Gut Tube Development. For it s rare that a man thinks of anything so seriously as his dinner!

Size: px
Start display at page:

Download "Gut Tube Development. For it s rare that a man thinks of anything so seriously as his dinner!"

Transcription

1 For it s rare that a man thinks of anything so seriously as his dinner! Ben Johnson Gut Tube Development This chapter will follow the development of the embryonic gut caudal to the developing pharynx, where the focus will be on the emergence of the digestive system anatomy. Like the pharyngeal wall, the endodermal lining of the foregut, midgut, and hindgut exhibits great developmental potential. As this endodermal epithelium develops, it does so in concert with the surrounding splanchnic mesoderm. In the end, the simple gut tube that arose from the old yolk sac becomes all the anatomy of the digestive tract and its associated organs. You should be familiar with the anatomy of the digestive system and the topographical relationships of the various organs in the peritoneal cavity. Understand which digestive organs arise from the three embryonic parts of the gut fore, mid, and hind. Understand the processes that account for the development of the different digestive organs. Understand how gut tube development accounts for the position and relations of the mesenteries and omenta. 97

2 Anatomy Review Review the basics of the digestive system Topography of the digestive organs Note location of organs Intraperitoneal Retroperitoneal Basic structure of the gut tube Understand the different tunics and their tissues Organs of the digestive system Esophagus Stomach Small intestine Pancreas Liver Large intestine Associated organ Spleen E m b r y o l o g y L e c t u r e M a n u a l b y M a r k N i e l s e n 98

3 G u t T u b e D e v e l o p m e n t Review of Embryonic Folding Lateral folding Cranial caudal folding 99

4 Sections Through Peritoneal Coelom and Gut Tube Transverse sections through embryo at beginning of 5th week Foregut section Dorsal mesentery Ventral mesentery Midgut section Dorsal mesentery Yolk sac Hindgut section Dorsal mesentery Basic anatomy of tube Epithelial lining from endoderm Other layers from splanchnic mesoderm E m b r y o l o g y L e c t u r e M a n u a l b y M a r k N i e l s e n 100

5 G u t T u b e D e v e l o p m e n t Development of the Foregut Terminal esophagus Relation to diaphragm Stomach Differential growth and enlargement Rotation Tilting Mesentery Spleen Relation to stomach s mesentery Mesenchymal condensation 101

6 Duodenum Diverticula of the duodenum Hepatic plate Hepatic diverticulum Liver cords Bile canaliculi Hepatic ducts Cystic diverticulum Gall bladder Cystic duct Common bile duct Dorsal pancreatic bud Head, body, and tail of pancreas Accessory pancreatic duct Ventral pancreatic bud Uncinate process Main pancreatic duct Results Liver Gall bladder Pancreas E m b r y o l o g y L e c t u r e M a n u a l b y M a r k N i e l s e n 102

7 Finalizing the foregut Final positioning of the retroperitoneal and intraperitoneal organs G u t T u b e D e v e l o p m e n t Ventral mesentery Lesser omentum Falciform ligament of the liver Lesser sac (omental bursa) Epiploic foramen Upper recess of lesser sac Lower recess of lesser sac Greater omentum 103

8 Development of the Midgut Umbilical herniation Causes Midgut loop Cranial limb of loop Part of duodenum and all of jejunum and ileum Caudal limb of loop First half of large intestine Cecal diverticulum Rotation of midgut loop Relation to superior mesenteric artery First rotation is counterclockwise around the artery 90 degrees Return of midgut to abdomen Further rotation of midgut Rotates another 180 degrees counterclockwise Fixation of intestines E m b r y o l o g y L e c t u r e M a n u a l b y M a r k N i e l s e n 104

9 G u t T u b e D e v e l o p m e n t 105

10 Formation of cecum and appendix Cecal diverticulum Differential growth and position of appendix Development of the Hindgut Fate of organs and mesenteries Descending colon Sigmoid colon Rectum Partitioning of the cloaca Cloaca Cloacal membrane Allantois Urogenital sinus Urorectal septum Urogenital membrane Proctodeum E m b r y o l o g y L e c t u r e M a n u a l b y M a r k N i e l s e n 106

Mesoderm Divided into three main types - Paraxial (somite) - Intermediate - Lateral (somatic and splanchnic)

Mesoderm Divided into three main types - Paraxial (somite) - Intermediate - Lateral (somatic and splanchnic) Mesoderm Divided into three main types - Paraxial (somite) - Intermediate - Lateral (somatic and splanchnic) Fates of Mesoderm Paraxial - Dermis of skin - Axial Skeleton - Axial and limb muscles/tendons

More information

Mesoderm Development

Mesoderm Development Quiz rules: Spread out across available tables No phones, text books, or (lecture) notes on your desks No consultation with your colleagues No websites open other than the Quiz page No screen snap shots

More information

Biology 224 Human Anatomy and Physiology - II Week 1; Lecture 1; Monday Dr. Stuart S. Sumida. Review of Early Development of Humans.

