Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual)

Size: px
Start display at page:

Download "Lecture Example. Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual)"

Transcription

1 1 / 8 Geometry beam span L 40 ft Steel Wide Flange Beam: beam spacing s beam 10 ft F y 50 ksi construction live load LL construc 20 psf row 148 live load LL 150 psf unit weight of concrete UW conc 145 pcf concrete compressive strength f' c 3 ksi Steel Deck (info from Vulcraft Steel Roof and Floor Deck Manual) length of deck sheet L sheet 40 ft weight of slab wt slab 44 psf number of spans for deck N spans 4.0 = L sheet / s beam weight of deck wt deck 2.82 psf Deck 1.5VLR18 SDI max. unshored clear span max_span 10.1 ft >= s beam TRUE width of rib at top w top 4.25 in max. LL max_ll 164 psf >= LL TRUE width of rib at bottom w bot 3.5 in total slab depth h slab 4 in width of stiffening "bump" w bump 0 in rib depth h ribs 1.5 in rib spacing s rib 6 in slab thickness t slab 2.5 in = h slab - h ribs Design Summary After Composite Action Meets Design Criteria checked TRUE stud_position = middle of rib in these calculations stud_position_rating = weak N studs = 40 0 Before Composite Action % composite = 90% M u <= M n TRUE 195 k-ft 611 k-ft M u <= M n TRUE 611 k-ft 897 k-ft V u <= V n TRUE 19.5 k 232 k V u <= V n TRUE 61.1 k 232 k 0.8 factor accounts for partial DL = 0.65 in = 0.8 * D LL <= LL_max TRUE rotational restraint at beam ends 1.29 in 1.33 in

2 2 / 8 Before Composite Action: Wide Flange Properties: factored uniform distributed load u 973 plf beam 76 plf = 1.2 * ( ( wt slab + wt deck ) * s beam + beam ) * LL construc * s beam A 22.3 in 2 d 18.2 in moment due to factored loads M u 195 k-ft = u /1000 * L^2 / 8 b f 11 in shear due to factored loads V u 19.5 k-ft = u /1000 * L / 2 t f 0.68 in t w in available flexure strength M p 611 k-ft = 0.9 * F y * Z x /12 h w in = d - 2 * t f available shear strength V n 232 k see Appendix 1 t f 0.68 in I x 1330 in 4 Available Shear Strength from Studs, V' avail strength of stud F u_stud 65 ksi maximum stud diameter stud_max 0.75 in with formed steel deck AISC I8.2c(1)(2), pg stud diameter stud 0.75 in cross-sectional area of stud A sa in 2 = PI() * stud^2 / 4 Z x 163 in 3 coefficient to account for group effe R g 1 for one stud welded in a steel deck rib with deck oriented perp. to beam AISC I8.2a, pg Default: stud_position middle of rib AISC pg e mid_ht_center 1.56 in = 1/2 * (w top + w bot ) / 2 - w bump /2 - stud / 2 - IF( w bump > 0, stud /2, 0 ) rating weak = IF( e mid_ht_center < 2, "weak", "strong" ) specified stud position Specified: stud_position middle of rib rating weak coefficient to account for position R p 0.60 = IF( stud_position = "weak", 0.6, IF( stud_position = "strong", 0.75, NA() ) ) Q n_max 17.2 k = R g * R p * A sa * F u_stud modulus of elasticity of conc. E c 3024 ksi = UW conc^1.5 * SQRT( f' c ) Q n 21.0 k = 0.5 * A sa * SQRT( f' c * E c ) shear strength of one stud Q n 17.2 k = MIN( Q n_max, Q n )

3 3 / 8 Available Shear Strength from Studs, V' avail -cont'd N studs along beam N studs_avail 40 = ROUNDDOWN( L / 2 / ( s rib /12 ), 0 ) between M = 0 and Mmax req'd stud shear strength V' req'd_full 765 k = MIN( C slab, T beam ) see values below for full composite action N studs_full 45 = ROUNDUP( V' req'd_full / Q n, 0 ) specified num. studs N studs 40 = MIN( N studs_avail, N studs_full ) available shear strength along bea V' studs 689 k = Q n * N studs_avail between M = 0 and Mmax % composite 90% = V' studs / V' req'd_full After Composite Action: u 3053 plf = 1.2 * ( ( wt slab + wt deck ) * s beam + beam ) * LL * s beam M u 611 k-ft = u /1000 * L^2 / 8 V u 61.1 k-ft = u /1000 * L / 2 effective flange width b eff 120 in = MIN( L / 4, s beam ) * 12 AISC I3.1a, pg 88 Limiting horizontal force on beam Limiting Horizontal Force, F LIMIT between M = 0 and Mmax max poss. Comp. force in slab C slab_max 765 k = 0.85 * f' c * t slab * b eff max poss. Tension force in beam T beam_max 1115 k = F y * A V' studs 689 k = V' studs limiting horizontal force F LIMIT 689 = MIN( C slab_max, T beam_max, V' studs ) NA in top flang (see Appendix 2) M n 997 k-ft M n 897 k-ft = 0.9 * M n V n 232 k ( shear strength of beam only)

