CHAPTER 5 PROPOSED WARPING CONSTANT

Size: px
Start display at page:

Download "CHAPTER 5 PROPOSED WARPING CONSTANT"

Transcription

1 122 CHAPTER 5 PROPOSED WARPING CONSTANT 5.1 INTRODUCTION Generally, lateral torsional buckling is a major design aspect of flexure members composed of thin-walled sections. When a thin walled section is subjected to flexure about its strong axis with insufficient lateral bracing, out- of plane bending and twisting can occur as the applied load approaches its critical value. At this critical value, lateral torsional buckling occurs. The equations used to calculate the critical lateral-torsional buckling strength of the I-girder with flat webs would underestimate the capacity of the I-girder with corrugated web Linder (1990) proposed an empirical formula for the warping constant of I-girder with corrugated web on the basis of test results. The warping constant of I-girder with corrugated web is larger than that of I-girder with flat web. Sectional warping constant C w is determined either by mathematical integration proposed by Galambos (1968) or by complex formulas. Computation of warping constant for open thin walled section is greatly simplified by recognizing the linear variation of unit warping constant properties (w, w 0, W n, Figure 5.4) between the two consecutive intersection points of plate elements. As a result, the sophisticated integral form for C w is represented by numerical expression suitable for computer coding.

2 123 The cross-section of the beam varies along the span of the beam due to the corrugation profile. It is difficult to find the warping constant for varying depths of corrugation. No design rules are available in Australian/ New Zealand Standards (AS/NZS-4600:2005) and North American Specifications (AISI-S100:2007) for calculating moment carrying capacity of I-section with trapezoidal corrugated web. In order to find lateral buckling moment capacity, elastic buckling stress for flexural buckling about the y-axis f oy and elastic buckling stress for torsional buckling f oz have to be calculated. It is found that properties such as polar radius of gyration of the cross section about the centre, radius of gyration, Section modulus, Warping constant etc varies along the longitudinal direction due to a change in depth of in change of properties. Due to change in depth y-axis also changes along the length and the geometric properties are not constant at all sections. In this chapter, the procedure to find the warping constant for lipped I-beam with trapezoidal corrugated web and to locate the shear centre have been proposed. The proposed warping constant is also validated by using finite element analysis. 5.2 SHEAR MODULUS & TORSIONAL RIGIDITIES OF LIPPED I-BEAM WITH CORRUGATED WEB Generally, the shear modulus of the corrugated plates is smaller than that of the flat plates. The shear modulus of the corrugated plates used in this study was proposed by Samanta &Mukhopadhyay (1999). The shear modulus G cog of the corrugated plate is defined as

3 124 a b Gcog G G a c (5.1) where G is the shear modulus of the flat plates and is the ratio of the projected length (a+b) to the actual length of the corrugated plates (a+c). Pure torsional constant J cog of the lipped I-beam with corrugated web is the same as that of the lipped I-beam with flat webs. Because the pure torsional constant of a section is equal to the sum of the pure torsional constants of each individual element, in the case of lipped I-beam with corrugated web, J cog can be expressed as the sum of the pure torsional constants of the two flanges, four lips and corrugated web. Therefore, (5.2) 5.3 SHEAR CENTER OF LIPPED I-BEAM WITH CORRUGATED WEB It is presumed that the shear flow is evenly distributed over the total depth of the web as shown in Figure 5.1 and it is given by q w =V/h w, where q w V shear force acting on the cross-section.

4 125 Figure 5.1 Shear flow distribution Figure 5.2 Shear flow distribution and location of shear center The shear flow can be determined by using the relationship. due to the change of the bending normal stress q = - (V*Q x )/(I xx ) (5.3) where x is the first moment of the area about the x-axis. From Figure 5.2, it is found that the unbalanced shear force on the flange V f is generated due to the corrugation depth. The magnitude of f can be determined by the sum of the shear flows acting on the flanges and expressed as V f = (V/h w )*d = q w *d (5.4) f is proportional to the corrugated depth d. For lipped I-beam with flat web f is equal to zero. Figure 5.2 shows the shear force acting on the cross-section of lipped I-beam with corrugated web. The location of the shear center of this cross-section is determined by the moment equilibrium. There is no twisting of the cross-section, when the applied load passes through the

