10.1 NASLOVNA STRAN Z OSNOVNIMI PODATKI O POROČILU

Size: px
Start display at page:

Download "10.1 NASLOVNA STRAN Z OSNOVNIMI PODATKI O POROČILU"

Transcription

1 . NASLOVNA STRAN Z OSNOVNIMI PODATKI O POROČILU POROČILO IN ŠTEVILČNA OZNAKA POROČILA:. - GEOTEHNIČNO POROČILO S PREDLOGOM SANACIJE PLAZU 5 V / 6 NAROČNIK: Občina ŠENTILJ Maistrova ulica ŠENTILJ V SLOV. GORICAH OBJEKT: Zemeljski plaz na lokalni cesti LC št. 37 Sv. Jurij-Sp. Velka-Zg. Velka, odsek pokopališče Velka VRSTA PROJEKTNE DOKUMENTACIJE IN NJENA ŠTEVILKA: GEOTEHNIČNO POROČILO S PREDLOGOM SANACIJE PLAZU ZA GRADNJO: SANACIJA PLAZU IZDELOVALEC POROČILA: GEOING d.o.o. Primorska ulica MARIBOR ODGOVORNI IZDELOVALEC POROČILA: Stanislav Dokl, univ.dipl.inž.grad. identifikacijska številka: G-377 žig in podpis: številka poročila: številka izvoda: kraj: datum izdelave poročila: 5 V / 6 3 MARIBOR maj 6 Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

2 št. poročila: 5 V / 6 Stran:. KAZALO VSEBINE POROČILA ŠT: 5 V / 6 ELABORATI. Geotehnično poročilo s predlogom sanacije plazu št. 5 V / 6. Naslovna stran poročila. Kazalo vsebine poročila.3 Geotehnično poročilo.4 Geostatična analiza.5 Aproksimativni popis del in predračun.6 Grafične priloge Situacijska skica plazu in sond Geotehnični prečni prerez GP- (skica) Situacijska skica s predlogom sanacije plazu Karakteristični prečni prerez sanacije KP- Armaturni načrt Izvleček armature Fotografije M : 5 M : M : M : M : Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

3 št. poročila: 5 V / 6 Stran: 3.3 GEOTEHNIČNO POROČILO S PREDLOGOM SANACIJE PLAZU.3. SPLOŠNI OPIS Po naročilu OBČINE ŠENTILJ smo na predmetnem plazu izvedli terenske geotehnične raziskave. Na osnovi pridobljenih rezultatov podajamo geotehnično poročilo s predlogom in ocenitvijo vrednosti sanacije plazu. Predmetni odsek lokalne ceste LC št. 37 poteka po zgornjem delu vzhodno orientiranega zelo strmega pobočja, pod pokopališčem na Zg. Velki. Na zunanjem (vzhodnem) robu parkirišča pred vhodom na pokopališče se je na strmi brežini (parcelna št. 549/5 k.o. Zg. Velka) aktiviral zemeljski plaz dolžine cca. 5 m. Odlomni rob plazu je zajel zunanji rob parkirišča in v dolžini m porušil betonske robnike. Promet oziroma parkiranje je zaradi zožanja otežkočen in zaradi strme, porušene brežine pod cesto nevaren. Izvedena je zapora območja porušitve. Izrivni del plazu se nahaja na gozdnati strmi brežini pod cesto. V tej tehnični dokumentaciji podajamo opis stanja, potek in rezultate terenskih geotehničnih raziskav, opis oziroma model prizadetega zemeljskega polprostora, geostatično analizo ter predlog in predračunsko vrednost sanacije..3. GEOLOŠKO-GEOTEHNIČNE RAZMERE Izhodiščne geotehnične podatke smo pridobili s sondažnimi deli in terenskimi raziskavami. Na osnovi teh je določen sestav in geofizikalne karakteristike posameznih slojev pobočja ter ugotovljena lega stabilne hribinske osnove. Sočasno s sondažnimi deli in po njih smo merili tudi nivo podzemne vode v preiskanem polprostoru. Za pridobitev potrebnih podatkov smo opravili terensko prospekcijo predmetnega labilnega območja in izdelali terensko skico v merilu M :5. Na terenu smo locirali sonde in obdelovalne profile..3.. Sondažna dela Za ugotovitev sestava in geofizikalnih karakteristik tal smo v karakterističnih točkah plazu izvedli 3 kontinuirane SPT sonde z oznakami S-, S- in S-3. Lega sond je vidna v situativni skici - priloga št Standardni penetracijski testi-spt Konsistenčna stanja vezanih zemljin smo na terenu ugotavljali s poskusi standardnih dinamičnih penetracij (SPT), po principu odpora proti prodiranju konusne sonde. Izmerjeno vrednost N smo po zahtevah standarda Eurocode 7.3 ustrezno korigirali. Za potrebe korekcije je upoštevana energijska izguba uporabljene opreme, izguba vsled dolžine palic ter vsled učinka vpliva geološkega pritiska. Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

4 št. poročila: 5 V / 6 Stran: 4 Za pripadajočo vrtalno garnituro je ugotovljen korekcijski količnik prenosa energije K 6 =,5, vrednotenje rezultatov smo izvedli v skladu z določili SIST EN Rezultati SPT : N6 6 k N oziroma P P 6 k - N 6 korigirano število udarcev, - P 6 korigirana penetrabilnost, - k 6 korekcijski faktor zabijanja, - P izmerjena penetrabilnost, - N izmerjeno število udarcev. S- S- S-3 Globina N N N, -,3 m,3 -,6 m,6 -,9 m 3,9 -, m 3 7, -,5 m 5 5,5 -,8 m 3 6,8 -, m 3 5 6, -,4 m 6 4 6,4 -,7 m 8 9 6,7-3, m 3 6 3, - 3,3 m ,3-3,6 m 8 3,6-3,9 m 8 3 3,9-4, m 3 Po izvrednotenju števila udarcev N glede na standardizirano globino prodiranja 3,5 cm sklepamo, da so posamezni sloji raziskanega polprostora naslednjih konsistenčnih stanj: Peščena glina (CL) z vložki drobnega peska (SU) lahko do srednje gnetnih konsistenc N = do 6 udarcev SPT. Preperela hribina (peščenjak, peščeni lapor) poltrde konsistence N = 5 do 3 udarcev SPT. Hribina-peščenjak, peščeni lapor trdne konsistence N > 3 udarcev SPT. 6 Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

