APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES"

Transcription

1 163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n S e F y S e Elastic section modulus of effective section calculated relative to extreme compression or tension fiber at F y F y Yield stress 2. Based on Lateral Torsional Buckling Strength: M n S c F c Sc Elastic section modulus of effective section calculated relative to extreme compression fiber at F c F c shall be determined as follows: F e >2.78F y no lateral buckling at bending moments less than or equal to M y 2.78F y >F e >0.56F y F c F y - F e <0.56F y F c F e where,f e

2 164 C b is conservatively taken as unity for all cases d - Depth of section I yc - Moment of inertia of compression portion of section about centroidal axis of entire section parallel to web, using full unreduced section. I yc S f - Elastic section modulus of full unreduced section relative to extreme compression fiber K y - Effective length factor for bending about y axis L y -Unbraced length of member for bending about y axis F e A area of the full cross-section r o polar radius of gyration of the cross section about the shear centre r x, r y radii of gyration of the cross section about the x- and y- axes respectively x o distance from shear centre to centroidal along principal x-axis taken as negative. E Modulus of elasticity of steel G Shear modulus J Saint- Venant torsion constant for a cross section Torsional warping constant of cross section Kt Effective length factors for twisting

3 165 Lt Unbraced length of member for twisting. Ky Effective length factors for bending about y-axis. Ly Unbraced length of member for bending about y-axis. 1. Based on Distortional Buckling Strength: Distortional Buckling Strength (moment of resistance) M n is given by, d n M y d > M n - * M y d M y S fy xf y Where, S fy Elastic section modulus of full unreduced section relative to extreme fiber in first yield. M crd S f F d S d Elastic section modulus of full unreduced section relative to extreme compression fiber. F d - Elastic distortional buckling stress F d - K d A value accounting for moment gradient, which is permitted to be conservatively taken as 1.0 E Modulus of elasticity t Base steel thickness b 0 - Out- to-out flange width D - Out-to-out lip dimension

4 166 - Lip angle h o - Out-to-out web depth A1.2 NUMERICAL EXAMPLE FOR SPECIMEN TCDW AS PER AISI S100: Based on Yield Strength Effective yield moment, M n S e F y Effective section modulus, S e mm 3 Yield stress, F c 247N/mm 2 M n M n N.mm 2. Lateral -Torsional Buckling Strength M n S c F c Sc mm 3 F e N/mm 2 F e N/mm F y >F e >0.56F y F c F y - * N/mm 2 M n S c F c N.mm

5 Distortional Buckling Strength F d - K d L cr 1.2h o o b 0 D mm 15 mm 90 h o 200 mm K d (0.5< 1.315< 8) F d N/mm 2 M crd S e f y * N.mm M y S fy F y * N.mm d

6 168 M n M n M y N.mm The least of the above will be the nominal moment capacity of the section. Hence the governing mode of failure is lateral torsional buckling and the moment capacity is Mn N.mm A.1.3 DESIGN AS PER AUSTRALIAN/NEW ZEALAND STANDARD FOR COLD FORMED STEEL (AS/NZS 4600:2005) 1. Based on initiation of Yielding: M s Z e f y Z e is the effective section modulus calculated with the extreme compression or tension fibre at f y fy is the yield stress 2. Based on Lateral Torsional Buckling: M b Z c f c Where Zc effective section modulus calculated at a stress fc in the extreme f c M c critical moment Z f full unreduced section modulus for the extreme compression fibre The critical moment (M c ) shall be calculated as follows: b M c M y

7 169 b< M c 1.11 M y - b M c M y Where b non-dimensional slenderness ratio used to determine M c for members subjected to lateral buckling b M y moment causing initial yield at the extreme compression fibre of the full section Z f f y M o elastic buckling moment Where M o C b Ar o1 r o1 polar radius of gyration of the cross section about the shear centre. C b is permitted to be taken as unity for all cases. A r o1 area of the full cross-section polar radius of gyration of the cross section about the shear centre. r x, r y radii of gyration of the cross section about the x- and y- axes respectively x o, y o coordinates of the shear sentre of the cross section f oy elastic buckling stress in an axially loaded compression member for the flexural buckling about the y- axis.

