Unbraced Column Verification Example. AISC Design Examples AISC 13 th Edition. ASDIP Steel is available for purchase online at

Size: px
Start display at page:

Download "Unbraced Column Verification Example. AISC Design Examples AISC 13 th Edition. ASDIP Steel is available for purchase online at"

Transcription

1 Unbraced Column Verification Example AISC Design Examples AISC 3 th Edition IP Steel is available for purchase onle at

2 H-9 Example H.4 W-Shape Subject to Combed Axial Compression and Flexure Given: Select an ASTM A992 W-shape with a 0. nomal depth to carry nomal axial compression forces of 5 s from dead load and 5 s from live load. The unbraced length is 4 ft and the ends are pned. The member also has the followg nomal required moment strengths, not cludg second-order effects: M xd = 5 -ft M yd = 2 -ft M xl = 45 -ft M yl = 6 -ft The member is not subject to sidesway. Solution: Material Properties: ASTM A992 F y = 50 ksi F u = 65 ksi Calculate the required strength, not considerg second-order effects P u =.2(5.00 s) +.6(5.0 s) = 3 s M ux =.2(5.0 -ft) +.6(45.0 -ft) = 9 -ft M uy =.2(2.00 -ft) +.6(6.00 -ft) = 2.0 -ft P a = 5.00 s s = s M ax = 5.0 -ft ft = 6 -ft M ay = ft ft = ft Try a W0 33 Geometric Properties: W0 33 A = S x = Z x = I x = 7. 4 S y = Z y = I y = L p = 6.85 ft L r = 2.8 ft Calculate the available axial strength For a pned-pned condition, K =.0. Sce KL x = KL y = 4.0 ft and r x > r y, the y-y axis will govern. Manual Table - Table 3- Commentary Table C-C2.2 Manual P c = φ c P n = 253 s P c = P n /Ω c = 68 s Table 4-

3 H-0 Calculate the required flexural strengths cludg second order amplification Use Amplified First-Order Elastic Analysis procedure from Section C2.b. Sce the member is not subject to sidesway, only P-δ amplifiers need to be added. Cm B = αp / P r e Eqn. C2-2 C m =.0 X-X axis flexural magnifier ( KL) 2 4 π ( 29,000 ksi)( 7. ) ((.0)( 4.0 ft)( 2./ft) ) π EI = = = 730 s 2 x e 2 2 P x Eqn. C2-5 α =.0.0 B = = s /730 s ( ) M ux =.02(9 -ft) = 9.8 -ft α =.6.0 B = =.02.6 s /730 s ( ) M ax =.02(6 -ft) = 6.2 -ft Eqn. C2-2 Y-Y axis flexural magnifier ( KL y ) 2 4 π ( 29, 000 ksi)( ) ((.0)( 4.0 ft)( 2./ft) ) π EI = = = 37 s Eqn. C2-5 2 y e 2 2 P α =.0.0 B = = s / 37s ( ) M uy =.09(2.0 -ft) = 3. -ft α =.6.0 B = =.09.6 s / 37s ( ) M ay =.09 (8.00 -ft) = ft Eqn. C2-2 Calculate the nomal bendg strength about the x-x axis Yieldg limit state M nx = M p = F y Z x = 50 ksi( ) = or 62 -ft Eqn. F2- Lateral-torsional bucklg limit state Sce L p < L b < L r, Equation F2-2 applies From Manual Table 3-, C b =.4 Manual Table 3-

4 H- M nx = Cb M p-( M p-0.7fysx) Lb Lr - L p - L p M M p M nx = ( ( 50 ksi)( )) = M , therefore use: 3 4.0ft ft 2.8 ft ft Eqn. F2-2 M nx = or 52 -ft controls Local bucklg limit state Per Manual Table -, the member is compact for F y = 50 ksi, so the local bucklg limit state does not apply Calculate the nomal bendg strength about the y-y axis Manual Table - Section F6.2 Sce a W0 33 has compact flanges, only the yieldg limit state applies. M ny = M p = F y Z y M.6F y S y = 50 ksi( ) M.6(50 ksi)( ) = < , therefore Eqn. F6- Use M ny = or ft φ b = 0.90 M cx = φ b M nx = 0.90(52 -ft) = 37 -ft M cy = φ b M ny = 0.90(58.3 -ft) = ft Ω b =.67 M cx = M nx /Ω b = 52 -ft/.67 = 9.0 -ft M cy = M ny /Ω b = ft/.67 = ft Section F2 Check limit for Equation H-a Pr Pu 3 s = = = 0.9, therefore, Pc φ cpn 253 s use Specification Equation H.b P r M M rx ry + + M.0 2P c Mcx M cy 3 s 9.8 -ft 3. -ft + + 2(253 s) 37 -ft ft = M.0 o.k. Pr Pa s = = = 0.9, therefore Pc Pn / Ω c 68 s use Specification Equation H.b P r M M rx ry + + M.0 2P c Mcx M cy s 6.2 -ft ft + + 2(68 s) 9.0 -ft ft = M.0 o.k. Section H. Eqn. H.b