5 št. poročila: 5 V / 6 Stran: 5 Posamezne relacije so vidne v tabeli. Tabela: N NEKOHERENTNA ZEMLJINA (pesek, prod) Modul stisljivosti M v (kpa) ] Gostotno stanje za prod drobni in srednji pesek debeli pesek in gramoz < 4 zelo rahlo < 8,4 4 rahlo 8,4 3,3 < 7.5 < 5. 3 srednje gosto 3,3 36, gosto 36, 4, > 5 zelo gosto > 4,9 > 3 > 6 KOHERENTNA ZEMLJINA (glina, melj) N Konsistenčno stanje q u (kpa) < židko < 5 < 5 4 lahko gnetno srednje gnetno težko gnetno poltrdno 4 5. > 3 trdno > 4 > Modul stisljivosti M v (kpa) Vrednosti SDP nam omogočajo primerjalno določitev strižnega kota fi zemljin (po enačbah Gibbs-a) in modula stisljivosti tal Ms (po enačbi Terzaghi-ja) Opazovanje nivoja podtalne vode V času izvajanja sondažnih del v sondah nismo registrirali podzemne vode. Glede na zatečeni sestav pobočnih leg pa lahko pričakujemo, da se bo v njem pojavljala precejna voda, ki je v neposredni odvisnosti od količine padavin. Zaradi neurejene cestne odvodnje pa je labilna brežina pod cesto pod občasnim vplivom površinskih vod Geotehnični opis in karakteristike raziskanega polprostora Iz Osnovne geološke karte Slovenije, list Maribor je vidno, da obravnavano območje gradita miocenska (M /3 ) peščenjak in peščeni lapor. Višje sloje raziskanega območja tvorijo sloji jezerskih sedimentov, finozrnatega in glinenega tipa, ki jih prištevamo pliokvartarju (Pl,Q). V zgradbi prevladujejo peščene gline z lečami drobnega peska. Različni tipi se slojevito ponavljajo. Globje so vsled višjih geoloških pritiskov sedimenti vezani v polhribine in hribine. Večji del del povrhnjice je splazen po sloju preperele osnove. Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

6 št. poročila: 5 V / 6 Stran: 6 V kritičnem prečnem geotehničnem profilu GP- primarno vezano pobočno strukturo (povrhnjico) sestavljajo pod ocenjeno največ,5m debelim umetnim prodno peščenim nasipom ceste peščene (CL) gline, lahko do težko gnetnih konsistenc z vložki drobnega peska (SU). Navedena labilna struktura (plazina) je v globinah od -,8 do -3, m pod koto terena odložena na slabo vezani peščenjak in prepereli peščeni lapor, poltrdnih konsistenc, ki se v kompaktni in stabilni obliki pojavljata v globinah od -3,3 do -3,9 m pod koto terena. Izvrednoteni rezultati terenskih preiskav nam na območju predmetnega plazu kažejo večslojni zemeljski polprostor, naslednjih geofizikalnih karakteristik: Tabela: Plaz na lokalni cesti LC št. 37 Sv. Jurij-Sp. Velka- Zg. Velka, odsek pokopališče Velka gline (CL) srednje gnetnih konsistenc prepereli peščenjak in lapor, poltrdne konsistence osnova (peščenjak, peščeni lapor) trdne konsistence prost.teža [kn/m 3 ] strižni kot [ ] kohezija c [kn/m ] Lega podzemne vode je opisana v točki Z ozirom na predhodno navedene ugotovitve zaključujemo, da je vzroke za porušitev obravnavane pobočne strukture iskati v vplivih površinskih in precejnih vod ter geološki sestavi in obliki območja porušitve. Podrobna razporeditev posameznih slojev raziskanega pobočnega polprostora je vidna v geotehničnem prečnem profilu - prilogi št PREDLOG ZAŠČITE CESTE (PARKIRIŠČA) Glede na rezultate geotehničnih raziskav in konfiguracijo ter značaj plazu smo mnenja, da je najbolj smotrna trajna zaščita ceste z izvedbo podporne konstrukcije v obliki armirano betonskih (AB) konzolnih mikropilotov, ki jih povezuje konzolna greda s parapetnim zidom. Na horizontalno konzolno AB gredo se izvede novi zgornju ustroj ceste ter uredi površinsko in podzemno odvodnjavanje vozišča Tehnična izvedba sanacije Pri vseh delih mora izvajalec upoštevati ustrezne tehnične predpise in standarde ter pravila stroke. Prav tako mora upoštevati vsa določila iz varstva pri delu, ki se nanašajo na izvedbo sanacijskih del. Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