8 170 f oz elastic buckling stress in an axially loaded compression member for torsional buckling l ex, l ey, l ez, effective length for buckling about the x-axis and y-axes, and for twisting, respectively G shear modulus of elasticity ( Mpa) J torsion constant for a cross section I w warping constant for a cross section 3. Based on Distortional Buckling: The critical moment (M c ) shall be calculated as follows: d < 0.59: M c M y d M c M y d M c M y Where M y moment causing initial yield at the extreme compression fibre of the full section d non-dimensional slenderness used to determine M c for the member subjected to distortional buckling M od elastic buckling moment in the distortional mode Z f f od Minimum of above moment is taken as Moment capacity of the section

9 171 A1.4 NUMERICAL EXAMPLE FOR SPECIMEN TCDW AS PER AS/NZS 4600: Based on initiation of Yielding: Z e mm 3 (Calculated as per code) fy 247 N/mm 2 (Extreme flange material yield stress) M s Z e f y * Nmm 2. Based on Lateral buckling: Zc mm 3 Z f mm 3 f c M y Z f f y * Nmm C b 1 A mm 2 r x r y x 0 y o mm mm 40mm 100 mm r o mm E 2.11 *10 5 N/mm 2 G N/mm 2 J mm 4

10 172 l ez l2000 mm I w mm 6 f oz N/mm 2 f oy N/mm 2 M o C b Ar o1 1* * N.mm b b < 1.336M c 1.11 M y * N.mm f c N/mm 2

11 173 M b Z c f c * N.mm 3. Based on Distortional Buckling: f od elastic distortional buckling stress calculated as per Appendix D of AS/NZS 4600: N/mm 2 M od Z f f od * N.mm M y Z f f y * *10 6 N.mm d < 0.59 Hence M c M y

12 174 f c N/mm 2 The nomial member capacity(m b ) Z c f c * N/mm 2 The least of the above will be the nominal moment capacity of the section, Hence the governing mode of failure is lateral torsional buckling and the moment capacity is M n N.mm A.1.5 DESIGN AS PER INDIAN STANDARD FOR COLD FORMED STEEL IS Based on Yielding Nominal Moment S F y F y Specified minimum yield point. S unreduced Elastic section modulus 2. Based on Lateral Torsional Buckling When < < F b When F b 2 E C b

13 175 Mn F B I yc / Y c N.mm L the unbraced length of the member I yc the moment of inertia of the compression portion of a section about the gravity axis of the entire section parallel to the web S xc Compression section modulus of entire section about major axis, I x divided by distance to extreme compression fibre E d modulus of elasticity depth of section. C b bending coefficient which can conservatively be taken asunity. Numerical example for specimen TCDW as per IS 801: Based on Yielding F y 247 N/mm 2 S mm 3 Nominal Moment M n S F y x 247 M n N.mm 2. Based on Lateral Torsional Buckling L 2000 mm I yc mm 4 S xc mm 3 E 2.11* 10 5 N/mm 2

14 176 d 200 mm C b 1 When > & < F b When F b 2 E C b F B F b N/mm 2 Mn F b I yc / Y c N.mm * / N.mm The least of the above will be the nominal moment capacity of the section, Hence the governing mode of failure is lateral torsional buckling and the moment capacity is Mn x 10 6 N.mm

15 177 APPENDIX 2 MODEL CALCULATION OF PROPOSED EQUATION Specimen TCA A.2.1 CALCULATION OF UNREDUCED SECTION MODULUS I XX mm 4 Z f I xx / y / mm 3 A.2.2 CALCULATION OF YIELDING MOMENT M Y CONSIDERING FULL SECTION M y Z f f y * X 10 6 Nmm

16 178 A.2.3 CALCULATION OF ELASTIC BUCKLING MOMENT M O C b 1 A mm 2 r x r y mm mm x 0 40mm y o 100 mm r o mm E 2.11 *10 5 N/mm 2 G N/mm 2 J mm 4 l ez l3600mm I w mm 6 f oz f oy N/mm N/mm 2 M o C b Ar o1 1* * N.mm