5 Engeer: Javier Encas, PE 7/20/204 IP Steel STEEL COLUMN DESIGN GEOMETRY Column Designation... Steel Yield Strength Fy... Modulus of Elasticity Es... Member Length L... Effective Length Kx-factor Effective Length Ky-factor Unbraced Length Lb... W0X ksi ksi ft ft OK Area.. Depth bf... tw... tf... k des. Ix PROPERTIES ² ⁴ Sx... Zx... rx... Iy... Sy... Zy... ry ³ ³ ⁴ ³ ³ SERVICE LOADS () Loads from a st-order Analysis to be Amplified (, ) Axial Moment X Moment Y X-X Y-Y Total Axial the Story... No Lateral Translation... Lateral Translation Only.. Amplified Loads Story Shear... Interstory Drift.. M/M2 Ratio... Cm-factor COMPRESSION Slenderness Ratio Kx L / rx... Slenderness Ratio Ky L / ry... Max. Slenderness Ratio OK Limit States Nomal Pn Flexural Bucklg Torsional Bucklg Flexural-Torsional Bucklg Nomal Strength Pn... Safety Factor Ω... Allowable Strength Pn/Ω... P / Pn/Ω Design Ratio OK BENDING ABOUT Y-Y Limit States Nomal Mn Yieldg Lateral-Torsional Bucklg Flange Local Bucklg Web Local Bucklg Nomal Strength Mn... Safety Factor Ω... Allowable Strength Mn/Ω... M / Mn/Ω Design Ratio OK

6 Engeer: Javier Encas, PE 7/20/204 IP Steel STEEL COLUMN DESIGN BENDING ABOUT X-X Moment at /4 pot of Lb... Moment at /2 pot of Lb... Moment at 3/4 pot of Lb... L. T. Bucklg Cb-factor... Limit States Yieldg Lateral-Torsional Bucklg Flange Local Bucklg Web Local Bucklg Nomal Strength Mn... Safety Factor Ω... Allowable Strength Mn/Ω... M / Mn/Ω Design Ratio Nomal Mn OK COMBINED FORCES AISC Equation {H-a)... AISC Equation {H-b) OK LOCAL BUCKLING Flanges Flexure... Flanges Compression... Web Flexure... Web Compression... Compact Non-slender Compact Non-slender 2

7 Engeer: Javier Encas, PE 7/20/204 IP Steel STEEL COLUMN DESIGN Column Designation... W0X33 Area ² Sx ³ Steel Yield Strength Fy... 5 ksi Depth 9.7 Zx ³ Modulus of Elasticity Es ksi bf rx Member Length L ft tw Iy ⁴ Effective Length Kx-factor...00 tf Sy ³ Effective Length Ky-factor...00 k des Zy ³ Unbraced Length Lb ft OK Ix ⁴ ry Axial Moment X Moment Y X-X Y-Y Total Axial the Story Story Shear No Lateral Translation Interstory Drift Lateral Translation Only... M/M2 Ratio Amplified Loads Cm-factor Slender unstiffened Qs =.00, Slender stiffened Qa =.00, Q = Qs * Qa =.00 AISC E7 Slenderness ratio.00 * 4.00 / 4.9 = 40. Slenderness ratio.00 * 4.00 /.94 = 86.6 Maximum slenderness ratio = Max (40., 86.6) = 86.6 AISC E3 Elastic bucklg 3.4² * ² = 38.2 ksi AISC Eq. E3-4 (38.2 >= 0.44 *.00 * 5 = 22.0) Flexural bucklg stress AISC Eq. E3-2 Fcr =.00 * 5 * (0.658) = 28.9 ksi AISC Eq. E4-4 = [ π² * * 79.0 (.00 * 4.0 * 2)² * 0.6 ] = 70. ksi (70. >= 0.44 *.00 * 5 = 22.0) Torsional bucklg AISC Eq. E3-2 Fcr =.00 * 5 * (0.658) = 37. ksi Compressive strength 28.9 * 9.7 = AISC Eq. E3- Controllg limit state: Flexural Bucklg Compressive design ratio = = /.67 = 0.2 <.0 OK AISC E