7 št. poročila: 5 V / 6 Stran: Faznost izvajanja del Izvedba mikropilotne stene se izvaja po naslednjem vrstnem redu: - delna zapora ceste in izdelava delovnega platoja, ki se stabilizira s zagatno steno in utrjenim gruščnatim nasipom. - vrtanje pilotnih vrtin premera 4 mm, vgradnja armaturnih košev in betona C5/3. Najprej se izvede notranja vrsta pilotov (piloti št. 3 do 4), da bi delno stabilizirali labilno brežino. - izkop in odbitje glav pilotov do kote podbetona vezne grede, vgradnja podbetona, postavitev opaža pod previsni del grede, vezanje armature, opaženje in betoniranje grede in parapetnega zidu z betonom C5/3. - vgradnja drenaže, zasip vezne grede z utrjenim prodno peščenim materijalom in vgradnja novega zgornjega ustroja ceste. - ureditev površinskega odvodnjavanja območja plazu Opis tehnologije izvajanja podporne konstrukcije Najprej se izvede delovni plato z zabitjem zagatne stene pod cesto (rabljene žel. tirnice in pragovi) ter utrjenim gruščnatim zasipom (Ms = 4 MPa). Vrtalna dela se lahko izvajajo iz kote asfalta ceste. Smer izvajanja pilotov je poljubna, oziroma odvisna od dovoza betona za pilote. Širina utrjenega delovnega platoja pilotov mora biti najmanj 4, m, po njegovi izvedbi se lahko izvede zakoličba pilotov. Izkopani in izvrtani materijal je potrebno deponirati tako, da ne ogroža že tako labilne brežine. Po izvedeni sanaciji se zunanji rob delovnega platoja primerno oblikuje in izvede rekultivacija prizadetih površin. Zaščitna podporna konstrukcija je zamišljena kot povezan sistem AB mikropilotov premera 4 mm, ki so najmanj 3,5 m uvrtani v stabilno hribino. Točno koto dna pilota določi geotehnični nadzor. Tlorisno se piloti prilagajajo poteku zunanjega roba ceste (parkirišča) pred porušitvijo. Predvidenih je 4 pilotov dolžine po 7,5 m, na medosni razdalji, m, v dveh zamaknjenih vrstah, ki se izvedeta na medosni razdalji, m. Skupna dolžina pilotne stene je, m. V vrtino se vgradijo armaturni koši, glave pilotov se povežejo z AB konzolno gredo, širine,5 m in debeline,4 m, ki ima na zunanji strani (proti porušitvi) zaključni parapetni zid, višine, m in debeline,45 m. Kvaliteta betona je C5/3, D max =6mm; XD3, XF4, PVII. Na parapetni zid se vgradi lesena varnostna ograja JVO N W4 s pridržno letvijo. Pod vezno gredo se pred pilote vgradi horizontalna drenaža DN 6 mm. Piloti se izvedejo iz betona C5/3; D max =6mm; XC, XD3, XF. Armatura je S 5. Zaščitni sloj betona pri gredi, parapetnemu zidu in pilotih je 5 cm. Po zabetoniranju in dosežni trdnosti betona grede se vgradi zaledni zasip iz prodno peščenega materiala TD -3. Vgrajevanje in komprimacija se izvaja po plasteh debeline cm; zemljine zasipa naj bodo zgoščene na vrednost modula deformacije Ev = MPa. Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

8 št. poročila: 5 V / 6 Stran: Opaži Za pilotno gredo je potrebno uporabiti ustrezne dvostranske vezane opaže. Vse vidne površine je potrebno izvajati z gladkimi in kvalitetnimi prefabriciranimi opaži, ki zagotavljajo estetski izgled konstrukcije. Opaž je potrebno ustrezno pritrditi, tako da ne pride do deformacij med betoniranjem in vibriranjem. Pred betoniranjem je potrebno vgraditi potrebne elemente sidrišča in razcepno armaturo. Vse vidne robove je treba posneti s kotno letvijo x cm Beton in armatura Betonska dela so razdeljena v naslednje faze: - Betoniranje pilotov s kontraktorjem in črpnim betonom kvalitete - C5/3; D max =6mm, XC, XD3, XF. - Vgradnja podbetonov C6/, v debelini 5 cm pod pilotno gredo, - Betoniranje pilotne grede in parapetnega zidu z betonom C5/3; XD3; XF4, PVII, D max =6 mm. Armatura: S Izvedba zasipov in nasipov ter zgornjega ustroja ceste Po doseženi trdnosti pilotne stene se lahko vgradi novi zgornji ustroj ceste. Za nasipni material se lahko uporabljajo prodno peščeni ali gruščnati materiali, katerih kvaliteta mora v vseh pogledih ustrezati veljavnim tehničnim prepisom in standardom. Vgrajevanje zemljin nasipa naj se vrši po plasteh debeline cm, s tem, da se nosilnost in gostota vsakega vgrajenega sloja preverja s krožno ploščo in izotopno sondo. Na ustrezno utrjeno podlago se lahko izvede novi zgornji ustroj ceste iz 4 cm prodca TP -3 utrjenega na nosilnost modula E v = MPa. Tekoča kontrola nosilnosti se izvaja na planumu tampona s krožno ploščo po standardu DIN 834. Na tamponski sloj se v debelini 8 cm vgradi asfaltna prevleka AC surf B 7/ A Ureditev površinske odvodnje parkirišča Vse vode se speljejo v vtočni jašek z odprtim čelnim vtokom BC 6 cm, ki se izvede v JV vogalu parkirišča, od tu pa v odvodnjo iz polnih cevi PE DN 5 SN4 in izpustne glave na hudourniške kanalete ter na brežino pod cesto Humusiranje Da bi zavarovali brežine nasipov pred erozijo je potrebno izvesti humusiranje s kvalitetno zatravitvijo. Debelina humusa naj bo najmanj,5 m. Potrebno je opraviti najmanj eno košnjo pred predajo objekta. Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

9 št. poročila: 5 V / 6 Stran: ZAKLJUČKI Lega opisanih elementov sanacije je vidna v grafičnih prilogah. Pred izvedbo sanacije je potrebno preveriti, če je stanje plazu takšno kot v času izvajanja terenskih raziskav. Prav tako bo pred izvedbo sanacije še potrebno dopolniti predmetno dokumentacijo. Sanacijo bo možno izvajati samo ob delni zapori ceste. Sanacijska dela se lahko izvajajo samo ob stalnem geomehanskem in strokovnem nadzoru. Sestavil: Stanislav Dokl,univ.dipl.inž.grad. Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