4 4 / 8 Deflection dead loads D klf = ( ( wt slab + wt deck ) * s beam + beam ) / 1000 deflection due to dead loads D 0.81 in = 5 / 384 * L /12 * ( L *12 )^4 / ( * I x ) moment of inertia I comp 3175 in 4 (see Appendix 3) of composite section I x 1330 in 4 C s 765 k = MIN( C slab_max, T beam_max ) V' studs 689 k I eqiuv 3081 in 4 = I x + SQRT( MIN( 1, V' studs / C s ) ) * ( I comp - I x ) AISC Eqn. C-I3-4, pg I eff 2311 in 4 = 0.75 * I eqiuv AISC C I3.2, pg service live load L 1.50 klf = LL/1000 * s beam deflection due to live load L 1.29 in = 5 / 384 * L /12 * ( L *12 )^4 / ( * I eff ) limiting live load deflection L/ in = L *12 / 360

5 5 / 8

6 6 / 8 Appendix 1: Available Shear Strength, Vn F y 50 ksi t w in E 29,000 ksi h/t w 37.8 d 18.2 in k v 5 =IF(h/t w <260,5,NA()) TP =2.24*SQRT(E/F y ) TP =1.1*SQRT(k v *E/F y ) TP =1.37*SQRT(k v *E/F y ) IF Then C v = And v = h/t w <= TP1 TRUE TP1 < h/t w <= TP2 FALSE TP2 < h/t w <= TP3 FALSE =1.1*SQRT(k v *E/F y )/h/t w 0.90 TP3 < h/t w FALSE =1.51*E*k v /((h/t w )^2*F y ) 0.90 C v v 1.00 V n k =0.6*F y *d*t w *C v v V n k = v *V n Appendix 2: Plastic Moment, Mn all of beam is in tension NA is in slab FALSE = IF( F LIMIT = T beam, TRUE, FALSE ) a 3.64 in = T beam / ( 0.85 * f' c * b eff ) M k-ft = T beam * ( d / 2 + h slab - a / 2 ) /12 only part of beam is in tension ELSE area of one flange A F 7.48 in 2 area of web A W 7.16 in 2

7 7 / 8 Appendix 2: Plastic Moment, Mn -cont'd if NA is in the top flange NA in top flange TRUE = IF( AND( NOT( NA is in slab ), F LIMIT > F y * A W ), TRUE, FALSE ) depth of top flange in comp. h C 0.38 in = ( t f - ( F LIMIT / F y - ( A F + A W ) ) / b f ) / 2 comp. force in top flange C TF 208 k = F y * h C * b f b eff tension force in top flange T TF 166 k = F y * ( t f - h C ) * b f tension force in web T W 358 k = F y * A W tension force in bot. flange T BF 374 k = F y * A F F beam 689 k = T BF + T W + T TF - C TF h slab d t f t w h c t slab t rib NA depth of comp. zone in slab a 2.25 in = F beam / ( 0.85 * f' c * b eff ) mom. Arm for top flange comp. d C_TF 3.06 in = h C / 2 + h slab - a / 2 mom. Arm for top flange ten. d T_TF 3.40 in = ( t f - h C ) /2 + h C + h slab - a / 2 mom. Arm for web d W 12.0 in =h w /2 + t f + h slab - a/2 moment arm for bot. flange d BF 20.7 in = t f / 2 + h w + t f + h slab - a/2 M k-ft = ( T BF * d BF + T W * d W + T TF * d T_TF - C TF * d C_TF ) /12 b f NA is in web FALSE = AND( NOT( NA is in slab ), NOT( NA in top flange ) ) depth of web in compression h C in = ( h w - ( F LIMIT / ( F y * t w ) ) ) / 2 C TF 374 k = F y * A F C W -166 k = F y * h C * t w T W 524 k = F y * ( h w - h C ) * t w T BF 374 k = F y * A F F beam 689 = T BF + T W - C W - C TF a 2.25 in = F beam / ( 0.85 * f' c * b eff ) d TF 3.21 in = t f / 2 + h slab - a / 2 d C_W in = h C / 2 + t f + h slab - a / 2 d T_W 8.1 in = ( h w - h C ) / 2 + h C + t f + h slab - a / 2 d BF 20.7 in = t f / 2 + h w + t f + h slab - a / 2 M k-ft = ( C TF * d TF + C W * d C_W + T W * d T_W + T BF * d BF ) / 12 M n 997 k-ft = IF( NA is in slab, M 1, IF( NA in top flange, M 2, IF( NA is in web, M 3, NA() ) ) )