8 Engeer: Javier Encas, PE 7/20/204 IP Steel STEEL COLUMN DESIGN = 2.5 * 6. *.0 / (2.5 * * * * 46.0 =.4 AISC Eq F- Plastic moment Nomal strength 5 * 38.8 = 94 k- 94 / 2 = 6.7 AISC Eq. F2- = Lp = 82.2 AISC Eq. F2-5 = rts = 2.2 AISC Eq. F = 9.3 c =.0 (doubly symmetric I-shape) AISC Eq. F2-8a AISC Eq. F2-6 = Lr = 26.9 AISC Eq. F2-4 =.4 * π² * 2900 Fcr = 75.8 ksi Nomal strength Mnx =.4 * [94 - ( * 5 * 35.0)(4.0 * ) / ( )] / 2 = 52.2 AISC Eq. F2-2 X - Controllg limit state: Lateral-Torsional Bucklg X - Flexural design ratio = = /.67 = 0.67 <.0 OK AISC F Nomal strength M (5 * 4.0,.6 * 5 * 9.2) = 70 k- 70 / 2 = 58.3 AISC Eq. F6- Nomal strength (compact flanges) Y - Controllg limit state: Yieldg Y - Flexural design ratio = = /.67 = 0.25 <.0 OK AISC F 2

9 Engeer: Javier Encas, PE 7/20/204 IP Steel STEEL COLUMN DESIGN Allowable axial strength = = 68.0 AISC E Allowable flexural strength = Allowable flexural strength = = 9. AISC F = 34.9 AISC F Combed forces ratio = + [ + ] AISC Eq. H-b = 2 * [ ] = 0.98 <.0 OK 3

It s a bird it s a plane it s Super Table! F y = 50 ksi F u = 65 ksi ASD LRFD ASD LRFD

It s a bird it s a plane it s Super Table! F y = 50 ksi F u = 65 ksi ASD LRFD ASD LRFD It s a bird it s a plane it s Super Table! steelwise ONE-STOP SHOP BY ABBAS AMINMANSOUR, PhD WHAT IF THERE WAS a table that could be directly used for designing tension members, compression members, flexural

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 04 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Compression Members By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering

More information

CE 562 Structural Design I Midterm No. 2 Closed Book Portion (25 / 100 pts)

CE 562 Structural Design I Midterm No. 2 Closed Book Portion (25 / 100 pts) CE 56 Structural Design I Name: Midterm No. Closed Book Portion (5 / 100 pts) 1. ( pts) List all of the failure modes that should be checked for the followg bearg-tpe connection: P u ½ 7/8" dia bolts,

More information

General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

More information

Local Buckling. Local Buckling in Columns. Buckling is not to be viewed only as failure of the entire member

Local Buckling. Local Buckling in Columns. Buckling is not to be viewed only as failure of the entire member Local Buckling MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE V Dr. Jason E. Charalamides Local Buckling in Columns Buckling is not to e viewed only as failure of the entire memer

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

More information

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson Singly Symmetric Combination Section Crane Girder Design Aids by Patrick C. Johnson PCJohnson@psu.edu The Pennsylvania State University Department of Civil and Environmental Engineering University Park,

More information

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted Errata posted 8-16-2017 Revisions are shown in red. Question 521, p. 47: Question 521 should read as follows: 521. The W10 22 steel eam (Fy = 50 ksi) shown in the figure is only raced at the center of

More information

DNV DESIGN. POU_Rect - Design Report Page 1 of 11

DNV DESIGN. POU_Rect - Design Report Page 1 of 11 DNV DESIGN Page 1 of 11 Details Code Details Code DNV 2.7-1 2006 with AISC 360-10 ASD Description This is the 2006 edition of the DNV Standard for Certification No 2.7-1, which defines minimum technical

More information

Sway Column Example. PCA Notes on ACI 318

Sway Column Example. PCA Notes on ACI 318 Sway Column Example PCA Notes on ACI 318 ASDIP Concrete is available for purchase online at www.asdipsoft.com Example 11.2 Slenderness Effects for Columns in a Sway Frame Design columns C1 and C2 in the

More information

UNIVERSITY OF AKRON Department of Civil Engineering

UNIVERSITY OF AKRON Department of Civil Engineering UNIVERSITY OF AKRON Department of Civil Engineering 4300:401-301 July 9, 2013 Steel Design Sample Quiz 2 1. The W10 x 54 column shown has both ends pinned and consists of A992 steel (F y = 50 ksi, F u

More information

of I Section Members

of I Section Members IMPROVED DESIGN ASSESSMENT OF LTB OF I-SECTION MEMBERS VIA MODERN COMPUTATIONAL METHODS Improved Design Assessment of LTB of I Section Members Donald W. White (with credits to Dr. Woo Yong Jeong & Mr.