10 št. poročila: 5 V / 6 Stran:.4 GEOSTATIČNA ANALIZA Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

11 Software Consultants (Pty) Ltd Client Povratne stabilnostne analize - plaz pokopališce Zg. Velka Bishop's slope stability analysis : E Input Data Tangential stress Normal stress -4. General Parameters Mean Probability Dist. Std. Dev Minimum Maximum Water Density 9.8 Beta Hor Seismic acc (g) Triangular.5.5 Ver Seismic acc (g) Triangular..4 Slip Circle coord X: 6 Deterministic Slip Circle coord : 4 Deterministic Radius Deterministic No. of slices (-75) 3 Seed for random number generation Number of iterations Number of intervals: PDF graphs Required probability limit (-5) 5 (-) 5 Required safety factor Layer Number X (-).7 (-)

12 Software Consultants (Pty) Ltd Client Povratne stabilnostne analize - plaz pokopališce Zg. Velka Layer data ( layers in use) Layer Probability Dist. c: Std. Dev Triangular phi f: 3 gammag: Layer c: Beta Triangular Minimum Maximum Deterministic phi f: 3 gammag: 9 Deterministic Deterministic No X Pore Pressure No X-begin -begin X-end -end Fr/Unit W No X-begin -begin X-end -end Z-spacing No X F X F X3 Line L X-pos Angle UDL X-begin X-end F3 X4 F4 X5 ==================== OUTPUT: Deterministic Analysis ===================== Overall Safety Factor:.988 Mobilizing moment:46.59 Resisting moment: Slip Circle: X coordinate:6. coordinate:4. Radius:. Normal stress at the base of each slice: Slice number : X left: X right: 7. Normal stress: Slice number : X left: 7. X right: 7.7 Normal stress: Slice number 3: X left: 7.7 X right: 8.4 Normal stress: Slice number 4: X left: 8.4 X right: 9. Normal stress: Slice number 5: X left: 9. X right: 9.8 Normal stress: Slice number 6: X left: 9.8 X right:.5 Normal stress: Slice number 7: X left:.5 X right:. Normal stress: Slice number 8: X left:. X right:.9 Normal stress: Slice number 9: X left:.9 X right:.6 Normal stress: Slice number : F5

13 Software Consultants (Pty) Ltd Client X left:.6 X Slice number : X left: 3.3 X Slice number : X left: 4. X Slice number 3: X left: 4.7 X Slice number 4: X left: 5.4 X Slice number 5: X left: 6. X Slice number 6: X left: 6.4 X Slice number 7: X left: 6.8 X Slice number 8: X left: 7.5 X Slice number 9: X left: 8. X Slice number : X left: 8.9 X Slice number : X left: 9.6 X Slice number : X left:.3 X Slice number 3: X left:. X Povratne stabilnostne analize - plaz pokopališce Zg. Velka right: 3.3 Normal stress: right: 4. Normal stress: 4.95 right: 4.7 Normal stress: 4.4 right: 5.4 Normal stress: 4.37 right: 6. Normal stress: 4.8 right: 6.4 Normal stress: 4. right: 6.8 Normal stress: 39.4 right: 7.5 Normal stress: 38.3 right: 8. Normal stress: 35.8 right: 8.9 Normal stress: 33.4 right: 9.6 Normal stress: 9.67 right:.3 Normal stress: 3.7 right:. Normal stress: 4. right:.7 Normal stress: ============================ END OF OUTPUT ==============================

14 Software Consultants (Pty) Ltd Client Statika pilotne stene - plaz pokopališce Zg. Velka Space Frame Analysis Ver W Apr 8 Input file: C:\Prokon\Data\demo\Britof_Zg.Velka.A3 Created : :5: A3 Deflections for Load Case Z 4 3 X X-Moments for Load Case Z 4 3 X

15 Software Consultants (Pty) Ltd Client Statika pilotne stene - plaz pokopališce Zg. Velka -Shear for Load Case Z 4 3 X ========== S p a c e - F r a m e A n a l y s i s Ver W Apr 8 - P R O K O N =========== TITLE :Majhenic Data file : C:\Prokon\Data\demo\Britof_Zg.Velka.A3 Created on: ========================== NODAL POINT COORDINATES ============================ Node No X-coord m -coord m Z-coord m Node No X-coord m -coord m Z-coord m =============================== ELEMENT DATA ================================== Beam Secn. type Fixity Length m ß ( )

16 Software Consultants (Pty) Ltd Client Statika pilotne stene - plaz pokopališce Zg. Velka ============================ SECTION PROPERTIES =============================== Section : Section designation: A Ay Ax Ixx m^ m^ m^ m^4 6.E-3 6.E-3.3.5E-3 Iyy m^4 J m^4 3E-3 3E-3 Iyy m^4 J m^4 Section : Section designation: A Ay Ax Ixx m^ m^ m^ m^4 4.E-3 4.E E E-9 Section : 3 Section designation: A Ay Ax Ixx m^ m^ m^ m^4 4.E-3 5.3E-3 5.3E-3 Material Concrete:3MPa 96.5E-9 Material Iyy m^4 J m^4 Concrete:3MPa Material Concrete:3MPa ================================== MATERIALS ================================== Designation E kpa 6.E6 Concrete:3MPa poisson. Density kn/m^3 5. Exp. coeff. E-6 =============================== SUPPORT DATA ================================== Node Fixity Node Prescribed displacements Z X-Rot -Rot m rad. rad. X m m X X X X X X X X X X Fixity X kn/m kn/m Spring constants Z X-Rot kn/m knm/rad Z-Rot Orien node rad. -Rot knm/rad Z-Rot knm/rad =================================== LOADS ===================================== Load Case Description Own weight not added to any load case/combination 4.5.6