5 126 shear center. Therefore, the suation of the moment about shear centre is equal to zero. The location of shear centre is obtained as X o = - d. It is found that this shear center is located at a distance of 2d from, the center of upper and lower flange (Figure 5.2). 5.4 WARPING CONSTANT OF LIPPED I-BEAM WITH CORRUGATED WEB The warping constant is determined either by integration forms or by numerical forms. The open section is made up of thin plate elements. Warping constant is determined by numerical forms, considering the section is composed of a series of inter-connected plate elements. If a plate element of length L ij and thickness t ij is considered, then the normalized unit warping at points i and j of any element (i-j) is given by W ni =[( ) (w oi +w oj )t ij L ij ]-w oi (5.6a) W nj =[( ) (w oi +w oj )t ij L ij ]-w oj (5.6b) w oj =w oi oij * L ij (5.6c) where, oij is the distance between the shear center to the tangent of element ij (Figure 5.3), w o is the unit warping with respect to shear center and w oi andw oj are thecorresponding values of w o at the ends of element i and j (Figure 5.4)

6 127 Figure 5.3 Coordinates and tangential Figure 5.4 Distribution of Won distances element in an a plate open thin-walled section Figure 5.5 Direction for path for calculating warping constant of lipped I-beam with corrugated web Figure 5.5 shows the direction of the path for calculating the warping constant of the lipped I-beam with corrugated web. Using the

7 128 equation (5.6) and calculating the path as shown in Figure 5.5, the simplified form W ni of the lipped I-beam with corrugatedweb can be expressed as (5.7a) (5.7b) (5.7c) (5.7d) (5.7e) (5.7f) (5.7g) (5.7h) (5.7i) (5.7j) The general formula of C w of any arbitrary section composed of thin plate is given by (5.8) C w,cog is obtained by using equation (5.8) and W ni as described in equation (5.7). It is found that W ni varies along the longitudinal direction due to a change in d, which results in a change in C w,cog.the average corrugation depth d avg suggested in this study for considering the change in d. d avg is given by

8 129 d avg =[(2a+b)*d max ] / [2*(a+b)] (5.9) Procedure for calculating C w,cog is as follows a) Calculation of average corrugation depth d avg byusing equation (5.9) b) Evaluation of the normalized unit warping at point i and W ni of the lipped I-beam with corrugated webs by using equation (5.7 ) with d avg in Step (a) c) Determination of the warping constant of the lipped I-beam with corrugated webs C w, cog by using equation (5.8) with W ni obtained in Step (b) 5.5 LATERAL-TORSIONAL BUCKLING STRENGTH OF LIPPED I-BEAM WITH CORRUGATED WEB If a uniformly distributed load or any other transverse load acts on the I-beam, shear force induced is taken up by web. In the case of the lipped I- beam with corrugated web, the attachment of corrugated web to the flanges is not along the center line of the beam. It is attached eccentrically, as the profile of web varies along the span. Due to this, force derived from shear in the corrugated web causes out-of-plane transverse bending of the upper and lower flanges (Figure 5.6). In this study, uniform bending is adopted to investigate the lateraltorsional buckling strength. The boundary condition used in this study is simple support in flexure and torsion. It is assumed that the formula of the lateral-torsional buckling strength of the lipped I-beam with flat web can be applied to lipped I-beam with corrugated webs under uniform bending. The beam under uniform

9 130 bending deflects in-plane without any torsional behavior, even if the shear center and the center of beam do not coincide. Figure 5.6 Deformed shape of I- beam with corrugated webs under uniformly distributed loadmoon J et al. (2009) Figure 5.7 Deformed shape of I- beam with corrugated webs under uniform bendingmoon J et al. (2009) The elastic lateral torsional buckling strength of the beam is expressed as 2 Mcr ( EI ygcog Jcog )( I W T ) (5.10a) 4 WT ( ECw, cog / Gcog Jcog ) L (5.10b) where L is the length of the beam and W T represents the effect of the warping torsional stiffness. 5.6 VERIFICATION OF THE PROPOSED EQUATIONS