More information

A Simply supported beam with a concentrated load at mid-span: Loading Stages

A Simply supported beam with a concentrated load at mid-span: Loading Stages A Simply supported beam with a concentrated load at mid-span: Loading Stages P L/2 L PL/4 MOMNT F b < 1 lastic F b = 2 lastic F b = 3 lastoplastic 4 F b = Plastic hinge Plastic Dr. M.. Haque, P.. (LRFD:

More information

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4).

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4). SUMMARY FOR COMPRESSION MEMBERS Columns with Pinned Supports Step 1: Step : Determine the factored design loads (AISC/LRFD Specification A4). From the column tables, determine the effective length KL using

More information

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES 163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n

More information

4.3 Moment Magnification

4.3 Moment Magnification CHAPTER 4: Reinforced Concrete Columns 4.3 Moment Magnification Description An ordinary or first order frame analysis does not include either the effects of the lateral sidesway deflections of the column

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram CHAPTER NINE COLUMNS 4 b. The modified axial strength in compression is reduced to account for accidental eccentricity. The magnitude of axial force evaluated in step (a) is multiplied by 0.80 in case

More information

CivilBay Crane Load and Crane Runway Beam Design v1.0.0 User Manual

CivilBay Crane Load and Crane Runway Beam Design v1.0.0 User Manual CivilBay Crane Load and Crane Runway Beam Design v1.0.0 User Manual (Alberta, Canada) Web: Tel: 1-403-510568 01-01-01 Rev 1.0.0 Page 1 of 11 TABLE OF CONTENTS 1.0 END USER LICENSE AGREEMENT... 3.0 QUICK

More information

RSTAB. Structural Analysis and Design Dynamic Analysis. Verification Manual. Ing. Software Dlubal Am Zellweg 2 D Tiefenbach

RSTAB. Structural Analysis and Design Dynamic Analysis. Verification Manual. Ing. Software Dlubal Am Zellweg 2 D Tiefenbach Version July 2011 Program RSTAB Structural Analysis and Design Dynamic Analysis Verification Manual All rights, including those of translation, are reserved. portion of this book may be reproduced mechanically,

More information

Steel Design. Notation:

Steel Design. Notation: Steel Design Notation: a A Ab Ae Ag Agv An Ant Anv Aw = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area An by the shear lag factor

More information

Minimum-weight design of built-up wideflange

Minimum-weight design of built-up wideflange Mimum-weight design of built-up wideflange steel sections Yousef A. Al-Salloum Department of Civil Engeerg, Kg Said University, P. O. Box 800, Riyadh 11421, Saudi Arabia Email: ysalloum@ksu.edu.sa Abstract

More information

FLOW CHART FOR DESIGN OF BEAMS

FLOW CHART FOR DESIGN OF BEAMS FLOW CHART FOR DESIGN OF BEAMS Write Known Data Estimate self-weight of the member. a. The self-weight may be taken as 10 percent of the applied dead UDL or dead point load distributed over all the length.

More information

Steel Design. Notation:

Steel Design. Notation: Steel Design Notation: a A A b A e A g A gv A n A nt A nv A w = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area A n by the shear lag

More information

AISC LRFD Beam Design in the RAM Structural System

AISC LRFD Beam Design in the RAM Structural System Model: Verification11_3 Typical Floor Beam #10 W21x44 (10,3,10) AISC 360-05 LRFD Beam Design in the RAM Structural System Floor Loads: Slab Self-weight: Concrete above flute + concrete in flute + metal

More information

NYIT Instructors: Alfred Sanabria and Rodrigo Suarez

NYIT Instructors: Alfred Sanabria and Rodrigo Suarez NYIT Instructors: Alfred Sanabria and Rodrigo Suarez Massive stone columns, used from Stonehenge to Ancient Greece were stabilized by their own work With steel and concrete technology columns have become

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.10 Examples 5.10.1 Analysis of effective section under compression To illustrate the evaluation of reduced section properties of a section under axial compression. Section: 00 x 80 x 5 x 4.0 mm Using

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

Steel Design. Notation: a A A b A e

Steel Design. Notation: a A A b A e Steel Design Notation: a A A b A e A g A gv A n A nt A nv A w = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area A n by the shear lag

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2013 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sculpture By Richard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Structures of the Everyday) FALL 2013 lecture

More information

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION CALCULATION FOR SHEAR CONNECTION 8.xmcd 1 of 30 I. DESIGN DATA AND LOAD ( LRFD - AISC 14th Edition ) COLUMN