17 Software Consultants (Pty) Ltd Client Statika pilotne stene - plaz pokopališce Zg. Velka ============================= LOAD CASE ================================ *** BEAM ELEMENT LOADS *** Element Direction P kn X X a m Wl kn/m Wr kn/m dt C ========================== OUTPUT: LINEAR ANALSIS ============================ ====================== NODAL POINT DISPLACEMENTS at SLS ======================= Node Lcase X-disp. mm -disp. mm Z-rot. rad ============================== REACTIONS at ULS =============================== (In rotated axes where applicable) Note:Only load combinations have ULSses = Node Lcase X-force kn -force kn Z-moment knm EQUILIBRIUM CHECK AT ULS: LC Sum of: LC APPLIED LOADS & MOMENTS about (.,.,.) in global axes Px 9.9 Py -5. Mz REACTIONS & REACTION MOMENTS about (.,.,.) in global axes 4.5.6

18 Software Consultants (Pty) Ltd Client Sum of: Rx -9.9 Statika pilotne stene - plaz pokopališce Zg. Velka Ry MRz ============ BEAM ELEMENT END FORCES IN LOCAL ELEMENT AXES at ULS ============== Elem Lcase Axial kn -Shear kn M-xx knm Axial kn Shear kn M-xx knm ============================== STATISTICAL DATA =============================== Weights of beam elements: (Not included in analysis) Section Designation 3 Total (kn) Weight (kg) Own weight of structure = kn No. of real numbers in Stiffness matrix = 3 Time used to analyse = : :5 seconds Total number of : Nodes = 7 Beam Elements = 6 Cable Elements = Shell Elements = Supports = 3 Section Properties = 3 Load Cases = Load Combinations = (3 bytes) =============================== END OF OUTPUT ================================= 4.5.6

19 Software Consultants (Pty) Ltd Client Armatura pilotne stene - plaz pokopališce Zg. Velka Circular column design C Circular column design by PROKON. (CirCol Ver W.4. - Apr 8) X X 4 3 Therefore: Ac = pi d /4 = mm diax' = dia - d' = 35 mm diay' = dia - d' = 35 mm 3 Given: dia = 4 mm d' = 5 mm Lo = 6. m fc' = 3 MPa fy = 4 MPa General design parameters: Design code : Eurocode Assumptions: () The general conditions of clause are applicable. () The section is symmetrically reinforced. (3) The specified design axial loads include the self-weight of the column. (4) The design axial loads are taken constant over the height of the column. Design approach: The column is designed using an iterative procedure: () The column design charts are constructed. () An area steel is chosen. (3) The corresponding slenderness moments are calculated. (4) The design axis and design ultimate moment is determined. (5) The steel required for the design axial force and moment is read from the relevant design chart. (6) The procedure is repeated until the convergence of the area steel about the design axis. (7) The area steel perpendicular to the design axis is read from the relevant design chart. Check column slenderness: End fixity and bracing for bending about the X-X axis: At the top end: Condition 4 (free). At the bottom end: Condition (fully fixed). The column is unbraced. End fixity and bracing for bending about the - axis: At the top end: Condition (partially fixed). At the bottom end: Condition (fully fixed). The column is unbraced. Effective column height: lex = ßx Lo = 3. m ley = ßy Lo = 7.8 m Check if the column is slender: lx = 3. > = max(5,5/vu) ly = 78. > = max(5,5/vu) \ The column is slender () ()

20 Software Consultants (Pty) Ltd Client Armatura pilotne stene - plaz pokopališce Zg. Velka Check slenderness limit: l = 3. < 4 \ Slenderness limit not exceeded Initial moments: The initial end moments about the X-X axis: M = Smaller initial end moment =. knm M = Larger initial end moment = 54. knm The initial moment near mid-height of the column : \ Mi = -.4M +.6M ³.4M = 3.4 knm The initial end moments about the - axis: M = Smaller initial end moment =. knm M = Larger initial end moment =. knm The initial moment near mid-height of the column : \ Mi = -.4M +.6M ³.4M =. knm Deflection induced moments: Design ultimate capacity of section under axial load only: Nud =.57 fc' Ac +.87 fy Asc = 585. kn Maximum allowable stress and strain: Allowable compression stress in steel, fsc = fy/.5 = MPa Allowable tensile stress in steel, fst = fy/.5 = MPa Allowable tensile strain in steel, ey = fst/es = 8 m/m Allowable compressive strain in concrete, ec = 35m/m Design ultimate load and moment: Design axial load: P u =. kn Moment distribution along the height of the column for bending about the X-X: At the top, Mx =. knm Near mid-height, Mx = 3.4 knm At the bottom, Mx = 54. knm Moments about X-X axis( knm) + Mx=54. knm Mxmin=. knm = Mxbot=54. knm Initial Additional Design

21 Software Consultants (Pty) Ltd Client Armatura pilotne stene - plaz pokopališce Zg. Velka Check for miminum eccentricity: Check that the eccentricity excceeds the minimum in the plane of bending: \ Mmin =. knm about the X-X axis. Design of column section for ULS: Through inspection: The critical section lies at the bottom end of the column. The column is designed to withstand the uni-axially applied moment about the major axis. Column design chart Bending Moment (knm) Reinforcement required about the X-X axis: From the design chart, Asc = 59 =.% % % 4% 3% 8 % % %. Axial Load (kn) Moment max = 96 kn For bending about the design axis: 4.5.6

22 Software Consultants (Pty) Ltd Client Armatura pilotne stene - plaz pokopališce Zg. Velka For bending perpendicular to the design axis: Moment max = 96 kn Moment max = 96 kn Column design chart % % 4% 3% % 6 % % 5 4 Axial Load (kn) Bending Moment (knm) Reinforcement required about the - axis: From the design chart, Asc = 53 Design chart for bending about any axis: Column design chart Bending Moment (knm) 3 6% % 4% 3% 8 % % %. Axial Load (kn)