Biology 224 Human Anatomy and Physiology - II Week 1; Lecture 1; Monday Dr. Stuart S. Sumida. Review of Early Development of Humans. Biology 224 Human Anatomy and Physiology - II Week 1; Lecture 1; Monday Dr. Stuart S. Sumida Review of Early Development of Humans Special Senses Review: Historical and Developmental Perspectives Ontogeny

More information

BIOLOGY 340 Exam Study Guide All Exams Comparative Embryology Dr. Stuart S. Sumida California State University San Bernardino; Department of Biology

BIOLOGY 340 Exam Study Guide All Exams Comparative Embryology Dr. Stuart S. Sumida California State University San Bernardino; Department of Biology BIOLOGY 340 Exam Study Guide All Exams Comparative Embryology Dr. Stuart S. Sumida California State University San Bernardino; Department of Biology Midterm and final exams may include materials studied

More information

Unit 1: Body Plan & Organization Test Review 1. Define anatomy and contrast it with physiology.

Unit 1: Body Plan & Organization Test Review 1. Define anatomy and contrast it with physiology. Name: Period: Unit 1: Body Plan & Organization Test Review 1. Define anatomy and contrast it with physiology. 2. Arrange and identify, in order, the six levels of structural organization of the human body.

More information

1. Why Dissect. Why are frogs a good model to use when studying the digestive system (as well as other systems)?

1. Why Dissect. Why are frogs a good model to use when studying the digestive system (as well as other systems)? Name: Date: Period: Frog Dissection Virtual Lab Use the frog Dissection link that follows to answer the questions. http://www.mhhe.com/biosci/genbio/virtual_labs/bl_16/bl_16.html Introduction 1. Why Dissect.

More information

Chapter 1: Introduction to Anatomy and Physiology

Chapter 1: Introduction to Anatomy and Physiology Chapter 1: Introduction to Anatomy and Physiology MULTIPLE CHOICE 1. The anatomic term means toward the midline. a. anterior b. posterior c. medial d. cranial The term medial indicates an anatomic direction

More information

18. Which body system is needed for the exchange of oxygen and carbon dioxide? A. Respiratory B. Integumentary C. Digestive D. Urinary 19.

18. Which body system is needed for the exchange of oxygen and carbon dioxide? A. Respiratory B. Integumentary C. Digestive D. Urinary 19. 1 Student: 1. Which of the following is NOT a part of the study of anatomy? A. The structure of body parts B. Predicting the body's responses to stimuli C. Microscopic organization D. The relationship

More information

Lecture 2 - Making babies: Organ formation in the Ectoderm, Mesoderm, Endoderm and Neural Crest. Outline August 15, 2016 Eddy De Robertis, M.D., Ph.D.

Lecture 2 - Making babies: Organ formation in the Ectoderm, Mesoderm, Endoderm and Neural Crest. Outline August 15, 2016 Eddy De Robertis, M.D., Ph.D. Lecture 2 - Making babies: Organ formation in the Ectoderm, Mesoderm, Endoderm and Neural Crest Lecture Objectives Outline August 15, 2016, M.D., Ph.D. - To examine how the main organ systems are formed

More information

Folding of the embryo.. the embryo is becoming a tube like structure

Folding of the embryo.. the embryo is becoming a tube like structure The embryo is a Folding of the embryo.. the embryo is becoming a tube like structure WEEK 4 EMBRYO General features Primordia of the brain Somites Primordia of the heart Branchial arches Primordia

More information

Head and Face Development

Head and Face Development Head and Face Development Resources: http://php.med.unsw.edu.au/embryology/ Larsen s Human Embryology The Developing Human: Clinically Oriented Embryology Dr Annemiek Beverdam School of Medical Sciences,

More information

Journal #1: How might an Anatomist and Physiologist see a computer differently?

Journal #1: How might an Anatomist and Physiologist see a computer differently? Journal #1: How might an Anatomist and Physiologist see a computer differently? Objective #1: Define Anatomy and Physiology and describe various specialties of each discipline. Identify the major levels

More information

Chapter 1- An Orientation to the Human Body NOTES

Chapter 1- An Orientation to the Human Body NOTES Chapter 1- An Orientation to the Human Body NOTES Overview of Anatomy and Physiology: -Anatomy- of body parts and their relationships to one another. -Gross or Macroscopic= large and easily observable

More information

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS.

BIOLOGY - CLUTCH CH.32 - OVERVIEW OF ANIMALS. !! www.clutchprep.com Animals are multicellular, heterotrophic eukaryotes that feed by ingesting their food Most animals are diploid, and produce gametes produced directly by meiosis Animals lack cell

More information

Introduction to Animals

Introduction to Animals Introduction to Animals Characteristics of Animals multicellular Except for sponges, animal cells are arranged into tissues. Tissues are necessary to produce organs and organ systems. Tissues, organs,

More information

Kingdom Animalia. Zoology the study of animals

Kingdom Animalia. Zoology the study of animals Kingdom Animalia Zoology the study of animals Summary Animals are multicellular and eukaryotic. consume and digest organic materials thereby being heterotrophs. Most are motile at some time in their lives.