8 8 / 8 Appendix 3. Transformed Section b eff / n d slab y slab y comp y beam modular ratio n 9.59 = / E c Reference Axis slab beam Total area of section A 31 in 2 = b eff / n * t slab A 22.3 in 2 A 54 in 2 distance from bottom of beam y in = d + h slab - t slab /2 y 9.1 in y in to centroid of section centroid of compos. Section y comp 16.0 in = Ay / A Ay in 3 = A * y Ay in 3 Ay 858 in 3 mom. Inertia about own centroid I' 16.3 in 4 = 1/12 * b eff / n * t slab^3 I' 1330 in 4 distance from section centroid d 4.93 in = y - y bar d 6.92 in to composite centroid I' + A d in 4 I' + A d in 4 I' + A d in 4

AISC LRFD Beam Design in the RAM Structural System

AISC LRFD Beam Design in the RAM Structural System Model: Verification11_3 Typical Floor Beam #10 W21x44 (10,3,10) AISC 360-05 LRFD Beam Design in the RAM Structural System Floor Loads: Slab Self-weight: Concrete above flute + concrete in flute + metal

More information

A Simply supported beam with a concentrated load at mid-span: Loading Stages

A Simply supported beam with a concentrated load at mid-span: Loading Stages A Simply supported beam with a concentrated load at mid-span: Loading Stages P L/2 L PL/4 MOMNT F b < 1 lastic F b = 2 lastic F b = 3 lastoplastic 4 F b = Plastic hinge Plastic Dr. M.. Haque, P.. (LRFD:

More information

3.5 Reinforced Concrete Section Properties

3.5 Reinforced Concrete Section Properties CHAPER 3: Reinforced Concrete Slabs and Beams 3.5 Reinforced Concrete Section Properties Description his application calculates gross section moment of inertia neglecting reinforcement, moment of inertia

More information

CHAPTER 3 VERIFICATION OF PROPOSED EQUATIONS FOR THE EFFECTIVE MOMENT OF INERTIA OF STEEL JOIST - CONCRETE SLAB SYSTEMS

CHAPTER 3 VERIFICATION OF PROPOSED EQUATIONS FOR THE EFFECTIVE MOMENT OF INERTIA OF STEEL JOIST - CONCRETE SLAB SYSTEMS CHAPTER 3 VERIFICATION OF PROPOSED EQUATIONS FOR THE EFFECTIVE MOMENT OF INERTIA OF STEEL JOIST - CONCRETE SLAB SYSTEMS 3.1 Overview The proposed equations in the AISC Guide (Murray et al. 1997) for the

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted

ERRATA for PE Civil Structural Practice Exam ISBN Copyright 2014 (July 2016 Second Printing) Errata posted Errata posted 8-16-2017 Revisions are shown in red. Question 521, p. 47: Question 521 should read as follows: 521. The W10 22 steel eam (Fy = 50 ksi) shown in the figure is only raced at the center of

More information

MAXIMUM SUPERIMPOSED UNIFORM ASD LOADS, psf SINGLE SPAN DOUBLE SPAN TRIPLE SPAN GAGE

MAXIMUM SUPERIMPOSED UNIFORM ASD LOADS, psf SINGLE SPAN DOUBLE SPAN TRIPLE SPAN GAGE F-DEK ROOF (ASD) 1-1/2" high x 6" pitch x 36" wide SECTION PROPERTIES GAGE Wd 22 1.63 20 1.98 18 2.62 16 3.30 I D (DEFLECTION) 0.142 0.173 0.228 fy = 40 ksi Sp Sn 0.122 0.135 708 815 905 1211 1329 2365

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

The plastic moment capacity of a composite cross-section is calculated in the program on the following basis (BS 4.4.2):

The plastic moment capacity of a composite cross-section is calculated in the program on the following basis (BS 4.4.2): COMPUTERS AND STRUCTURES, INC., BERKELEY, CALIFORNIA SEPTEMBER 2002 COMPOSITE BEAM DESIGN BS 5950-90 Technical Note Composite Plastic Moment Capacity for Positive Bending This Technical Note describes

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

More information

Chapter Objectives. Design a beam to resist both bendingand shear loads

Chapter Objectives. Design a beam to resist both bendingand shear loads Chapter Objectives Design a beam to resist both bendingand shear loads A Bridge Deck under Bending Action Castellated Beams Post-tensioned Concrete Beam Lateral Distortion of a Beam Due to Lateral Load

More information

Structural Specialization

Structural Specialization Structural Specialization Project: Size beams for the given structural layout using loading conditions specified in the International Building Code. Contents Typical Floor Beam Layout... 2 Building Sections...