23 Software Consultants (Pty) Ltd Client Armatura pilotne stene - plaz pokopališce Zg. Velka Summary of design calculations: Design results for all load cases: Load case Axis N (kn) X-X -. M (knm) M (knm) Mi (knm) Madd (knm) Design X-X Bottom M (knm) M' (knm) Asc (mm ) 59 (.%)

24 Software Consultants (Pty) Ltd Client Armatura vezne grede - plaz pokopališce Zg. Velka Concrete Section design for flexure : C Input Data ULS Bending Moment M (knm) 5 ULS Torsion Moment T ULS Shear Force V (knm) (kn) 45 Web width B (mm) 5 Total height H (mm) 4 Flange Width Wf (mm) Flange Height Hf (mm) Reinf centroid depth DcT (mm) 4 Reinf centroid depth DcB (mm) 4 Reinf depth sides DcS fci' (mm) 4 (Mpa) 3 fy - main bars (Mpa) 4 fyv - links (Mpa) 4 % Redistribution DcB = 4. H = 4. DcT = 4. Eurocode - 99 N.A. Dcs = 4. B = 5. N.A. depth =. mm

25 Software Consultants (Pty) Ltd Client Armatura vezne grede - plaz pokopališce Zg. Velka Output Design Results Moment Shear Torsion (web) Torsion (flange) Muc 6.3 knm Vcd kn T knm T knm As 95 mm Vwd kn Trd knm Trd knm As' mm Asv/Sv Asv/Sv Anom 8 mm Asv/Sv nom.75 As Asv/Sv mm As mm Suggested Reinforcement Configurations Bars (As) mm Bars (Asv/sv) @ @5 3. Bars (As') mm Bars (Asv/sv) Longitudinal Bars Combined Longitudinal bars for Moment and Web Torsion Bottom Bars Bars mm Top bars Bars mm Bars Asv/sv Longitudinal Bars

26 št. poročila: 5 V / 6 Stran:.5 APROKSIMATIVNI POPIS DEL IN PREDRAČUN Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

27 št. poročila: 5 V / 6 Stran:.6 GRAFIČNE PRILOGE Geotehnično poročilo s predlogom sanacije zem. plazu na lokalni cesti LC št. 37 Sv. Jurij Sp. Velka Zg. Velka, odsek pokopališče Velka

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

More information

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR: MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

More information

CONSULTING Engineering Calculation Sheet. Job Title Member Design - Reinforced Concrete Column BS8110

CONSULTING Engineering Calculation Sheet. Job Title Member Design - Reinforced Concrete Column BS8110 E N G I N E E R S Consulting Engineers jxxx 1 Job Title Member Design - Reinforced Concrete Column Effects From Structural Analysis Axial force, N (tension-ve and comp +ve) (ensure >= 0) 8000kN OK Major

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: Project: Extreme Marquees Design check 5m 9m Function Standard Tent Structure for 80km/hr Wind 4m 9m Function Standard Tent Structure for 80km/hr Wind 3m 9m Function Standard Tent Structure for

More information

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES 163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n

More information

Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN and EN Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

More information

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

More information

Mechanics of Structure

Mechanics of Structure S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

CHAPTER 4. Design of R C Beams

CHAPTER 4. Design of R C Beams CHAPTER 4 Design of R C Beams Learning Objectives Identify the data, formulae and procedures for design of R C beams Design simply-supported and continuous R C beams by integrating the following processes

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

Neutral Axis Depth for a Reinforced Concrete Section. Under Eccentric Axial Load

Neutral Axis Depth for a Reinforced Concrete Section. Under Eccentric Axial Load Neutral Axis Depth for a Reinforced Concrete Section Doug Jenkins; Interactive Design Services Pty Ltd Under Eccentric Axial Load To determine the stresses in a reinforced concrete section we must first

More information

A Study on Behaviour of Symmetrical I-Shaped Column Using Interaction Diagram

A Study on Behaviour of Symmetrical I-Shaped Column Using Interaction Diagram A Study on Behaviour of Symmetrical I-Shaped Column Using Interaction Diagram Sudharma.V.S.Acharya 1, R.M. Subrahmanya 2, B.G. Naresh Kumar 3, Shanmukha Shetty 4, Smitha 5 P.G. Student, Department of Civil

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode 3 Module 7 : Worked Examples Lecture 20 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

mportant nstructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

CHAPTER 4: BENDING OF BEAMS

CHAPTER 4: BENDING OF BEAMS (74) CHAPTER 4: BENDING OF BEAMS This chapter will be devoted to the analysis of prismatic members subjected to equal and opposite couples M and M' acting in the same longitudinal plane. Such members are

More information

CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS

CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS 4.1. INTRODUCTION CHAPTER 4. ANALYSIS AND DESIGN OF COLUMNS A column is a vertical structural member transmitting axial compression loads with or without moments. The cross sectional dimensions of a column

More information

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

3. Stability of built-up members in compression

3. Stability of built-up members in compression 3. Stability of built-up members in compression 3.1 Definitions Build-up members, made out by coupling two or more simple profiles for obtaining stronger and stiffer section are very common in steel structures,

More information

9.5 Compression Members

9.5 Compression Members 9.5 Compression Members This section covers the following topics. Introduction Analysis Development of Interaction Diagram Effect of Prestressing Force 9.5.1 Introduction Prestressing is meaningful when

More information

Annex - R C Design Formulae and Data

Annex - R C Design Formulae and Data The design formulae and data provided in this Annex are for education, training and assessment purposes only. They are based on the Hong Kong Code of Practice for Structural Use of Concrete 2013 (HKCP-2013).