More information

CHAPTER 9 BODY ORGANIZATION. Copyright 2007 by Mosby, Inc., an affiliate of Elsevier Inc. 1

CHAPTER 9 BODY ORGANIZATION. Copyright 2007 by Mosby, Inc., an affiliate of Elsevier Inc. 1 CHAPTER 9 BODY ORGANIZATION Copyright 2007 by Mosby, Inc., an affiliate of Elsevier Inc. 1 Anatomy and Physiology Four basic properties of life: Reception The ability of the organism to control its actions

More information

Comparative Anatomy Biology 440 Fall semester

Comparative Anatomy Biology 440 Fall semester Comparative Anatomy Biology 440 Fall semester TuTh 10:00 11:15 G23 Lab at 1:00 in 3106 or 3108 Comparative Anatomy Biology 440 Spring semester TuTh 11:30-12:45 G23 Lab at 2:00 in either 3108 or 3106 Dr.

More information

Pamela E. Knapp, Ph.D. Dept. of Anatomy & Neurobiology DEVELOPMENT OF THE PHARYNGEAL (BRANCHIAL) ARCHES

Pamela E. Knapp, Ph.D. Dept. of Anatomy & Neurobiology DEVELOPMENT OF THE PHARYNGEAL (BRANCHIAL) ARCHES Embryology Pamela E. Knapp, Ph.D. Dept. of Anatomy & Neurobiology DEVELOPMENT OF THE PHARYNGEAL (BRANCHIAL) ARCHES READING: Larsen, 4 th Edition, Chapter 16; or, Langman, 8 th Edition, pp. 345-365 OBJECTIVES:

More information

Introduction Chpt 1. Study Slides

Introduction Chpt 1. Study Slides Introduction Chpt 1 Study Slides A group of molecules working together toward a common function is a: A. Cell B. Atom C. Organelle D. Tissue E. Organ ANSWER A group of molecules working together toward

More information

Developmental Zoology. Ectodermal derivatives (ZOO ) Developmental Stages. Developmental Stages

Developmental Zoology. Ectodermal derivatives (ZOO ) Developmental Stages. Developmental Stages Developmental Zoology (ZOO 228.1.0) Ectodermal derivatives 1 Developmental Stages Ø Early Development Fertilization Cleavage Gastrulation Neurulation Ø Later Development Organogenesis Larval molts Metamorphosis

More information

Physiology. Organization of the Body. Assumptions in Physiology. Chapter 1. Physiology is the study of how living organisms function

Physiology. Organization of the Body. Assumptions in Physiology. Chapter 1. Physiology is the study of how living organisms function Introduction to Physiology and Homeostasis Chapter 1 Physiology Physiology is the study of how living organisms function On the street explanations are in terms of meeting a bodily need Physiologic explanations

More information

Inherited or acquired abnormalities of the gastrointestinal REVIEWS IN BASIC AND CLINICAL GASTROENTEROLOGY

Inherited or acquired abnormalities of the gastrointestinal REVIEWS IN BASIC AND CLINICAL GASTROENTEROLOGY 2009;136:2074 2091 John P. Lynch and David C. Metz, Section Editors The Role of the Visceral Mesoderm in the Development of the Gastrointestinal Tract VALÉRIE A. MCLIN,* SUSAN J. HENNING, and MILAN JAMRICH,

More information

Exam 3 (Final Exam) December 20, 2007

Exam 3 (Final Exam) December 20, 2007 Biology 4361 Exam 3 (Final Exam) December 20, 2007 Name: ID: Multiple choice (1 point each. Indicate the best answer.) 1. During Drosophila gastrulation, mesoderm moves in through the a. primitives streak.

More information

JEFFERSON COLLEGE VERTEBRATE ANATOMY

JEFFERSON COLLEGE VERTEBRATE ANATOMY JEFFERSON COLLEGE COURSE SYLLABUS BIO207 VERTEBRATE ANATOMY 4 Credit Hours Prepared by: Mr. Jim McCain Revised Date: November 2005 by Dr. Ken Balak Division of Arts & Science Education Dr. Mindy Selsor,

More information

Organization of Vertebrate Body. Organization of Vertebrate Body

Organization of Vertebrate Body. Organization of Vertebrate Body The Animal Body and Principles of Regulation Chapter 43 There are four levels of organization: 1. Cells 2. Tissues 3. Organs 4. Organ systems Bodies of vertebrates are composed of different cell types

More information

The Radiata-Bilateria split. Second branching in the evolutionary tree

The Radiata-Bilateria split. Second branching in the evolutionary tree The Radiata-Bilateria split Second branching in the evolutionary tree Two very important characteristics are used to distinguish between the second bifurcation of metazoans Body symmetry Germinal layers

More information

Name KEY. Biology Developmental Biology Winter Quarter Midterm 3 KEY

Name KEY. Biology Developmental Biology Winter Quarter Midterm 3 KEY Name KEY 100 Total Points Open Book Biology 411 - Developmental Biology Winter Quarter 2009 Midterm 3 KEY All of the 25 multi-choice questions are single-answer. Choose the best answer. (4 pts each) Place