More information

Chapter 8: Bending and Shear Stresses in Beams

Chapter 8: Bending and Shear Stresses in Beams Chapter 8: Bending and Shear Stresses in Beams Introduction One of the earliest studies concerned with the strength and deflection of beams was conducted by Galileo Galilei. Galileo was the first to discuss

More information

DL CMU wall = 51.0 (lb/ft 2 ) 0.7 (ft) DL beam = 2.5 (lb/ft 2 ) 18.0 (ft) 5

DL CMU wall = 51.0 (lb/ft 2 ) 0.7 (ft) DL beam = 2.5 (lb/ft 2 ) 18.0 (ft) 5 SUJECT: HEADER EAM SELECTION SHEET 108 of 131 INTERIOR HEADER EAM SELECTION - ay length = 36 ft. (stairwell) INTERIOR HEADER EAM Header eam 1 2 Total ay Length = 36 (ft) Total ay Width = 10 (ft) 20.5 Fill

More information

Dr. Hazim Dwairi. Example: Continuous beam deflection

Dr. Hazim Dwairi. Example: Continuous beam deflection Example: Continuous beam deflection Analyze the short-term and ultimate long-term deflections of end-span of multi-span beam shown below. Ignore comp steel Beam spacing = 3000 mm b eff = 9000/4 = 2250

More information

A.2 AASHTO Type IV, LRFD Specifications

A.2 AASHTO Type IV, LRFD Specifications A.2 AASHTO Type IV, LRFD Specifications A.2.1 INTRODUCTION A.2.2 DESIGN PARAMETERS 1'-5.0" Detailed example showing sample calculations for design of typical Interior AASHTO Type IV prestressed concrete

More information

Appendix J. Example of Proposed Changes

Appendix J. Example of Proposed Changes Appendix J Example of Proposed Changes J.1 Introduction The proposed changes are illustrated with reference to a 200-ft, single span, Washington DOT WF bridge girder with debonded strands and no skew.

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

Beam Design and Deflections

Beam Design and Deflections Beam Design and Deflections tation: a = name for width dimension A = name for area Areq d-adj = area required at allowable stress when shear is adjusted to include self weight Aweb = area of the web of

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite

More information

Example Bridge Deck Design for Assign. 3 Summary

Example Bridge Deck Design for Assign. 3 Summary Bridge Design Spring 2012 Example Bridge Deck Design for Assign. 3 Summary 1 / 2 Geometry Material Properties N gird 6 f' c 4 ksi S 8.00 ft 1 0.85 b f 0 in f r 0.740 ksi = 0.37 * SQRT( f' c ) L over 3.25

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com

***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com Spreadsheet Title: Last Revision 8/27/2005 ***All blue fields with double frames are used for input.*** by DesignSpreadsheets.com www.designspreadsheets.com email: info@designspreadsheets.com Project I-Girder

More information

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

More information

Unbraced Column Verification Example. AISC Design Examples AISC 13 th Edition. ASDIP Steel is available for purchase online at

Unbraced Column Verification Example. AISC Design Examples AISC 13 th Edition. ASDIP Steel is available for purchase online at Unbraced Column Verification Example AISC Design Examples AISC 3 th Edition IP Steel is available for purchase onle at www.asdipsoft.com H-9 Example H.4 W-Shape Subject to Combed Axial Compression and

More information

FLOW CHART FOR DESIGN OF BEAMS

FLOW CHART FOR DESIGN OF BEAMS FLOW CHART FOR DESIGN OF BEAMS Write Known Data Estimate self-weight of the member. a. The self-weight may be taken as 10 percent of the applied dead UDL or dead point load distributed over all the length.