More information

Practical Design to Eurocode 2

Practical Design to Eurocode 2 Practical Design to Eurocode 2 The webinar will start at 12.30 (Any questions beforehand? use Questions on the GoTo Control Panel) Course Outline Lecture Date Speaker Title 1 21 Sep Jenny Burridge Introduction,

More information

Bending and Shear in Beams

Bending and Shear in Beams Bending and Shear in Beams Lecture 3 5 th October 017 Contents Lecture 3 What reinforcement is needed to resist M Ed? Bending/ Flexure Section analysis, singly and doubly reinforced Tension reinforcement,

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

Chapter 6: Cross-Sectional Properties of Structural Members

Chapter 6: Cross-Sectional Properties of Structural Members Chapter 6: Cross-Sectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Bending Stress. Sign convention. Centroid of an area

Bending Stress. Sign convention. Centroid of an area Bending Stress Sign convention The positive shear force and bending moments are as shown in the figure. Centroid of an area Figure 40: Sign convention followed. If the area can be divided into n parts

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: Extreme Marquees Pty Ltd Project: Design check 6m, 8m, 8m, 10m, 12m, 14m & 16m Single Pole Star Shade Structure for 45km/hr Wind Spead Reference: Extreme Marquees Technical Data Report by: KZ Checked

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A )

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A ) Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A23.3-94) Slender Concrete Column Design in Sway Frame Buildings Evaluate slenderness effect for columns in a

More information

General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

More information

Verification Examples

Verification Examples Verification Examples 2008 AxisVM 9 Verification Examples 2 Linear static...3 Supported bar with concentrated loads....4 Thermally loaded bar structure...5 Continously supported beam with constant distributed

More information

Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics)

Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics) Week 7, 14 March Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics) Ki-Bok Min, PhD Assistant Professor Energy Resources Engineering i Seoul National University Shear

More information

Homework #2 MEAM Automotive Body Structures 1998 Winter

Homework #2 MEAM Automotive Body Structures 1998 Winter Homework #2 MEAM 599-02 Automotive Body Structures 1998 Winter 1. Using AISI/CARS 96_GAS or equivalent software such as UNIGRAPHICS if you are familiar with, find the geometric property of the following

More information

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column:

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column: APRIL 2015 DR. Z s CORNER Conquering the FE & PE exams Formulas, Examples & Applications Topics covered in this month s column: PE Exam Specifications (Geotechnical) Transportation (Horizontal Curves)

More information

Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections

Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections Experimental investigation on monotonic performance of steel curved knee braces for weld-free beam-to-column connections *Zeyu Zhou 1) Bo Ye 2) and Yiyi Chen 3) 1), 2), 3) State Key Laboratory of Disaster

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL When the height of the retaining wall exceeds about 6 m, the thickness of the stem and heel slab works out to be sufficiently large and the design becomes

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results Chapter 4 Test results and discussion This chapter presents a discussion of the results obtained from eighteen beam specimens tested at the Structural Technology Laboratory of the Technical University

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths Proceedings of the Annual Stability Conference Structural Stability Research Council San Antonio, Texas, March 21-24, 2017 Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

7 Vlasov torsion theory

7 Vlasov torsion theory 7 Vlasov torsion theory P.C.J. Hoogenboom, October 006 Restrained Warping The typical torsion stresses according to De Saint Venant only occur if warping can take place freely (Fig. 1). In engineering

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Internal Internal Forces Forces

Internal Internal Forces Forces Internal Forces ENGR 221 March 19, 2003 Lecture Goals Internal Force in Structures Shear Forces Bending Moment Shear and Bending moment Diagrams Internal Forces and Bending The bending moment, M. Moment

More information

REINFORCED CONCRETE DESIGN 1. Design of Column (Examples and Tutorials)

REINFORCED CONCRETE DESIGN 1. Design of Column (Examples and Tutorials) For updated version, please click on http://ocw.ump.edu.my REINFORCED CONCRETE DESIGN 1 Design of Column (Examples and Tutorials) by Dr. Sharifah Maszura Syed Mohsin Faculty of Civil Engineering and Earth

More information

7.3 Design of members subjected to combined forces

7.3 Design of members subjected to combined forces 7.3 Design of members subjected to combined forces 7.3.1 General In the previous chapters of Draft IS: 800 LSM version, we have stipulated the codal provisions for determining the stress distribution in

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

SAMPLE PROJECT IN THE MIDDLE EAST DOCUMENT NO. STR-CALC UNITISED CURTAIN WALL 117 ENGINEER PROJECT. Pages REVISION TITLE

SAMPLE PROJECT IN THE MIDDLE EAST DOCUMENT NO. STR-CALC UNITISED CURTAIN WALL 117 ENGINEER PROJECT. Pages REVISION TITLE PROJECT ENGINEER DOCUMENT NO. STR-CALC-548 0 REVISION TITLE Pages UNITISED CURTAIN WALL 117 UNITISED CURTAIN WALL 2 of 117 Table of Contents 1 Summary 3 2 Basic Data 4 2.1 Standards and References 4 2.2

More information

National Exams May 2015

National Exams May 2015 National Exams May 2015 04-BS-6: Mechanics of Materials 3 hours duration Notes: If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those studying

More information

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3.

Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on Exam 3. ES230 STRENGTH OF MTERILS Exam 3 Study Guide Exam 3: Wednesday, March 8 th in-class Updated 3/3/17 Purpose of this Guide: To thoroughly prepare students for the exact types of problems that will be on

More information

Reinforced concrete structures II. 4.5 Column Design

Reinforced concrete structures II. 4.5 Column Design 4.5 Column Design A non-sway column AB of 300*450 cross-section resists at ultimate limit state, an axial load of 700 KN and end moment of 90 KNM and 0 KNM in the X direction,60 KNM and 27 KNM in the Y

More information

Generation of Biaxial Interaction Surfaces

Generation of Biaxial Interaction Surfaces COPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA AUGUST 2002 CONCRETE FRAE DESIGN BS 8110-97 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam.