17 179 b b lies between & 1.310, as per the proposed equation 6.1, Critical moment M c M y ( ) *10 6 ( * ) N.mm f c N/mm 2 A.2.4 CALCULATION OF EFFECTIVE SECTION MODULUS AS PER CODE For the first iteration, assume a compression stress F y 247N/mm 2 in the top fibre of the section and that the neutral axis is 200mm. Below the top fibre. i. Calculation of effective width of flange: w b 99.38mm w/t 99.38/ < 60 OK S check effective width of flange Compute k of the flange based on stiffener lip properties

18 180 I a 399 * t 4 4 I a 399 * mm 4 mm 4 I a mm 4 R radius of corner d c lip depth ((R + ) + ( )) 15 ((2 + ) + ( )) 11mm. 90 degrees. I s (d 3 t sin 2 (11 3 *2*sin 2 90º)/ mm 4 R I < 1 Hence OK. n n < 1/3 n D depth of lip 15mm D/ w < 0.8 OK K - (R I ) n K ( )

19 <4 OK F cr k N/mm > flange is subject to local buckling (1- (1-0.22/ 1.199) / b w 0.979* mm ii. Calculation of effective width of Stiffener lip: w/t d/t 11/2 5.5 Maximum stress in lip (by similar triangles) f f 1 f y * ((N.A - - r) / N.A) 247 * (( ) / 200) N/mm 2 f 2 f y * (N.A- D) / N.A 247 * [200-15] / N/mm / k

20 182 F cr k * N/mm <0.673 lip is not subjected to local buckling s d11mm. d s d s I ) 11 * mm iii. Calculation of effective width of Web: w/t f f 1 f y * ((N.A - r) / N.A) f * ((200-3) / 200) N/mm 2 overall depth of section mm f 2 f y - N.A - r) / N.A 247 * ( ) / N/mm / K 3 4+2( ) 3 +2( )

21 183 F cr k F cr N/mm > web may be subjected to local buckling (1- (1-0.22/ )/ a depth of web 400 mm b e b mm h o /b o <4.0 b 1 b e (3+y) / ( ) mm B 2 b e / / mm B 1 +b < web is not fully effective for this iteration. Recomputing properties by parts. Considering the ineffective portion of the web as an element with a negative length B neg - ( ) mm Its centroidal location below the top fibre: y t/2 + r +b 1 + b neg /2 1.2/ / mm

22 184 Element t L Top flange(right) Top flange(left) Bottom flange(right) Bottom flange(left) Y from top fiber A Ay Ay 2 Ix about own axis Web Negative web element Top lip (left) Bottom lip (right) Sum Y Ay/ A / mm below top fibre I x [ I x Ay -y 2 A] [4.028* * ( ) 2 *(1020.2)] mm 4 The calculated neutral axis location ( mm) does not equal the assumed neutral axis location (200 mm); therefore, iteration is required.after further iterations, the solution converges to: I x mm 4 Y mm Effective section modulus S e mm 3 Predicted moment M Pr Z c f c * N.mm

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.10 Examples 5.10.1 Analysis of effective section under compression To illustrate the evaluation of reduced section properties of a section under axial compression. Section: 00 x 80 x 5 x 4.0 mm Using

More information

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths Proceedings of the Annual Stability Conference Structural Stability Research Council San Antonio, Texas, March 21-24, 2017 Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

Local Buckling. Local Buckling in Columns. Buckling is not to be viewed only as failure of the entire member

Local Buckling. Local Buckling in Columns. Buckling is not to be viewed only as failure of the entire member Local Buckling MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE V Dr. Jason E. Charalamides Local Buckling in Columns Buckling is not to e viewed only as failure of the entire memer

More information

Direct Strength Method for Steel Deck

Direct Strength Method for Steel Deck issouri University of Science and Technology Scholars ine AISI-Specifications for the Design of Cold-Formed Steel Structural embers Wei-Wen Yu Center for Cold-Formed Steel Structures 1-1-2015 Direct Strength