More information

Steel Cross Sections. Structural Steel Design

Steel Cross Sections. Structural Steel Design Steel Cross Sections Structural Steel Design PROPERTIES OF SECTIONS Perhaps the most important properties of a beam are the depth and shape of its cross section. There are many to choose from, and there

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

SECTION 7 DESIGN OF COMPRESSION MEMBERS

SECTION 7 DESIGN OF COMPRESSION MEMBERS SECTION 7 DESIGN OF COMPRESSION MEMBERS 1 INTRODUCTION TO COLUMN BUCKLING Introduction Elastic buckling of an ideal column Strength curve for an ideal column Strength of practical column Concepts of effective

More information

CIV 207 Winter For practice

CIV 207 Winter For practice CIV 07 Winter 009 Assignment #10 Friday, March 0 th Complete the first three questions. Submit your work to Box #5 on the th floor of the MacDonald building by 1 noon on Tuesday March 31 st. No late submissions

More information

BEAMS. By.Ir.Sugeng P Budio,MSc 1

BEAMS. By.Ir.Sugeng P Budio,MSc 1 BEAMS B.Ir.Sugeng P Budio,MSc 1 INTRODUCTION Beams are structural members that support transverse loads and are therefore subjected primaril to flexure, or bending. If a substantial amount of axial load

More information

ORIGIN 0. PTC_CE_BSD_7.2_us_mp.mcdx. Mathcad Enabled Content Copyright 2011 Knovel Corp.

ORIGIN 0. PTC_CE_BSD_7.2_us_mp.mcdx. Mathcad Enabled Content Copyright 2011 Knovel Corp. PC_CE_BSD_7._us_mp.mcdx Copyright 011 Knovel Corp. Building Structural Design homas P. Magner, P.E. 011 Parametric echnology Corp. Chapter 7: Reinforced Concrete Column and Wall Footings 7. Pile Footings

More information

APPENDIX D COMPARISON OF CURVED STEEL I-GIRDER BRIDGE DESIGN SPECIFICATIONS

APPENDIX D COMPARISON OF CURVED STEEL I-GIRDER BRIDGE DESIGN SPECIFICATIONS APPENIX COMPARISON O CURVE STEEL I-GIRER BRIGE ESIGN SPECIICATIONS (This page is intentionally left blank.) TABLE O CONTENTS LIST O IGURES... -iv LIST O TABLES... -vi 1 OBJECTIVE... -1 METHOOLOGY... -1

More information

(Round up to the nearest inch.)

(Round up to the nearest inch.) Assignment 10 Problem 5.46 LRFD First, select the lightest weight W14 column. Use the recommended design value for K for the pinned-fixed support condition specified (ref. Commentary, Appendix 7, AISC

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual)

Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual) 1 / 8 Geometry beam span L 40 ft Steel Wide Flange Beam: beam spacing s beam 10 ft F y 50 ksi construction live load LL construc 20 psf row 148 live load LL 150 psf unit weight of concrete UW conc 145

More information

Where and are the factored end moments of the column and >.

Where and are the factored end moments of the column and >. 11 LIMITATION OF THE SLENDERNESS RATIO----( ) 1-Nonsway (braced) frames: The ACI Code, Section 6.2.5 recommends the following limitations between short and long columns in braced (nonsway) frames: 1. The

More information

X X. Physical Properties Gross Properties Effective Properties Torsional Properties

X X. Physical Properties Gross Properties Effective Properties Torsional Properties Structural Sections X X Cee Purlins (flange) Physical Properties Gross Properties Effective Properties Torsional Properties Ga. (nom) (lip) Weight Area Ix Sx Rx Iy Sy Sy R Ry Ae Ixe Sxe J (x10-3 ) Cw Xo

More information

The Influence of a Weld-Affected Zone on the Compressive and Flexural Strength of Aluminum Members

The Influence of a Weld-Affected Zone on the Compressive and Flexural Strength of Aluminum Members Bucknell University Bucknell Digital Commons Honors Theses Student Theses 2013 The Influence of a Weld-Affected Zone on the Compressive and Flexural Strength of Aluminum Members Shengduo Du sd034@bucknell.edu

More information

Example Stayed beam with two pylons

Example Stayed beam with two pylons Example Stayed beam with two pylons A roof structure is a stayed beam. The roof span is 300 ft. Stay vertical run is 20 ft. The deck is weighs 12 PSF. Beams have a transverse spacing equal to 40 feet.