SN QUESTION YEAR MARK 1. State and prove the relationship between shearing stress and rate of change of bending moment at a section in a loaded beam. ALPHA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MECHANICS OF SOLIDS (21000) ASSIGNMENT 1 SIMPLE STRESSES AND STRAINS SN QUESTION YEAR MARK 1 State and prove the relationship

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - RC Two Way Spanning Slab XX

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - RC Two Way Spanning Slab XX CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Material Properties Characteristic strength of concrete, f cu ( 60N/mm 2 ; HSC N/A) 35 N/mm 2 OK Yield strength of

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

PILE SOIL INTERACTION MOMENT AREA METHOD

PILE SOIL INTERACTION MOMENT AREA METHOD Pile IGC Soil 2009, Interaction Moment Guntur, INDIA Area Method PILE SOIL INTERACTION MOMENT AREA METHOD D.M. Dewaikar Professor, Department of Civil Engineering, IIT Bombay, Mumbai 400 076, India. E-mail:

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: Project: Reference: Extreme Marquees Pty Ltd Design check 6m 6m Pavilion Marquees Structure for 40km/hr Wind Spead Extreme Marquees Technical Data Report by: KZ Checked by: EAB Date: 22/03/2017

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: Easy Signs Pty. Ltd. Project: Design check 3m 3m, 3m 4.5m & 3m 6m Folding Marquees for Pop-up Gazebos for 45km/hr Wind Speed Reference: Easy Signs Pty. Ltd. Technical Data Report by: KZ Checked

More information

Verification of a Micropile Foundation

Verification of a Micropile Foundation Engineering manual No. 36 Update 02/2018 Verification of a Micropile Foundation Program: File: Pile Group Demo_manual_en_36.gsp The objective of this engineering manual is to explain the application of

More information

Only for Reference Page 1 of 18

Only for Reference  Page 1 of 18 Only for Reference www.civilpddc2013.weebly.com Page 1 of 18 Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER II EXAMINATION WINTER 2013 Subject Code: X20603 Date: 26-12-2013 Subject

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: Project: Wind Speed. Reference: EXTREME MARQUEES PTY. LTD. Design check 6m, 8m, 10m, 12m Event Standard Tents (5m Bay) for 80km/hr Extreme Marquees Pty Ltd Technical Data Report by: KZ Checked

More information

Basis of Design, a case study building

Basis of Design, a case study building Basis of Design, a case study building Luís Simões da Silva Department of Civil Engineering University of Coimbra Contents Definitions and basis of design Global analysis Structural modeling Structural

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: EXTREME MARQUEES PTY. LTD. Project: Design check 8m, 9m, 10m, 12m, 15m, 16m, 18m Event Deluxe Tents (5m Bay) for 100km/hr Wind Speed. Reference: Extreme Marquees Pty Ltd Technical Data Report by:

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: EXTREME MARQUEES PTY. LTD. Project: Design check 6m, 8m, 9m, 10m, 12m Function Deluxe Tents (3m Bay) for 80km/hr Wind Speed. Reference: Extreme Marquees Pty Ltd Technical Data Report by: KZ Checked

More information

spslab v3.11. Licensed to: STRUCTUREPOINT, LLC. License ID: D2DE-2175C File: C:\Data\CSA A Kt Revised.slb

spslab v3.11. Licensed to: STRUCTUREPOINT, LLC. License ID: D2DE-2175C File: C:\Data\CSA A Kt Revised.slb X Z Y spslab v3.11. Licensed to: STRUCTUREPOINT, LLC. License ID: 00000-0000000-4-2D2DE-2175C File: C:\Data\CSA A23.3 - Kt Revised.slb Project: CSA A23.3 - Kt Torsional Stiffness Illustration Frame: Engineer:

More information

Sample Question Paper

Sample Question Paper Scheme I Sample Question Paper Program Name : Mechanical Engineering Program Group Program Code : AE/ME/PG/PT/FG Semester : Third Course Title : Strength of Materials Marks : 70 Time: 3 Hrs. Instructions:

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: Project: Reference: Extreme Marquees Pty Ltd Design check 3m 3m Folding Marquees Structure for 91.8km/hr Wind Spead Extreme Marquees Technical Data Report by: KZ Checked by: EAB Date: 04/11/2016

More information

The Local Web Buckling Strength of Coped Steel I-Beam. ABSTRACT : When a beam flange is coped to allow clearance at the

The Local Web Buckling Strength of Coped Steel I-Beam. ABSTRACT : When a beam flange is coped to allow clearance at the The Local Web Buckling Strength of Coped Steel I-Beam Michael C. H. Yam 1 Member, ASCE Angus C. C. Lam Associate Member, ASCE, V. P. IU and J. J. R. Cheng 3 Members, ASCE ABSTRACT : When a beam flange

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed

More information

Symmetric Bending of Beams

Symmetric Bending of Beams Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications

More information

Chapter Objectives. Design a beam to resist both bendingand shear loads

Chapter Objectives. Design a beam to resist both bendingand shear loads Chapter Objectives Design a beam to resist both bendingand shear loads A Bridge Deck under Bending Action Castellated Beams Post-tensioned Concrete Beam Lateral Distortion of a Beam Due to Lateral Load

More information

NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS

NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS Abdul Kareem M. B. Al-Shammaa and Ehsan Ali Al-Zubaidi 2 Department of Urban Planning Faculty of Physical Planning University of Kufa

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2 Detailing Lecture 9 16 th November 2017 Reinforced Concrete Detailing to Eurocode 2 EC2 Section 8 - Detailing of Reinforcement - General Rules Bar spacing, Minimum bend diameter Anchorage of reinforcement

More information