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

DESIGN OF BUCKLING RESISTANCE OF COMPRESSED HSS - CHANNELS

DESIGN OF BUCKLING RESISTANCE OF COMPRESSED HSS - CHANNELS DESIGN OF BUCKLING RESISTANCE OF COMPRESSED HSS - CHANNELS ABSTRACT Asko Talja Technical Research Centre of Finland (VTT) Laboratory of Structural Engineering Kemistintie 3 SF- 02150 ESPOO FINLAND Rakenteiden

More information

X X. Physical Properties Gross Properties Effective Properties Torsional Properties

X X. Physical Properties Gross Properties Effective Properties Torsional Properties Structural Sections X X Cee Purlins (flange) Physical Properties Gross Properties Effective Properties Torsional Properties Ga. (nom) (lip) Weight Area Ix Sx Rx Iy Sy Sy R Ry Ae Ixe Sxe J (x10-3 ) Cw Xo

More information

5 Compression Members

5 Compression Members 5 Compression Members 5.1 GENERAL REMARKS Similar to the heavy hot-rolled steel sections, thin-walled cold-formed steel compression members can be used to carry a compressive load applied through the centroid

More information

Chapter 6: Cross-Sectional Properties of Structural Members

Chapter 6: Cross-Sectional Properties of Structural Members Chapter 6: Cross-Sectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross

More information

Mechanics of Solids notes

Mechanics of Solids notes Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

More information

APPENDIX A Thickness of Base Metal

APPENDIX A Thickness of Base Metal APPENDIX A Thickness of Base Metal For uncoated steel sheets, the thickness of the base metal is listed in Table A.1. For galvanized steel sheets, the thickness of the base metal can be obtained by subtracting

More information

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson Singly Symmetric Combination Section Crane Girder Design Aids by Patrick C. Johnson PCJohnson@psu.edu The Pennsylvania State University Department of Civil and Environmental Engineering University Park,

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those studying

More information

DESIGN OF BEAM-COLUMNS - II

DESIGN OF BEAM-COLUMNS - II DESIGN OF BEA-COLUNS-II 14 DESIGN OF BEA-COLUNS - II 1.0 INTRODUCTION Beam-columns are members subjected to combined bending and axial compression. Their behaviour under uniaxial bending, biaxial bending

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7 Dr. Colin Caprani, Chartered Engineer 1 Contents 1. Introduction... 3 1.1 Background... 3 1.2 Failure Modes... 5 1.3 Design Aspects...

More information

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

BUCKLING STRENGTH ANALYSIS OF BARS AND FRAMES, AND SPHERICAL SHELLS

BUCKLING STRENGTH ANALYSIS OF BARS AND FRAMES, AND SPHERICAL SHELLS CLASSIFICATION NOTES No. 30.1 BUCKLING STRENGTH ANALYSIS OF BARS AND FRAMES, AND SPHERICAL SHELLS APRIL 004 Veritasveien 1, NO-13 Høvik, Norway Tel.: +47 67 57 99 00 Fax: +47 67 57 99 11 FOREWORD is an

More information

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4).

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4). SUMMARY FOR COMPRESSION MEMBERS Columns with Pinned Supports Step 1: Step : Determine the factored design loads (AISC/LRFD Specification A4). From the column tables, determine the effective length KL using

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

Fundamentals of Structural Design Part of Steel Structures

Fundamentals of Structural Design Part of Steel Structures Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAALLI - 6113. QUESTION WITH ANSWERS DEARTMENT : CIVIL SEMESTER: V SUB.CODE/ NAME: CE 5 / Strength of Materials UNIT 3 COULMNS ART - A ( marks) 1. Define columns

More information

Eurocode 3 for Dummies The Opportunities and Traps

Eurocode 3 for Dummies The Opportunities and Traps Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 6. BEAMS 6.1 Introduction One of the frequently used structural members is a beam whose main function is to transfer load principally by means of flexural or bending action. In a structural framework,

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

CH. 4 BEAMS & COLUMNS

CH. 4 BEAMS & COLUMNS CH. 4 BEAMS & COLUMNS BEAMS Beams Basic theory of bending: internal resisting moment at any point in a beam must equal the bending moments produced by the external loads on the beam Rx = Cc + Tt - If the