More information

C:\Users\joc\Documents\IT\Robot EC3 6_2_1 (5)\Eurocode _2_1(5) Concentrated Load - Rev 1_0.mcdx. γ M γ M γ M2 1.

C:\Users\joc\Documents\IT\Robot EC3 6_2_1 (5)\Eurocode _2_1(5) Concentrated Load - Rev 1_0.mcdx. γ M γ M γ M2 1. C:\Users\joc\Documents\IT\Robot EC3 6 1 (5)\Eurocode 1993-1-1 6 1(5) Concentrated Load - Rev 1_0.mcdx Page 1 of 01/03/016 Section sec HEB500 with steel grade gr S355 I x Iy_sec (sec) cm 4 = 10700 cm 4

More information

Chapter 8: Bending and Shear Stresses in Beams

Chapter 8: Bending and Shear Stresses in Beams Chapter 8: Bending and Shear Stresses in Beams Introduction One of the earliest studies concerned with the strength and deflection of beams was conducted by Galileo Galilei. Galileo was the first to discuss

More information

APPENDIX A Thickness of Base Metal

APPENDIX A Thickness of Base Metal APPENDIX A Thickness of Base Metal For uncoated steel sheets, the thickness of the base metal is listed in Table A.1. For galvanized steel sheets, the thickness of the base metal can be obtained by subtracting

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.4 Beams As stated previousl, the effect of local buckling should invariabl be taken into account in thin walled members, using methods described alread. Laterall stable beams are beams, which do not

More information

Beam Design and Deflections

Beam Design and Deflections Beam Design and Deflections tation: a = name for width dimension A = name for area Areq d-adj = area required at allowable stress when shear is adjusted to include self weight Aweb = area of the web of

More information

DESIGN OF BUCKLING RESISTANCE OF COMPRESSED HSS - CHANNELS

DESIGN OF BUCKLING RESISTANCE OF COMPRESSED HSS - CHANNELS DESIGN OF BUCKLING RESISTANCE OF COMPRESSED HSS - CHANNELS ABSTRACT Asko Talja Technical Research Centre of Finland (VTT) Laboratory of Structural Engineering Kemistintie 3 SF- 02150 ESPOO FINLAND Rakenteiden

More information

Prof. Dr. Zahid Ahmad Siddiqi BEAM COLUMNS

Prof. Dr. Zahid Ahmad Siddiqi BEAM COLUMNS BEA COLUNS Beam columns are structural members that are subjected to a combination of bending and axial stresses. The structural behaviour resembles simultaneousl to that of a beam and a column. ajorit

More information

Notes on Frame Buckling

Notes on Frame Buckling Notes on Frame Bucklg irk Marti University of Virgia Sprg 00 Introduction The followg notes clude several examples of simple frame bucklg problems which illustrate some of the assumptions and limitations

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode 3 Module 7 : Worked Examples Lecture 20 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic

More information

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P

ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL 4 COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL 4 H1 FORMERLY UNIT 21718P ENGINEERING SCIENCE H1 OUTCOME 1 - TUTORIAL COLUMNS EDEXCEL HNC/D ENGINEERING SCIENCE LEVEL H1 FORMERLY UNIT 21718P This material is duplicated in the Mechanical Principles module H2 and those studying

More information

SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB

SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB 1 of 18 SHEAR CONNECTION: W BEAM WITH SHEAR PLATE ONE-WAY SHEAR CONNECTION TO W COLUMN WEB Description:Detailed Report 17 2 of 18 I. DESIGN DATA AND LOADS (ASD-14th Edition) COLUMN PROPERTIES: W14X90 -

More information

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column:

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column: APRIL 2015 DR. Z s CORNER Conquering the FE & PE exams Formulas, Examples & Applications Topics covered in this month s column: PE Exam Specifications (Geotechnical) Transportation (Horizontal Curves)

More information

6593 Riverdale St. San Diego, CA (619) Page of

6593 Riverdale St. San Diego, CA (619) Page of Client: ProVent PV1805 Project: CBISC-05 Iso Curb CBISPRS Upper curb rail Unit: YORK ZX 04-07; XX A7; ZY, ZQ, XY, XQ 04-06 Curb Information Hcurb upper = 5.5 in (Height of upper curb rail) Lcurb = 70.375

More information

6593 Riverdale St. San Diego, CA (619) Page of

6593 Riverdale St. San Diego, CA (619) Page of 6593 Riverdale St. Client: ProVent PV1807 Description: CBKD-91 (80-266-18**) Unit: YORK ZJ,ZR 180-300 / ZF 210-300 / XP 180-240 Curb Information Hcurb = 18 in (Height of curb) Lcurb = 126.25 in (Length