More information

The Xenopus tadpole gut: fate maps and morphogenetic movements

The Xenopus tadpole gut: fate maps and morphogenetic movements Development 127, 381-392 (2000) Printed in Great Britain The Company of Biologists Limited 2000 DEV1459 381 The Xenopus tadpole gut: fate maps and morphogenetic movements Andrew D. Chalmers and Jonathan

More information

1. Anatomy is. 2. Which subdivision of anatomy involves the study of organs that function together?

1. Anatomy is. 2. Which subdivision of anatomy involves the study of organs that function together? 1 of 19 1 Student: 1. Anatomy is A. the study of function. B. a branch of physiology. C. the study of structure. D. the study of living organisms. E. the study of homeostasis. 2. Which subdivision of anatomy

More information

PSYCHOSOMATICS COURSE PSYCHOSOMATICS MANUAL. Section E DEVELOPMENTAL ISSUES WORK IN PROGRESS - DO NOT COPY - FOR CORE ENERGETICS TRAINING USE, ONLY!

PSYCHOSOMATICS COURSE PSYCHOSOMATICS MANUAL. Section E DEVELOPMENTAL ISSUES WORK IN PROGRESS - DO NOT COPY - FOR CORE ENERGETICS TRAINING USE, ONLY! PSYCHOSOMATICS MANUAL Section E DEVELOPMENTAL ISSUES 1 DEVELOPMENTAL ISSUES IN HEALTH AND ILLNESS TISSUE LAYERS, ENERGETIC BLUE PRINT and PSYCHOSOMATIC UNITY Understanding the basic function of the tissue

More information

Exam 3 ID#: July 31, 2009

Exam 3 ID#: July 31, 2009 Biology 4361 Name: KEY Exam 3 ID#: July 31, 2009 Multiple choice (one point each; indicate the best answer) 1. Neural tube closure is accomplished by movement of the a. medial hinge point cells. b. medial

More information

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals Introduction to Animals Table of Contents Objectives Identify four important characteristics of animals. List two kinds of tissues found only in animals. Explain how the first animals may have evolved

More information

Architectural Pattern of an animal. Chapter 9

Architectural Pattern of an animal. Chapter 9 Architectural Pattern of an animal Chapter 9 What is an animal? Levels of organization and organismal complexity 5 major levels of complexity Unicellular Metazoan? Tissue Organ Organ systems Levels of

More information

Biology Lab Practical Review Biology 1110 Instructor: Kate Blinka

Biology Lab Practical Review Biology 1110 Instructor: Kate Blinka Biology Lab Practical Review Biology 1110 Instructor: Kate Blinka 1. Know and be able to label the parts of a microscope. Including: Eyepiece, arm, base, optical lens, stage, iris diaphram, coarse focus,

More information

Biology 11. The Kingdom Animalia

Biology 11. The Kingdom Animalia Biology 11 The Kingdom Animalia Objectives By the end of the lesson you should be able to: Describe the 5 ways we classify animals Symmetry Germ layers Body plan Segmentation Animal Evolution Hank Video

More information

Are these organisms. animals or not?

Are these organisms. animals or not? 1 2 3 4 5 Are these organisms 6 7 8 animals or not? 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 Typical Animal Characteristics Eukaryotic Multicellular Ability to move Reproduce Obtain food (heterotrophic)

More information

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny BIOSC 041 Overview of Animal Diversity: Animal Body Plans Reference: Chapter 32 Outline v Definition and major characteristics of animals v Dividing animals into groups based on: Body symmetry Tissues

More information

CHAPTER 14 Flatworms Phylum Platyhelminthes, Mesozoa, Nemertea

CHAPTER 14 Flatworms Phylum Platyhelminthes, Mesozoa, Nemertea CHAPTER 14 Flatworms Phylum Platyhelminthes, Mesozoa, Nemertea 14-1 14-2 General Features n Two major evolutionary advances n Cephalization n Concentrating sense organs in the head region n Primary bilateral

More information

28.1. Levels of Organization. > Virginia standards

28.1. Levels of Organization. > Virginia standards 28.1 Levels of Organization vocabulary determination differentiation tissue organ organ system > Virginia standards BIO.4 The student will investigate and understand life functions of Archaea, Bacteria

More information

Revision Based on Chapter 25 Grade 11

Revision Based on Chapter 25 Grade 11 Revision Based on Chapter 25 Grade 11 Biology Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A cell that contains a nucleus and membrane-bound organelles

More information

ANATOMY & PHYSIOLOGY

ANATOMY & PHYSIOLOGY ANATOMY & PHYSIOLOGY (FOR PARAMEDICAL STUDENTS) Poonam Bachheti Managing Director DPMI Aruna Singh Principal DPMI (An ISO 9001:2008 Certified Company) Vayu Education of India 2/25, Ansari Road, Darya Ganj,

More information

Early Development in Invertebrates

Early Development in Invertebrates Developmental Biology Biology 4361 Early Development in Invertebrates October 25, 2006 Early Development Overview Cleavage rapid cell divisions divisions of fertilized egg into many cells Gastrulation