More information

Structural Mechanics Column Behaviour

Structural Mechanics Column Behaviour Structural Mechanics Column Behaviour 008/9 Dr. Colin Caprani, 1 Contents 1. Introduction... 3 1.1 Background... 3 1. Stability of Equilibrium... 4. Buckling Solutions... 6.1 Introduction... 6. Pinned-Pinned

More information

Direct Strength Method (DSM) Design Guide

Direct Strength Method (DSM) Design Guide Direct Strength Method (DSM) Design Guide DESIGN GUIDE CFXX-X January, 6 Committee on Specifications for the Design of Cold-Formed Steel Structural Members American Iron and Steel Institute Preface The

More information

General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

More information

Chapter 5 Compression Member

Chapter 5 Compression Member Chapter 5 Compression Member This chapter starts with the behaviour of columns, general discussion of buckling, and determination of the axial load needed to buckle. Followed b the assumption of Euler

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

Failure interaction curves for combined loading involving torsion, bending, and axial loading

Failure interaction curves for combined loading involving torsion, bending, and axial loading Failure interaction curves for combined loading involving torsion, bending, and axial loading W M Onsongo Many modern concrete structures such as elevated guideways are subjected to combined bending, torsion,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 04 CIVIL ENGINEERING QUESTION BANK Course Name : STRENGTH OF MATERIALS II Course Code : A404 Class : II B. Tech II Semester Section

More information

Steel Post Load Analysis

Steel Post Load Analysis Steel Post Load Analysis Scope The steel posts in 73019022, 73019024, and 73019025, are considered to be traditional building products. According to the 2015 International Building Code, this type of product

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses 7 TRANSVERSE SHEAR Before we develop a relationship that describes the shear-stress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within

More information

PLATE AND BOX GIRDER STIFFENER DESIGN IN VIEW OF EUROCODE 3 PART 1.5

PLATE AND BOX GIRDER STIFFENER DESIGN IN VIEW OF EUROCODE 3 PART 1.5 PLATE AD BOX GIRDER STIFFEER DESIG I VIEW OF EUROCODE 3 PART 1.5 Darko Beg Professor University of Ljubljana, Faculty of Civil and Geodetic Engineering Ljubljana, Slovenia Email: dbeg@fgg.uni-lj.si 1.

More information

Unit 15 Shearing and Torsion (and Bending) of Shell Beams

Unit 15 Shearing and Torsion (and Bending) of Shell Beams Unit 15 Shearing and Torsion (and Bending) of Shell Beams Readings: Rivello Ch. 9, section 8.7 (again), section 7.6 T & G 126, 127 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

Equivalent T-stubs (Component Method) as per DIN EN

Equivalent T-stubs (Component Method) as per DIN EN Equivalent T-stubs (Component Method) as per DIN EN 1993-1-8 Nemetschek Frilo GmbH www.frilo.de info@frilo.de As of 23/11/2012 Contents Introduction 3 T-stub model 3 Examples for the T-stub model 9 Introduction

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com

***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com Spreadsheet Title: Last Revision 8/27/2005 ***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com www.designspreadsheets.com email: info@designspreadsheets.com Project I-Girder

More information

host structure (S.F.D.)

host structure (S.F.D.) TABLE 00.4 FBC Typical Mansard Beam [AAF] Allowable Span of Mansard Screen Enclosure Self-Mating Beams in accordance with requirements of Table 00.4 (and the 005 Aluminum Design Manual) using 6005T5 alloy:

More information

PERFORATED METAL DECK DESIGN

PERFORATED METAL DECK DESIGN PERFORATED METAL DECK DESIGN with Commentary Prepared By: L.D. Luttrell, Technical Advisor Steel Deck Institute November 18, 2011 Copyright 2011 All rights reserved P.O. Box 25 Fox River Grove, IL 60021

More information

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

API 11E - Specification for Pumping Units

API 11E - Specification for Pumping Units API 11E - Specification for Pumping Units 5 Beam Pump Structure Requirements 5.1 General Requirements for beam pump structures are specified in the following sections. Only loads imposed on the structure