More information

6593 Riverdale St. San Diego, CA (619) Page of. Client: ProVent PV1807 Description: CBKD-92 ( **) Unit: ZF180

6593 Riverdale St. San Diego, CA (619) Page of. Client: ProVent PV1807 Description: CBKD-92 ( **) Unit: ZF180 6593 Riverdale St. Client: ProVent PV1807 Description: CBKD-92 (80-266-19**) Unit: ZF180 Curb Information Hcurb = 18 in (Height of curb) Lcurb = 115.25 in (Length of curb) wcurb = 84 in (Width of curb)

More information

Critical Load columns buckling critical load

Critical Load columns buckling critical load Buckling of Columns Buckling of Columns Critical Load Some member may be subjected to compressive loadings, and if these members are long enough to cause the member to deflect laterally or sideway. To

More information

5 Compression Members

5 Compression Members 5 Compression Members 5.1 GENERAL REMARKS Similar to the heavy hot-rolled steel sections, thin-walled cold-formed steel compression members can be used to carry a compressive load applied through the centroid

More information

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams University of Alberta Department of Civil & Environmental Engineering Master of Engineering Report in Structural Engineering Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

More information

Improved Flexural Design Provisions for I-Shaped Members and Channels

Improved Flexural Design Provisions for I-Shaped Members and Channels Improved Flexural Design Provisions for I-Shaped Members and Channels DONALD W. WHITE Donald W. White is Associate Professor, Structural Engineering, Mechanics and Materials, Georgia Institute of Technology,

More information

BUCKLING STRENGTH ANALYSIS OF BARS AND FRAMES, AND SPHERICAL SHELLS

BUCKLING STRENGTH ANALYSIS OF BARS AND FRAMES, AND SPHERICAL SHELLS CLASSIFICATION NOTES No. 30.1 BUCKLING STRENGTH ANALYSIS OF BARS AND FRAMES, AND SPHERICAL SHELLS APRIL 004 Veritasveien 1, NO-13 Høvik, Norway Tel.: +47 67 57 99 00 Fax: +47 67 57 99 11 FOREWORD is an

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: Project: Extreme Marquees Design check 5m 9m Function Standard Tent Structure for 80km/hr Wind 4m 9m Function Standard Tent Structure for 80km/hr Wind 3m 9m Function Standard Tent Structure for

More information

3. Stability of built-up members in compression

3. Stability of built-up members in compression 3. Stability of built-up members in compression 3.1 Definitions Build-up members, made out by coupling two or more simple profiles for obtaining stronger and stiffer section are very common in steel structures,

More information

Reports RESEARCH REPORT RP00-3 RESEARCH REPORT RP01-1 OCTOBER REVISION 2006 REVISION

Reports RESEARCH REPORT RP00-3 RESEARCH REPORT RP01-1 OCTOBER REVISION 2006 REVISION research report A AISI Design Sponsored Approach Resear for ch Complex Reports AISI Sponsored Stiffeners Research Reports RESEARCH REPORT RP00-3 RP01-1 RESEARCH REPORT RP01-1 OCTOBER 2001 2000 REVISION

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

Lateral Buckling of Singly Symmetric Beams

Lateral Buckling of Singly Symmetric Beams Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (1992) - 11th International Specialty Conference on Cold-Formed Steel Structures

More information

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members research report Web Crippling and Bending Interaction of Cold-Formed Steel Members RESEARCH REPORT RP02-2 MARCH 2002 REVISION 2006 Committee on Specifications for the Design of Cold-Formed Steel Structural

More information

Design of a Multi-Storied RC Building

Design of a Multi-Storied RC Building Design of a Multi-Storied RC Building 16 14 14 3 C 1 B 1 C 2 B 2 C 3 B 3 C 4 13 B 15 (S 1 ) B 16 (S 2 ) B 17 (S 3 ) B 18 7 B 4 B 5 B 6 B 7 C 5 C 6 C 7 C 8 C 9 7 B 20 B 22 14 B 19 (S 4 ) C 10 C 11 B 23

More information

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y. 014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

More information

Towards The. Design of Super Columns. Prof. AbdulQader Najmi

Towards The. Design of Super Columns. Prof. AbdulQader Najmi Towards The Design of Super Columns Prof. AbdulQader Najmi Description: Tubular Column Square or Round Filled with Concrete Provided with U-Links welded to its Walls as shown in Figure 1 Compression Specimen

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling In the case of elements subjected to compressive forces, secondary bending effects caused by,

More information

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths Proceedings of the Annual Stability Conference Structural Stability Research Council San Antonio, Texas, March 21-24, 2017 Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal

More information

Torsional Analysis of

Torsional Analysis of Steel Design Guide Series Torsional Analysis of Structured Steel Members Steel Design Guide Series Torsional Analysis of Structural Steel Members Paul A. Seaburg, PhD, PE Head, Department of Architectural

More information

A.2 AASHTO Type IV, LRFD Specifications

A.2 AASHTO Type IV, LRFD Specifications A.2 AASHTO Type IV, LRFD Specifications A.2.1 INTRODUCTION A.2.2 DESIGN PARAMETERS 1'-5.0" Detailed example showing sample calculations for design of typical Interior AASHTO Type IV prestressed concrete

More information

host structure (S.F.D.)

host structure (S.F.D.) TABLE 00.4 FBC Typical Mansard Beam [AAF] Allowable Span of Mansard Screen Enclosure Self-Mating Beams in accordance with requirements of Table 00.4 (and the 005 Aluminum Design Manual) using 6005T5 alloy:

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 7. BEAM COLUMNS 7.1 Introduction The Indian steel code is now in the process of revision as specification-based design gives way to performance-based design. An expert committee mainly comprising eminent

More information

EXTERIOR FRAMING EXTERIOR FRAMING

EXTERIOR FRAMING EXTERIOR FRAMING 1 EXTERIOR FRAMING BUILDSTRONG www.buildstrong.com 2 TABLE OF CONTENTS Product Identification...........................5 General Product Information....................... 4-5 Compliance Guaranteed...............................

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com

***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com Spreadsheet Title: Last Revision 8/27/2005 ***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com www.designspreadsheets.com email: info@designspreadsheets.com Project I-Girder

More information

research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach)

research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach) research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach) RESEARCH REPORT RP18- August 018 Committee on Specifications

More information

Lateral Torsional Buckling (sections class 1-3) - Column Item COx

Lateral Torsional Buckling (sections class 1-3) - Column Item COx Page /7 Lateral Torsional Buckling (sections class -3) - according to EN 993--:005 (EC3) section and eqn. numbers refer to this code (Form EC3-LTB_06-04-8.mcd - adopted) Profile chosen Profile "HEA40"

More information

7.3 Design of members subjected to combined forces

7.3 Design of members subjected to combined forces 7.3 Design of members subjected to combined forces 7.3.1 General In the previous chapters of Draft IS: 800 LSM version, we have stipulated the codal provisions for determining the stress distribution in

More information

Mechanics of Structure

Mechanics of Structure S.Y. Diploma : Sem. III [CE/CS/CR/CV] Mechanics of Structure Time: Hrs.] Prelim Question Paper Solution [Marks : 70 Q.1(a) Attempt any SIX of the following. [1] Q.1(a) Define moment of Inertia. State MI

More information

Eurocode 3 for Dummies The Opportunities and Traps

Eurocode 3 for Dummies The Opportunities and Traps Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A )

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A ) Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method (CSA A23.3-94) Slender Concrete Column Design in Sway Frame Buildings Evaluate slenderness effect for columns in a

More information

PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7.

PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7. PROFILE SIZES: BEAM : UB254X146X43 D b = 259.60 mm W b = 147.30 mm T b = 12.70 mm t wb = 7.30 mm r b = 7.60 mm COLUMN : UC254X254X73 D C = 254.00 mm W c = 254.00 mm T C = 14.20 mm t wc = 8.60 mm r C =

More information

NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS

NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS Abdul Kareem M. B. Al-Shammaa and Ehsan Ali Al-Zubaidi 2 Department of Urban Planning Faculty of Physical Planning University of Kufa

More information

1. Given the shown built-up tee-shape, determine the following for both strong- and weak-axis bending:

1. Given the shown built-up tee-shape, determine the following for both strong- and weak-axis bending: 1. Given the shown built-up tee-shape, determe the followg for both strong- and weak-ais bendg: a. Location of the neutral ais b. Moment of ertia c. Section Moduli d. Radius of gration Solution: (a) Location

More information

Civil & Structural Engineering Design Services Pty. Ltd.

Civil & Structural Engineering Design Services Pty. Ltd. Client: Project: Reference: Extreme Marquees Pty Ltd Design check 3m 3m Folding Marquees Structure for 91.8km/hr Wind Spead Extreme Marquees Technical Data Report by: KZ Checked by: EAB Date: 04/11/2016

More information

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2018 lecture

twenty steel construction: columns & tension members ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS FALL 2018 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS Cor-Ten Steel Sulpture By Rihard Serra Museum of Modern Art Fort Worth, TX (AISC - Steel Strutures of the Everyday) FALL 2018 leture

More information