More information

Chapter 01: Organization of the Body Patton: Anatomy and Physiology, 9th Edition

Chapter 01: Organization of the Body Patton: Anatomy and Physiology, 9th Edition Chapter 01: Organization of the Body Patton: Anatomy and Physiology, 9th Edition MULTIPLE CHOICE 1. Which of the following describes anatomy? a. Using devices to investigate parameters such as heart rate

More information

1. The basic vocabulary used in anatomy is primarily derived from. A. Greek. B. Hebrew. C. Latin. D. German. E. Greek and Latin

1. The basic vocabulary used in anatomy is primarily derived from. A. Greek. B. Hebrew. C. Latin. D. German. E. Greek and Latin Page 1 of 28 1. The basic vocabulary used in anatomy is primarily derived from A. Greek B. Hebrew C. Latin D. German E. Greek and Latin 1 Student: 2. The early anatomist known as the "Prince of Physicians"

More information

Developmental Biology 3230 Midterm Exam 1 March 2006

Developmental Biology 3230 Midterm Exam 1 March 2006 Name Developmental Biology 3230 Midterm Exam 1 March 2006 1. (20pts) Regeneration occurs to some degree to most metazoans. When you remove the head of a hydra a new one regenerates. Graph the inhibitor

More information

An Introduction to Anatomy and Physiology

An Introduction to Anatomy and Physiology C h a p t e r 1 An Introduction to Anatomy and Physiology PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris 1-1 The common functions of all living things include responsiveness,

More information

Axis Specification in Drosophila

Axis Specification in Drosophila Developmental Biology Biology 4361 Axis Specification in Drosophila November 2, 2006 Axis Specification in Drosophila Fertilization Superficial cleavage Gastrulation Drosophila body plan Oocyte formation

More information

Kelley: Sectional Anatomy for Imaging Professionals, 3rd Edition

Kelley: Sectional Anatomy for Imaging Professionals, 3rd Edition Kelley: Sectional Anatomy for Imaging Professionals, 3rd Edition Chapter 1: Introduction to Sectional Anatomy Test Bank MULTIPLE CHOICE 1. A vertical plane that passes through the body, dividing it into

More information

Is there a ventral neural ridge in chick embryos? Implications for the origin of adenohypophyseal and other APUD cells

Is there a ventral neural ridge in chick embryos? Implications for the origin of adenohypophyseal and other APUD cells /. Embryol. exp. Morph. Vol. 57, pp. 71-78, 1980 7 \ Printed in Great Britain Company of Biologists Limited 1980 Is there a ventral neural ridge in chick embryos? Implications for the origin of adenohypophyseal

More information

Axis Specification in Drosophila

Axis Specification in Drosophila Developmental Biology Biology 4361 Axis Specification in Drosophila November 6, 2007 Axis Specification in Drosophila Fertilization Superficial cleavage Gastrulation Drosophila body plan Oocyte formation

More information

v Scientists have identified 1.3 million living species of animals v The definition of an animal

v Scientists have identified 1.3 million living species of animals v The definition of an animal Biosc 41 9/10 Announcements BIOSC 041 v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal

More information

Biosc 41 9/10 Announcements

Biosc 41 9/10 Announcements Biosc 41 9/10 Announcements v Genetics review: group problem sets Groups of 3-4 Correct answer presented to class = 2 pts extra credit Incorrect attempt = 1 pt extra credit v Lecture: Animal Body Plans

More information

Paraxial and Intermediate Mesoderm

Paraxial and Intermediate Mesoderm Biology 4361 Paraxial and Intermediate Mesoderm December 6, 2007 Mesoderm Formation Chick Major Mesoderm Lineages Mesodermal subdivisions are specified along a mediolateral axis by increasing amounts of

More information

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? II. Germ Layers

Workshop: The Evolution of Animalia body symmetry embryonic germ layers ontogenetic origins I. What is an Animal? II. Germ Layers Workshop: The Evolution of Animalia by Dana Krempels Perhaps even more than the other Eukarya, Animalia is characterized by a distinct progression of complexity in form and function as one moves from the

More information

Superphylum Deuterostomia

Superphylum Deuterostomia Superphylum Deuterostomia Bởi: OpenStaxCollege The phyla Echinodermata and Chordata (the phylum in which humans are placed) both belong to the superphylum Deuterostomia. Recall that protostome and deuterostomes

More information

Developmental Biology Lecture Outlines

Developmental Biology Lecture Outlines Developmental Biology Lecture Outlines Lecture 01: Introduction Course content Developmental Biology Obsolete hypotheses Current theory Lecture 02: Gametogenesis Spermatozoa Spermatozoon function Spermatozoon

More information

Sample paper 6. Question: 1. Which of the following pairing is incorrect?