More information

MECHANICS OF MATERIALS Design of a Transmission Shaft

MECHANICS OF MATERIALS Design of a Transmission Shaft Design of a Transmission Shaft If power is transferred to and from the shaft by gears or sprocket wheels, the shaft is subjected to transverse loading as well as shear loading. Normal stresses due to transverse

More information

CHAPTER 6: ULTIMATE LIMIT STATE

CHAPTER 6: ULTIMATE LIMIT STATE CHAPTER 6: ULTIMATE LIMIT STATE 6.1 GENERAL It shall be in accordance with JSCE Standard Specification (Design), 6.1. The collapse mechanism in statically indeterminate structures shall not be considered.

More information

MECHANICS LAB AM 317 EXP 5 COLUMN BEHAVIOR BUCKLING

MECHANICS LAB AM 317 EXP 5 COLUMN BEHAVIOR BUCKLING MECHANICS LAB AM 317 EX 5 COLUMN BEHAVIOR BUCKLING I. OBJECTIVES I.1 To determine the effect the slenderness ratio has on the load carrying capacity of columns of varying lengths. I. To observe short,

More information

The Influence of a Weld-Affected Zone on the Compressive and Flexural Strength of Aluminum Members

The Influence of a Weld-Affected Zone on the Compressive and Flexural Strength of Aluminum Members Bucknell University Bucknell Digital Commons Honors Theses Student Theses 2013 The Influence of a Weld-Affected Zone on the Compressive and Flexural Strength of Aluminum Members Shengduo Du sd034@bucknell.edu

More information

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.

More information

Chapter 3. Inertia. Force. Free Body Diagram. Net Force. Mass. quantity of matter composing a body represented by m. units are kg

Chapter 3. Inertia. Force. Free Body Diagram. Net Force. Mass. quantity of matter composing a body represented by m. units are kg Chapter 3 Mass quantity of matter composing a body represented by m Kinetic Concepts for Analyzing Human Motion units are kg Inertia tendency to resist change in state of motion proportional to mass has

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: Extreme Marquees Pty Ltd Project: Design check 6m, 8m, 8m, 10m, 12m, 14m & 16m Single Pole Star Shade Structure for 45km/hr Wind Spead Reference: Extreme Marquees Technical Data Report by: KZ Checked

More information

Bridge deck modelling and design process for bridges

Bridge deck modelling and design process for bridges EU-Russia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twin-girder bridge according to Eurocode 4 Laurence Davaine

More information

Civil. Engineering INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS Annual Stability Conference New Orleans, Louisiana

Civil. Engineering INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS Annual Stability Conference New Orleans, Louisiana Civil Engineering at JOHNS HOPKINS UNIVERSITY at JOHNS HOPKINS UNIVERSITY INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS 2007 Annual Stability Conference New Orleans, Louisiana April 2007 Y.Shifferaw

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS

INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS INELASTIC BENDING CAPACITY IN COLD-FORMED STEEL MEMBERS report to: American Iron and Steel Institute Committee on Specifications Subcomittee 10 Element Behaviors and Direct Strength Method Subcomittee

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

Structures. Shainal Sutaria

Structures. Shainal Sutaria Structures ST Shainal Sutaria Student Number: 1059965 Wednesday, 14 th Jan, 011 Abstract An experiment to find the characteristics of flow under a sluice gate with a hydraulic jump, also known as a standing

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

School of Civil and Environmental Engineering

School of Civil and Environmental Engineering School of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Research Report No. 07-1 Guideline for the Design of Stainless Steel Structures Part 1: Dimensions and Section

More information

C:\Users\joc\Documents\IT\Robot EC3 6_2_1 (5)\Eurocode _2_1(5) Concentrated Load - Rev 1_0.mcdx. γ M γ M γ M2 1.

