of activation

Energy Metabolism exergonic reaction endergonic reaction Energy of activation Metabolism Energy Living things require energy to grow and reproduce Most energy used originates from the sun Plants capture 2% of solar energy Some captured energy is lost as metabolic heat All energy

More information

Photosynthesis: The Calvin Cycle

Photosynthesis: The Calvin Cycle Whoops! Wrong Calvin 1950s 1961 Photosynthesis: The Calvin Cycle Remember what it means to be a plant Need to produce all organic molecules necessary for growth carbohydrates, lipids, proteins, nucleic

More information

1. Why do you have to breath in

1. Why do you have to breath in 1. Why do you have to breath in O2? 2.Why is hyperventilating bad? 3.Why is it hard to breath on top of a mountain? 4.Why does being at high altitude make you tired? Unit 4 Assessment is on Tuesday December

More information

Multiple Choice Review Energy Processing

Multiple Choice Review Energy Processing Multiple Choice Review Energy Processing 1. Stomata play an important role in the homeostasis of a plant. Which statement regarding stomata is true? a. Stomata control the concentration of gases in the

More information

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation Cellular Energetics Photosynthesis, Cellular Respiration and Fermentation TEKS B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that

More information

8 Photosynthesis CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

8 Photosynthesis CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 8 Photosynthesis Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Objective: You will be able to contrast respiration

More information

Metabolism 2 Photosynthesis

Metabolism 2 Photosynthesis Metabolism 2 Photosynthesis Light energy is trapped in the form of high energy electrons. High energy electrons are used to synthesize ATP and reduce CO 2 to form carbohydrates. Oxygen is produced as a

More information

How Organisms Obtain Energy. Reading Preview. Transformation of Energy. Essential Questions

How Organisms Obtain Energy. Reading Preview. Transformation of Energy. Essential Questions How Organisms Obtain Energy All living organisms use energy to carry out all biological processes. Real-World Reading Link New York City is sometimes called the city that never sleeps. Much like the nonstop

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AP Exam Chapters 9 and 10; Photosynthesis and Respiration Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Carbon dioxide (CO2) is released

More information

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to 1 The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information