Sample paper 6. Question: 1. Which of the following pairing is incorrect? Sample paper 6 Question: 1 Which of the following pairing is incorrect? A. Mesosomes : infolding of bacterial cell wall B. Ribosomes : sites of protein synthesis C. Flagella : locomotory organ of bacteria

More information

Lesson (1) The cell The basic unit of structure and function

Lesson (1) The cell The basic unit of structure and function Cairo Governorate Department : Science Nozha Directorate of Education Form : 4 th. Primary Nozha Language Schools Second Term Ismailia Road Branch Lesson (1) The cell The basic unit of structure and function

More information

Form 4. The vision of the school: Distinct Environment for Refined Education. Primary four 2017 /

Form 4. The vision of the school: Distinct Environment for Refined Education. Primary four 2017 / The vision of the school: Distinct Environment for Refined Education Primary four 2017 / 2018-1- Lesson one :- Complete:- The cell The basic unit of Structure and function 1- The building unit of animals

More information

2. Examine the external anatomy of the squid and identify the following structures: tentacles, arms, fins, siphon, mantle, eyes and collar.

2. Examine the external anatomy of the squid and identify the following structures: tentacles, arms, fins, siphon, mantle, eyes and collar. Cephalopod Anatomy As their name implies, members of the class Cephalopoda have modified head-foot which bears an array of prehensile tentacles and arms at the cranial end of the body. The visceral mass

More information

Inhibition of cranial neural crest cell development by vitamin A in the cultured chick embryo

Inhibition of cranial neural crest cell development by vitamin A in the cultured chick embryo /. Embryol. exp. Morph. Vol. 39, pp. 267-27J, 1977 267 Printed in Great Britain Inhibition of cranial neural crest cell development by vitamin A in the cultured chick embryo JOHN R. HASSELL, 1 JUDITH H.

More information

Primitively there is a pair of ganglia per body segment but there has been progressive fusion of ganglia both within and between segments.

Primitively there is a pair of ganglia per body segment but there has been progressive fusion of ganglia both within and between segments. Multicellular organisms contain systems of organs that carry out specialised functions that enable them to survive and reproduce examining the specialised cells and tissues involved in structure and function

More information

Applegate: The Anatomy and Physiology Learning System, 3 rd Edition

Applegate: The Anatomy and Physiology Learning System, 3 rd Edition Applegate: The Anatomy and Physiology Learning System, 3 rd Edition Chapter 1: Introduction to the Human Body TRUE/FALSE 1. The cell is the simplest living unit of organization within the human body. T

More information

Ascidiacea Ascidians Marcos Tatián & Cristian Lagger - Translated from Spanish by Ben Machado

Ascidiacea Ascidians Marcos Tatián & Cristian Lagger - Translated from Spanish by Ben Machado Ascidiacea Ascidians Marcos Tatián & Cristian Lagger - Translated from Spanish by Ben Machado 883 Ascidiacea Ascidians Marcos Tatián & Cristian Lagger - Translated from Spanish by Ben Machado General Introduction

More information

A. Carranza Physiology Study Guide Bio 10

A. Carranza Physiology Study Guide Bio 10 Plants Types (gradual adaptations to land) Byrophytes: Mosses, hornwart, liverwarts Development of cuticle to conserve water Ferns, lycophytes and horsetails Cuticle plus rudimentary vascular and root

More information

Human Anatomy, 7e (Martini/Timmons/Tallitsch) Chapter 1 Foundations: An Introduction to Anatomy. 1.1 Multiple-Choice Questions

Human Anatomy, 7e (Martini/Timmons/Tallitsch) Chapter 1 Foundations: An Introduction to Anatomy. 1.1 Multiple-Choice Questions Human Anatomy, 7e (Martini/Timmons/Tallitsch) Chapter 1 Foundations: An Introduction to Anatomy 1.1 Multiple-Choice Questions 1) Which is the most accurate statement? A) Historically, the relationship

More information

Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues

Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues Developmental Biology 280 (2005) 87 99 www.elsevier.com/locate/ydbio Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues Kimberly D. Tremblay

More information

The Human Body: An Orientation

The Human Body: An Orientation The Human Body: An Orientation Prepared by Dr. Naim Kittana Dr. Suhaib Hattab Faculty of Medicine & Health Sciences An-Najah National University 1 Declaration The content and the figures of this seminar

More information

INTRODUCTION Veterinary Physiology I Odd Semester 2015/2016. Division of Physiology Department of Anatomy, Physiology and Pharmacology FVM BAU

INTRODUCTION Veterinary Physiology I Odd Semester 2015/2016. Division of Physiology Department of Anatomy, Physiology and Pharmacology FVM BAU INTRODUCTION Veterinary Physiology I Odd Semester 2015/2016 Division of Physiology Department of Anatomy, Physiology and Pharmacology FVM BAU 1 Main references: Cunningham, JG. 2002. Textbook of Veterinary

More information

Year 7 - Cells Summary Notes

Year 7 - Cells Summary Notes Year 7 - Cells Summary Notes Life Processes All living things do all seven of the life processes. Things that are not living may do some but do not do all seven of the life processes. These are: Movement

More information

Chapter 1. The Human Organism 1-1

Chapter 1. The Human Organism 1-1 Chapter 1 The Human Organism 1-1 Overview of Anatomy and Physiology Anatomy: Scientific discipline that investigates the body s structure Physiology: Scientific investigation of the processes or functions