C:\Users\joc\Documents\IT\Robot EC3 6_2_1 (5)\Eurocode _2_1(5) Concentrated Load - Rev 1_0.mcdx. γ M γ M γ M2 1. C:\Users\joc\Documents\IT\Robot EC3 6 1 (5)\Eurocode 1993-1-1 6 1(5) Concentrated Load - Rev 1_0.mcdx Page 1 of 01/03/016 Section sec HEB500 with steel grade gr S355 I x Iy_sec (sec) cm 4 = 10700 cm 4

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

Elastic Stability Of Columns

Elastic Stability Of Columns Elastic Stability Of Columns Introduction: Structural members which carry compressive loads may be divided into two broad categories depending on their relative lengths and cross-sectional dimensions.

More information

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members research report Web Crippling and Bending Interaction of Cold-Formed Steel Members RESEARCH REPORT RP02-2 MARCH 2002 REVISION 2006 Committee on Specifications for the Design of Cold-Formed Steel Structural

More information

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3 M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We

More information

AC R1 #16. Jay W. Larson, P.E., F. ASCE Managing Director, Construction Technical Sydna Street

AC R1 #16. Jay W. Larson, P.E., F. ASCE Managing Director, Construction Technical Sydna Street AC46-0210-R1 #16 January 27, 2010 Mr. Woods McRoy International Code Council Evaluation Service, Inc. Birmingham Regional Office 900 Montclair Road, Suite A Birmingham, AL 35213 Re: Proposed Acceptance

More information

Autodesk Robot Structural Analysis Professional 2014 Design of fixed beam-to-column connection EN :2005/AC:2009

Autodesk Robot Structural Analysis Professional 2014 Design of fixed beam-to-column connection EN :2005/AC:2009 Autodesk Robot Structural Analysis Professional 2014 Design of fixed beam-to-column connection EN 1993-1-8:2005/AC:2009 Ratio 0,44 GENERAL Connection no.: 24 Connection name: Ligação 2 Structure node:

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 7. BEAM COLUMNS 7.1 Introduction The Indian steel code is now in the process of revision as specification-based design gives way to performance-based design. An expert committee mainly comprising eminent

More information

CHAPTER -6- BENDING Part -1-

CHAPTER -6- BENDING Part -1- Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

More information

Experiment: Torsion Test Expected Duration: 1.25 Hours

Experiment: Torsion Test Expected Duration: 1.25 Hours Course: Higher Diploma in Civil Engineering Unit: Structural Analysis I Experiment: Expected Duration: 1.25 Hours Objective: 1. To determine the shear modulus of the metal specimens. 2. To determine the

More information

The Local Web Buckling Strength of Coped Steel I-Beam. ABSTRACT : When a beam flange is coped to allow clearance at the

The Local Web Buckling Strength of Coped Steel I-Beam. ABSTRACT : When a beam flange is coped to allow clearance at the The Local Web Buckling Strength of Coped Steel I-Beam Michael C. H. Yam 1 Member, ASCE Angus C. C. Lam Associate Member, ASCE, V. P. IU and J. J. R. Cheng 3 Members, ASCE ABSTRACT : When a beam flange

More information

School of Civil and Environmental Engineering

School of Civil and Environmental Engineering School of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Research Report No. 07-1 Guideline for the Design of Stainless Steel Structures Part 1: Dimensions and Section

More information

Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN and EN Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

More information

School of Civil and Environmental Engineering

School of Civil and Environmental Engineering School of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Research Report No. 07-1 Guideline for the Design of Stainless Steel Structures Part 1: Dimensions and Section

More information

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected. COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA DECEMBER 2001 CONCRETE FRAME DESIGN ACI-318-99 Technical Note This Technical Note describes how the program checks column capacity or designs reinforced

More information

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement.

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement. Example on Design of Slab Bridge Design Data and Specifications Chapter 5 SUPERSTRUCTURES Superstructure consists of 10m slab, 36m box girder and 10m T-girder all simply supported. Only the design of Slab

More information

CHAPTER 6: Shearing Stresses in Beams

CHAPTER 6: Shearing Stresses in Beams (130) CHAPTER 6: Shearing Stresses in Beams When a beam is in pure bending, the only stress resultants are the bending moments and the only stresses are the normal stresses acting on the cross sections.