More information

General Comparison between AISC LRFD and ASD

General Comparison between AISC LRFD and ASD General Comparison between AISC LRFD and ASD 1 General Comparison between AISC LRFD and ASD 2 AISC ASD and LRFD AISC ASD = American Institute of Steel Construction = Allowable Stress Design AISC Ninth

More information

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1. NAME CM 3505 Fall 06 Test 2 Part 1 is to be completed without notes, beam tables or a calculator. Part 2 is to be completed after turning in Part 1. DO NOT turn Part 2 over until you have completed and

More information

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson Singly Symmetric Combination Section Crane Girder Design Aids by Patrick C. Johnson PCJohnson@psu.edu The Pennsylvania State University Department of Civil and Environmental Engineering University Park,

More information

1/29/2010 Page 2 of 65 1/29/2010 Page 3 of 65 1/29/2010 Page 4 of 65 Project Information 1/29/2010 Page 5 of 65 Muckleshoot Indian Tribe Project Number 09-118 West Detention Vault West Vault City of Auburn

More information

500 Delaware Ave. APPENDICES

500 Delaware Ave. APPENDICES APPENDICES i APPENDICES APPENDIX A: LOAD CALCULATIONS... iii A.1 Snow Loading...iv A.2 Lateral Loading...vi A.2.1 Wind... vi A.2.2 Seismic...xi APPENDIX B: PRELIMINARY MEMBER DESIGN... xiii B.1 Post-tensioned

More information

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and

Composite Beams DYB 654: ADVANCED STEEL STRUCTURES - II. Department of Earthquake and DYB 654: ADVANCED STEEL STRUCTURES - II Assoc.Prof.Bülent AKBAŞ Crown Hall at IIT Campus Chicago. Illinois Ludwig Mies van der Rohe Department of Earthquake and Structuralt Engineering i Composite Beams

More information

Sway Column Example. PCA Notes on ACI 318

Sway Column Example. PCA Notes on ACI 318 Sway Column Example PCA Notes on ACI 318 ASDIP Concrete is available for purchase online at www.asdipsoft.com Example 11.2 Slenderness Effects for Columns in a Sway Frame Design columns C1 and C2 in the

More information

Steel Cross Sections. Structural Steel Design

Steel Cross Sections. Structural Steel Design Steel Cross Sections Structural Steel Design PROPERTIES OF SECTIONS Perhaps the most important properties of a beam are the depth and shape of its cross section. There are many to choose from, and there

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Example Stayed beam with two pylons

Example Stayed beam with two pylons Example Stayed beam with two pylons A roof structure is a stayed beam. The roof span is 300 ft. Stay vertical run is 20 ft. The deck is weighs 12 PSF. Beams have a transverse spacing equal to 40 feet.

More information

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column:

APRIL Conquering the FE & PE exams Formulas, Examples & Applications. Topics covered in this month s column: APRIL 2015 DR. Z s CORNER Conquering the FE & PE exams Formulas, Examples & Applications Topics covered in this month s column: PE Exam Specifications (Geotechnical) Transportation (Horizontal Curves)

More information

(Round up to the nearest inch.)

(Round up to the nearest inch.) Assignment 10 Problem 5.46 LRFD First, select the lightest weight W14 column. Use the recommended design value for K for the pinned-fixed support condition specified (ref. Commentary, Appendix 7, AISC

More information

Software Verification

Software Verification AISC-360-10 Example 001 COMPOSITE GIRDER DESIGN EXAMPLE DESCRIPTION A typial bay of a omposite floor system is illstrated below. Selet an appropriate ASTM A992 W-shaped beam and determine the reqired nmber

More information

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Guide Specifications (1993-2002) 2.3 LOADS 2.4 LOAD COMBINATIONS

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

Lecture 7 Two-Way Slabs

Lecture 7 Two-Way Slabs Lecture 7 Two-Way Slabs Two-way slabs have tension reinforcing spanning in BOTH directions, and may take the general form of one of the following: Types of Two-Way Slab Systems Lecture 7 Page 1 of 13 The

More information

Software Verification

Software Verification EC-4-004 Example-001 STEEL DESIGNERS MANUAL SEVENTH EDITION - DESIGN OF SIMPLY SUPPORTED COMPOSITE BEAM EXAMPLE DESCRIPTION Consider an internal seondary omposite beam of 1-m span between olumns and subjet

More information

Lecture-05 Serviceability Requirements & Development of Reinforcement

Lecture-05 Serviceability Requirements & Development of Reinforcement Lecture-05 Serviceability Requirements & Development of Reinforcement By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Section 1: Deflections

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

Preferred practice on semi-integral abutment layout falls in the following order:

Preferred practice on semi-integral abutment layout falls in the following order: GENERAL INFORMATION: This section of the chapter establishes the practices and requirements necessary for the design and detailing of semi-integral abutments. For general requirements and guidelines on

More information

Design of Reinforced Concrete Structures (II)

Design of Reinforced Concrete Structures (II) Design of Reinforced Concrete Structures (II) Discussion Eng. Mohammed R. Kuheil Review The thickness of one-way ribbed slabs After finding the value of total load (Dead and live loads), the elements are

More information

Appendix K Design Examples

Appendix K Design Examples Appendix K Design Examples Example 1 * Two-Span I-Girder Bridge Continuous for Live Loads AASHTO Type IV I girder Zero Skew (a) Bridge Deck The bridge deck reinforcement using A615 rebars is shown below.