More information

Pericardial Abdominal Pelvic

Pericardial Abdominal Pelvic 1. A mid-sagittal section of the human body would contain which of the following? Write the name of the smallest body cavity that each of the organs in your first answer here would be located within. a)

More information

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1)

Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) Chapter 32, 10 th edition Q1.Which characteristic below is shared by plants, fungi, and animals? ( Concept 32.1) A) They are multicellular eukaryotes. B) They are heterotrophs. C) Their cells are supported

More information

16. Why are many anatomical terms based on Greek and Latin roots? A. because they are easy to spell B. because many terms are based on the names of

16. Why are many anatomical terms based on Greek and Latin roots? A. because they are easy to spell B. because many terms are based on the names of 1 Student: 1. Which of the following is NOT true? A. Anatomy is the study of the structure of the body. B. Gross anatomy is the study of tissues and cells. C. Comparative anatomy is the study of more than

More information

4. Neural tube cells are specified by opposing dorsal-ventral gradients of a. Wnts and Nodal. b. FGF and Shh. c. BMPs and Wnts. d. BMPs and Shh.

4. Neural tube cells are specified by opposing dorsal-ventral gradients of a. Wnts and Nodal. b. FGF and Shh. c. BMPs and Wnts. d. BMPs and Shh. Biology 4361 Name: KEY Exam 4 ID#: August 1, 2008 Multiple choice (one point each; indicate the best answer) 1. Neural tube closure is accomplished by movement of the a. medial hinge point cells. b. medial

More information

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chapter 32 Introduction to Animal Diversity. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Chapter 32 Introduction to Animal Diversity Welcome to Your Kingdom The animal kingdom extends far beyond humans and other animals we may encounter 1.3 million living species of animals have been identified

More information

The STRUCTURE OF THE HUMAN BODY

The STRUCTURE OF THE HUMAN BODY The STRUCTURE OF THE HUMAN BODY The topography of organs and organ systems 1. The organs are: a. clusters of identical tissues; b. different tissue groups; c. morphological units that fulfill the function

More information

CUMBERLAND COUNTY SCHOOL DISTRICT BENCHMARK ASSESSMENT CURRICULUM PACING GUIDE Subject: Anatomy & Physiology Grade: 11-12

CUMBERLAND COUNTY SCHOOL DISTRICT BENCHMARK ASSESSMENT CURRICULUM PACING GUIDE Subject: Anatomy & Physiology Grade: 11-12 Benchmark Assessment 1 Instructional Timeline: 8 weeks Topic(s): Introduction, Tissues, Integumentary System Describe the major components and functions of physiological systems, including skeletal, muscle,

More information

Essence of Shape Formation of Animals

Essence of Shape Formation of Animals Review Forma, 27, S1 S8, 2012 Essence of Shape Formation of Animals Hisao Honda Hyogo University, Kakogawa, Hyogo 675-0195, Japan E-mail address: hihonda@hyogo-dai.ac.jp, buamb009@hi-net.zaq.ne.jp (Received

More information

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen What Is an Animal? Section 25.1 Typical Animal Characteristics Biology II Mrs. Michaelsen I. Characteristics of Animals A. All animals are eukaryotic, multicellular, have ways of moving to reproduce, obtain

More information

JEFFERSON COLLEGE COURSE SYLLABUS BIO207 VERTEBRATE ANATOMY. 4 Credit Hours. Prepared by: Vivian Aubuchon. Revised date: May, 2014

JEFFERSON COLLEGE COURSE SYLLABUS BIO207 VERTEBRATE ANATOMY. 4 Credit Hours. Prepared by: Vivian Aubuchon. Revised date: May, 2014 JEFFERSON COLLEGE COURSE SYLLABUS BIO207 VERTEBRATE ANATOMY 4 Credit Hours Prepared by: Vivian Aubuchon Revised date: May, 2014 Minor Revision or Update by: Fran Moore Per Curriculum Committee Process

More information

3. Choanoflagellates resemble what? What is the significance of this resemblance?

3. Choanoflagellates resemble what? What is the significance of this resemblance? I. Animal Diversity 1. What are some basic characteristics of the animal kingdom? What characteristics make them different from plants? - Eukaryotic, heterotrophic (we don t make our own food), we store

More information

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya Classification The three-domains Bacteria Archaea Eukarya The six-kingdom system Bacteria Archaea Protista Plantae Fungi Animalia The traditional five-kingdom system Monera Protista Plantae Fungi Animalia

More information

An Introduction to Animal Diversity

An Introduction to Animal Diversity Chapter 32 An Introduction to Animal Diversity PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Chapter 9. Benefits of Being Large. Levels of Organization in Organismal Complexity. Hierarchical Organization of Animal Complexity. Fig. 9.

Chapter 9. Benefits of Being Large. Levels of Organization in Organismal Complexity. Hierarchical Organization of Animal Complexity. Fig. 9. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 9 Architectural Pattern of an Animal Levels of Organization in Organismal Complexity Zoologists recognize

More information

Introduction to Embryology. He who sees things grow from the beginning will have the finest view of them.