More information

1-1 Locate the centroid of the plane area shown. 1-2 Determine the location of centroid of the composite area shown.

1-1 Locate the centroid of the plane area shown. 1-2 Determine the location of centroid of the composite area shown. Chapter 1 Review of Mechanics of Materials 1-1 Locate the centroid of the plane area shown 650 mm 1000 mm 650 x 1- Determine the location of centroid of the composite area shown. 00 150 mm radius 00 mm

More information

DES140: Designing for Lateral-Torsional Stability in Wood Members

DES140: Designing for Lateral-Torsional Stability in Wood Members DES140: Designing for Lateral-Torsional Stability in Wood embers Welcome to the Lateral Torsional Stability ecourse. 1 Outline Lateral-Torsional Buckling Basic Concept Design ethod Examples In this ecourse,

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

7.5 Elastic Buckling Columns and Buckling

7.5 Elastic Buckling Columns and Buckling 7.5 Elastic Buckling The initial theory of the buckling of columns was worked out by Euler in 1757, a nice example of a theory preceding the application, the application mainly being for the later invented

More information

A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers H. Ozbasaran

A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers H. Ozbasaran Vol:8, No:7, 214 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers H. Ozbasaran Abstract IPN and IPE sections, which are commonly used European I shapes, are widely used

More information

Formulation of Equivalent Steel Section for Partially Encased Composite Column under Concentric Gravity Loading

Formulation of Equivalent Steel Section for Partially Encased Composite Column under Concentric Gravity Loading Formulation of Equivalent Steel Section for Partially Encased Composite Column under Concentric Gravity Loading Debaroti Ghosh & Mahbuba Begum Dept of Civil Engineering, Bangladesh University of Engineering

More information

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y. 014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

More information

Columns and Struts. 600 A Textbook of Machine Design

Columns and Struts. 600 A Textbook of Machine Design 600 A Textbook of Machine Design C H A P T E R 16 Columns and Struts 1. Introduction.. Failure of a Column or Strut. 3. Types of End Conditions of Columns. 4. Euler s Column Theory. 5. Assumptions in Euler

More information

The Lateral Torsional Buckling Strength of Steel I- Girders with Corrugated Webs

The Lateral Torsional Buckling Strength of Steel I- Girders with Corrugated Webs Lehigh University Lehigh Preserve ATLSS Reports Civil and Environmental Engineering 5-1-6 The Lateral Torsional Buckling Strength of Steel I- Girders with Corrugated Webs Daming Yu Richard Sause Follow

More information

Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

More information

of I Section Members

of I Section Members IMPROVED DESIGN ASSESSMENT OF LTB OF I-SECTION MEMBERS VIA MODERN COMPUTATIONAL METHODS Improved Design Assessment of LTB of I Section Members Donald W. White (with credits to Dr. Woo Yong Jeong & Mr.

More information

SERVICEABILITY LIMIT STATE DESIGN

SERVICEABILITY LIMIT STATE DESIGN CHAPTER 11 SERVICEABILITY LIMIT STATE DESIGN Article 49. Cracking Limit State 49.1 General considerations In the case of verifications relating to Cracking Limit State, the effects of actions comprise

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: Easy Signs Pty. Ltd. Project: Design check 3m 3m, 3m 4.5m & 3m 6m Folding Marquees for Pop-up Gazebos for 45km/hr Wind Speed Reference: Easy Signs Pty. Ltd. Technical Data Report by: KZ Checked

More information

For more Stuffs Visit Owner: N.Rajeev. R07

For more Stuffs Visit  Owner: N.Rajeev. R07 Code.No: 43034 R07 SET-1 JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD II.B.TECH - I SEMESTER REGULAR EXAMINATIONS NOVEMBER, 2009 FOUNDATION OF SOLID MECHANICS (AERONAUTICAL ENGINEERING) Time: 3hours

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

Longitudinal strength standard

Longitudinal strength standard (1989) (Rev. 1 199) (Rev. Nov. 001) Longitudinal strength standard.1 Application This requirement applies only to steel ships of length 90 m and greater in unrestricted service. For ships having one or

More information