More information

999 TOWN & COUNTRY ROAD ORANGE, CALIFORNIA TITLE PUSHOVER ANALYSIS EXAMPLE BY R. MATTHEWS DATE 5/21/01

999 TOWN & COUNTRY ROAD ORANGE, CALIFORNIA TITLE PUSHOVER ANALYSIS EXAMPLE BY R. MATTHEWS DATE 5/21/01 DESCRIPTION Nonlinear static (pushover) analysis will be performed on a railroad bridge bent using several methods to determine its ultimate lateral deflection capability. 1. SAP2000 Nonlinear with axial-moment

More information

NICE-PACK ALCOHOL PREP ROOM PLATFORM CALCULATIONS

NICE-PACK ALCOHOL PREP ROOM PLATFORM CALCULATIONS DESIGN STATEMENT THIS GALVANISED STEEL PLATFORM IS ANALYSED USING THE ALLOWABLE STRESS DESIGN METHOD TO DETERMINE MATERIAL STRENGTH. MEMBER SIZES AND FASTENERS ARE CHOSEN NOT SO MUCH FOR THEIR STRENGTH

More information

Steel Design. Notation: a A A b A e

Steel Design. Notation: a A A b A e Steel Design Notation: a A A b A e A g A gv A n A nt A nv A w = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area A n by the shear lag

More information

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200 Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength

More information

Steel Design. Notation:

Steel Design. Notation: Steel Design Notation: a A A b A e A g A gv A n A nt A nv A w = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area A n by the shear lag

More information

CHAPTER 4. Design of R C Beams

CHAPTER 4. Design of R C Beams CHAPTER 4 Design of R C Beams Learning Objectives Identify the data, formulae and procedures for design of R C beams Design simply-supported and continuous R C beams by integrating the following processes

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

Suspended high-rise. Suspended high-rise Copyright G G Schierle, press Esc to end, for next, for previous slide 1

Suspended high-rise. Suspended high-rise Copyright G G Schierle, press Esc to end, for next, for previous slide 1 Suspended high-rise Suspended high-rise Copyright G G Schierle, 2001-06 press Esc to end, for next, for previous slide 1 Suspended high-rise 1 Gravity load path 2 Differential deflection 3 Prestress to

More information

host structure (S.F.D.)

host structure (S.F.D.) TABLE 00.4 FBC Typical Mansard Beam [AAF] Allowable Span of Mansard Screen Enclosure Self-Mating Beams in accordance with requirements of Table 00.4 (and the 005 Aluminum Design Manual) using 6005T5 alloy:

More information

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil)

RETAINING WALL LOADS: Horizontal Equivalent Fluid Pressure = pcf. (Load Case = Soil) QuickWall 8.0 - RETAINING WALL ANALYSIS AND DESIGN ================================================================================ Job ID : Job Description : Designed By : ================================================================================

More information

Suspended Beam Roof with Pylons

Suspended Beam Roof with Pylons Cable Supported Structures George.Hearn@colorado.edu 25 Suspended Beam Roof with Pylons A roof structure is a suspended beam. The roof span is 200 ft. Main cable sag is 20 ft. Suspender length varies.

More information

Steel Design. Notation:

Steel Design. Notation: Steel Design Notation: a A Ab Ae Ag Agv An Ant Anv Aw = name for width dimension = name for area = area of a bolt = effective net area found from the product of the net area An by the shear lag factor

More information

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0.

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0. Example (8.1): Using the ACI Code approximate structural analysis, design for a warehouse, a continuous one-way solid slab supported on beams 4.0 m apart as shown in Figure 1. Assume that the beam webs

More information

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION

SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION SHEAR CONNECTION: DESIGN OF W-SHAPE BEAM TO RECTANGULAR/SQUARE HSS COLUMN SHEAR PLATE CONNECTION CALCULATION FOR SHEAR CONNECTION 8.xmcd 1 of 30 I. DESIGN DATA AND LOAD ( LRFD - AISC 14th Edition ) COLUMN

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 04 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Compression Members By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering

More information

DNV DESIGN. POU_Rect - Design Report Page 1 of 11

DNV DESIGN. POU_Rect - Design Report Page 1 of 11 DNV DESIGN Page 1 of 11 Details Code Details Code DNV 2.7-1 2006 with AISC 360-10 ASD Description This is the 2006 edition of the DNV Standard for Certification No 2.7-1, which defines minimum technical