Introduction to Embryology. He who sees things grow from the beginning will have the finest view of them. He who sees things grow from the beginning will have the finest view of them. Aristotle 384 322 B.C. Introduction to Embryology This lecture will introduce you to the science of developmental biology or

More information

2. Fertilization activates the egg and bring together the nuclei of sperm and egg

2. Fertilization activates the egg and bring together the nuclei of sperm and egg 2. Fertilization activates the egg and bring together the nuclei of sperm and egg Sea urchins (what phylum?) are models for the study of the early development of deuterostomes (like us, right?). Sea urchin

More information

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional

Introduction to Animal Diversity. Chapter 23.1, 23.2 and additional Introduction to Animal Diversity Chapter 23.1, 23.2 and additional 1 Think of an Animal... Does your choice have hair or fur? Does it have a skeleton? Over a million species of animals described 95% have

More information

Fish swimbladder: an excellent meso dermal inductor in primary embryonic induction

Fish swimbladder: an excellent meso dermal inductor in primary embryonic induction /. Embryo/, exp. Morph. Vol 36,, pp. 315-30, 1976 315 Printed in Great Britain Fish swimbladder: an excellent meso dermal inductor in primary embryonic induction IZUMI KAWAKAMI 1 From the Department of

More information

Animal Origins and Evolution

Animal Origins and Evolution Animal Origins and Evolution Common Features of Animals multicellular heterotrophic motile Sexual reproduction, embryo Evolution of Animals All animals are multicellular and heterotrophic, which means

More information

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS

ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS ANIMAL DIVERSITY AND THE EVOLUTION OF BODY PLANS GENERAL FEATURES OF ANIMALS Heterotrophy - obtain energy and organic molecules by ingesting other organisms Multicellularity - Many have complex bodies

More information

Formation of the digestive system in zebrafish. I. Liver morphogenesis

Formation of the digestive system in zebrafish. I. Liver morphogenesis Available online at www.sciencedirect.com R Developmental Biology 253 (2003) 279 290 www.elsevier.com/locate/ydbio Formation of the digestive system in zebrafish. I. Liver morphogenesis Holly A. Field,

More information

Unicellular: Cells change function in response to a temporal plan, such as the cell cycle.

Unicellular: Cells change function in response to a temporal plan, such as the cell cycle. Spatial organization is a key difference between unicellular organisms and metazoans Unicellular: Cells change function in response to a temporal plan, such as the cell cycle. Cells differentiate as a

More information

Genetic Patterning of the Developing Mouse Tail at the Time of Posterior Neuropore Closure

Genetic Patterning of the Developing Mouse Tail at the Time of Posterior Neuropore Closure DEVELOPMENTAL DYNAMICS 210:431 445 (1997) Genetic Patterning of the Developing Mouse Tail at the Time of Posterior Neuropore Closure F. GOFFLOT, M. HALL, AND G.M. MORRISS-KAY* Department of Human Anatomy,

More information

Paraxial and Intermediate Mesoderm

Paraxial and Intermediate Mesoderm Biology 4361 Paraxial and Intermediate Mesoderm December 7, 2006 Major Mesoderm Lineages Mesodermal subdivisions are specified along a mediolateral axis by increasing amounts of BMPs more lateral mesoderm

More information

SIRIRAJ CANCER REGISTRY

SIRIRAJ CANCER REGISTRY SIRIRAJ CANCER REGISTRY 2016 SIRIRAJ CANCER CENTER FACULTY OF MEDICINE SIRIRAJ HOSPITAL MAHIDOL UNIVERSITY THAILAND ISSN 00857-3840 SIRIRAJ CANCER REGISTRY 2016 EDITOR Dr. Vitoon Chinswangwatanakul SIRIRAJ

More information

A REVISED MODEL FOR RADIATION DOSIMETRY IN THE HUMAN GASTROINTESTINAL TRACT

A REVISED MODEL FOR RADIATION DOSIMETRY IN THE HUMAN GASTROINTESTINAL TRACT A REVISED MODEL FOR RADIATION DOSIMETRY IN THE HUMAN GASTROINTESTINAL TRACT A Dissertation by MD. NASIR UDDIN BHUIYAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

GCSE Biology B2 Revision Questions. 1. Draw and label the parts of these different types of cell, explaining what the role of each part is -

GCSE Biology B2 Revision Questions. 1. Draw and label the parts of these different types of cell, explaining what the role of each part is - B2.1 Cells and Simple Cell Transport GCSE Biology B2 Revision Questions 1. Draw and label the parts of these different types of cell, explaining what the role of each part is - a) Animal cell b) Plant

More information

Role of Organizer Chages in Late Frog Embryos

Role of Organizer Chages in Late Frog Embryos Ectoderm Germ Layer Frog Fate Map Frog Fate Map Role of Organizer Chages in Late Frog Embryos Organizer forms three distinct regions Notochord formation in chick Beta-catenin localization How does beta-catenin

More information