More information

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES 163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 S017abn Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. Building description The building is a three-story office building

More information

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb

Support Reactions: a + M C = 0; 800(10) F DE(4) F DE(2) = 0. F DE = 2000 lb. + c F y = 0; (2000) - C y = 0 C y = 400 lb 06 Solutions 46060_Part1 5/27/10 3:51 P Page 334 6 11. The overhanging beam has been fabricated with a projected arm D on it. Draw the shear and moment diagrams for the beam C if it supports a load of

More information

TABLE OF CONTANINET 1. Design criteria. 2. Lateral loads. 3. 3D finite element model (SAP2000, Ver.16). 4. Design of vertical elements (CSI, Ver.9).

TABLE OF CONTANINET 1. Design criteria. 2. Lateral loads. 3. 3D finite element model (SAP2000, Ver.16). 4. Design of vertical elements (CSI, Ver.9). TABLE OF CONTANINET 1. Design criteria. 2. Lateral loads. 2-1. Wind loads calculation 2-2. Seismic loads 3. 3D finite element model (SAP2000, Ver.16). 4. Design of vertical elements (CSI, Ver.9). 4-1.

More information

Example: 5-panel parallel-chord truss. 8 ft. 5 k 5 k 5 k 5 k. F yield = 36 ksi F tension = 21 ksi F comp. = 10 ksi. 6 ft.

Example: 5-panel parallel-chord truss. 8 ft. 5 k 5 k 5 k 5 k. F yield = 36 ksi F tension = 21 ksi F comp. = 10 ksi. 6 ft. CE 331, Spring 2004 Beam Analogy for Designing Trusses 1 / 9 We need to make several decisions in designing trusses. First, we need to choose a truss. Then we need to determine the height of the truss

More information

Designer Supplement GSD-1-19 Intermediate Crossframes and Intermediate Diaphragms January 18, 2019

Designer Supplement GSD-1-19 Intermediate Crossframes and Intermediate Diaphragms January 18, 2019 Designer Supplement GSD-1-19 Intermediate Crossframes and Intermediate Diaphragms January 18, 2019 1 Overview The purpose of Standard Bridge Drawing, GSD-1-19, is to address updated design requirements

More information

MECHANICS OF MATERIALS Sample Problem 4.2

MECHANICS OF MATERIALS Sample Problem 4.2 Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A cast-iron machine part is acted upon by a kn-m couple.

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7.

PROFILE SIZES: CONNECTION FORCES BEAM : UB254X146X43 CONNECTION DETAIL: D b = mm W b = mm T b = mm t wb = 7.30 mm r b = 7. PROFILE SIZES: BEAM : UB254X146X43 D b = 259.60 mm W b = 147.30 mm T b = 12.70 mm t wb = 7.30 mm r b = 7.60 mm COLUMN : UC254X254X73 D C = 254.00 mm W c = 254.00 mm T C = 14.20 mm t wc = 8.60 mm r C =

More information

Fire resistance assessment of composite steel-concrete structures

Fire resistance assessment of composite steel-concrete structures Workshop Structural Fire Design of Buildings according to the Eurocodes Brussels, 78 November 0 Fire resistance assessment of composite steelconcrete structures Basic design methods Worked examples CAJOT

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

SPECIFIC VERIFICATION Chapter 5

SPECIFIC VERIFICATION Chapter 5 As = 736624/(0.5*413.69) = 3562 mm 2 (ADAPT 3569 mm 2, B29, C6) Data Block 27 - Compressive Stresses The initial compressive strength, f ci, is the strength entered in the Material/Concrete input screen.

More information

Beam Bending Stresses and Shear Stress

Beam Bending Stresses and Shear Stress Beam Bending Stresses and Shear Stress Notation: A = name or area Aweb = area o the web o a wide lange section b = width o a rectangle = total width o material at a horizontal section c = largest distance

More information

Steel Post Load Analysis

Steel Post Load Analysis Steel Post Load Analysis Scope The steel posts in 73019022, 73019024, and 73019025, are considered to be traditional building products. According to the 2015 International Building Code, this type of product

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

APPENDIX A Thickness of Base Metal

APPENDIX A Thickness of Base Metal APPENDIX A Thickness of Base Metal For uncoated steel sheets, the thickness of the base metal is listed in Table A.1. For galvanized steel sheets, the thickness of the base metal can be obtained by subtracting

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING (ACE009)

REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING (ACE009) LECTURE NOTES ON REINFORCED CONCRETE STRUCTURES DESIGN AND DRAWING (ACE009) III B. Tech I semester (Regulation- R16) Mr. Gude Ramakrishna Associate Professor DEPARTMENT OF CIVIL ENGINEERING INSTITUTE OF

More information

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com Prof.

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS TW21 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS MODULE NO: CIE4011 Date: Wednesday 11 th January 2017 Time:

More information

Annex - R C Design Formulae and Data

Annex - R C Design Formulae and Data The design formulae and data provided in this Annex are for education, training and assessment purposes only. They are based on the Hong Kong Code of Practice for Structural Use of Concrete 2013 (HKCP-2013).

More information

DIVISION: METALS SECTION: STEEL DECKING SECTION: STEEL ROOF DECKING REPORT HOLDER: NEW MILLENNIUM BUILDING SYSTEMS, LLC

DIVISION: METALS SECTION: STEEL DECKING SECTION: STEEL ROOF DECKING REPORT HOLDER: NEW MILLENNIUM BUILDING SYSTEMS, LLC 0 Most Widely Accepted and Trusted ICC ES Report ICC ES 000 (800) 423 6587 (562) 699 0543 www.icc es.org ESR 2657 Reissued 05/2017 This report is subject to renewal 03/2018. DIVISION: 05 00 00 METALS SECTION:

More information

UNIVERSITY OF AKRON Department of Civil Engineering

UNIVERSITY OF AKRON Department of Civil Engineering UNIVERSITY OF AKRON Department of Civil Engineering 4300:401-301 July 9, 2013 Steel Design Sample Quiz 2 1. The W10 x 54 column shown has both ends pinned and consists of A992 steel (F y = 50 ksi, F u

More information

Timber and Steel Design. Lecture 7 - B E A M. Introduction to. Floor Framing System Bending Stresses Compact Sections Lateral Support of Beams

Timber and Steel Design. Lecture 7 - B E A M. Introduction to. Floor Framing System Bending Stresses Compact Sections Lateral Support of Beams Timer and Steel Design Lecture 7 - Introduction to B E A M loor raming Sstem Bending Stresses Compact Sections Lateral Support of Beams S U R A N A R E E UNIVERSITY O TECHNOLOGY Mongkol JIRAVACHARADET

More information

Design of Steel Structures Dr. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati

Design of Steel Structures Dr. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Design of Steel Structures Dr. Damodar Maity Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 6 Flexural Members Lecture 5 Hello today I am going to deliver the lecture

More information

3.4 Reinforced Concrete Beams - Size Selection

3.4 Reinforced Concrete Beams - Size Selection CHAPER 3: Reinforced Concrete Slabs and Beams 3.4 Reinforced Concrete Beams - Size Selection Description his application calculates the spacing for shear reinforcement of a concrete beam supporting a uniformly

More information

4.3 Moment Magnification

4.3 Moment Magnification CHAPTER 4: Reinforced Concrete Columns 4.3 Moment Magnification Description An ordinary or first order frame analysis does not include either the effects of the lateral sidesway deflections of the column

More information

5. What is the moment of inertia about the x - x axis of the rectangular beam shown?

5. What is the moment of inertia about the x - x axis of the rectangular beam shown? 1 of 5 Continuing Education Course #274 What Every Engineer Should Know About Structures Part D - Bending Strength Of Materials NOTE: The following question was revised on 15 August 2018 1. The moment

More information

Tutorial 2. SSMA Cee in Compression: 600S F y = 50ksi Objective. A the end of the tutorial you should be able to

Tutorial 2. SSMA Cee in Compression: 600S F y = 50ksi Objective. A the end of the tutorial you should be able to CUFSM 2.5 Tutorial 2 SSMA Cee in Compression: 600S200-33 F y = 50ksi Objective To model a typical Cee stud in compression and determine the elastic critical local buckling load (P crl )and elastic critical

More information

Introduction to Structural Member Properties

Introduction to Structural Member Properties Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a cross-section (measured in inches 4 or in 4 ) that gives important information

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR:

CIVIL DEPARTMENT MECHANICS OF STRUCTURES- ASSIGNMENT NO 1. Brach: CE YEAR: MECHANICS OF STRUCTURES- ASSIGNMENT NO 1 SEMESTER: V 1) Find the least moment of Inertia about the centroidal axes X-X and Y-Y of an unequal angle section 125 mm 75 mm 10 mm as shown in figure 2) Determine

More information

Design of Eccentrically Braced Frames

Design of Eccentrically Braced Frames Design of Eccentricall Braced Frames Aninda Dutta, Ph.D., S.E. What is an eccentricall braced frame? In an eccentric braced frame the braces are eccentric to the beam-column connection, i.e. the do not

More information