10 131 In this section, the proposed warping constant of the lipped I-beam with corrugated webs is verified with finite element analysis. The warping constant from the FEA C w,fem for the lipped I-beam with corrugated web is calculated by C M * L ( Gcog * Jcog L E I E 2 2 CrFEM w, FEM 2 2 ( * yy * 2 (5.11) where M cr,fem is the elastic lateral torsional buckling strength from FEA. Linder(1990) suggested the following empirical formula for the warping constant of I-section with corrugated web C wlinder = C w, flat + (C w *L 2 2 ) (5.12a) C w = [(2*d max )*h w ]/[8*u x *(a+b)] (5.12b) U x h h *( a b) *( I I ) w 2* G * a* t 600* a * E * I * I 2 3 w xx yy 2 w xx yy (5.12c) where C w,flat is the warping constant of the I-section with flat web. Equation (5.12) suggested by Linder(1990) without lip in flanges is compared with the proposed warping constant in line with Moon (2009). An Eigen-value analysis is performed by using ANSYS.12 to evaluate the lateral-torsional buckling strength of the lipped I-beam with corrugated web. Four node Shell-181 element is used. Figures 5.8, 5.9 and 5.10 show a typical loading and boundary condition of the FE model. The end moments are applied in the form of compression and tension on the top and bottom flanges, respectively. The beams are considered to be simply

11 132 supported in the flexure and torsion and the following boundary conditions are implemented. Figure 5.8 Loading and Boundary Condition of the FE Model Figure 5.9 Loading and Boundary Condition of the FE Model at the left end

12 133 Figure 5.10 Loading and Boundary Condition of the FE Model at the right end Displacements about directions x, y and z(u x, u y and u z ) and the rotation about direction Z ( z ) at point A are restrained. Displacement about directions x and y( u x, u y ) and the rotation about direction Z ( z) at point B are restrained. u x at the line a and b are restrained and u y at the line c and d are also restrained. To verify the finite element model used in this study, the lipped I-beam with flat web is modeled and the result is compared with the theoretical lateral-torsional buckling strength. The dimensions and result of the analysis are shown in Table 5.1.

13 134 Table 5.1 Dimensions and Result of FE and Theory Moment for flat web t w h w b f t f L b l t l FE Moment N 10 6 Theory Moment N 10 6 Error % An appropriate mesh size of is chosen after a mesh sensitivity analysis in order to get accurate results. Table 5.2 Dimensions of models with corrugated web Model No. a b c d max t w h w b f t f b l t l L Aspect Ratio TCIAE TCIAE TCIAE TCIAE TCIAR TCIAR TCIAR TCIAR Table 5.2 shows the dimensions of the models with corrugated web. In the TCIAE series models, the corrugation angle is varied from 15º to 60º with increase in d max keeping aspect ratio (a:c) as one. In the TCIAR series models, the aspect ratio is varied by keeping a corrugation angle of 45º with an increase of d max. Figures 5.11 and 5.12 show the lateral torsional buckling shape obtained from FEA for TCIAE4 and TCIAR2 models respectively.

14 135 Table.5.3 shows the comparison of warping constant of C w,cog, C w,linder and C w,fem. Figures 5.13 and 5.14 show the comparison of results for varying aspect ratio and corrugation angle respectively. It is found that C w,cog is in good agreement with C w FEM, while C w,linder generally overestimates the warping constant of the lipped I-beam with corrugated webs. The difference between C w FEM and C w,linder (Figure 5.14) and also the difference between C w FEM and C w,linder increases with increasing aspect ratio(figure 5.13). Table 5.3 Comparison of warping constant of proposed method, FEA and Linder Model No. C w,cog C w,linder C w,fem C w,fem /C w,cog C w,fem /C w,linder TCIAE TCIAE TCIAE TCIAE TCIAR TCIAR TCIAR TCIAR Mean Standard Deviation

15 136 Figure 5.11 Lateral-torsional buckling shape from finite element analyses for TCIAE4 Figure 5.12 Lateral-torsional buckling shape from finite element analyses for TCIAR2

16 C Aspect Ratio (a:c) Cw,FEM/Cw,cog Cw,FEM/Cw,linder Figure 5.13 Comparison of the warping constant of corrugated web with respect to aspect ratio C w,fem /C w,cog or C w,fem /C w,linder Corrugation Angle Cw,FEM/Cw,cog Cw,FEM/Cw,linder Figure 5 14 Comparison of the warping constant of corrugated web with respect to corrugation angle

17 138 Linder(1990) proposed an equation for warping constant under a transverse loading. Lateral displacement occurs along the flange locations of the corrugated web lipped I-beam under such transverse loading, because the shear forces in the corrugated web in inclined panel should be divided into a lateral component in the out-of-plane direction due to the corrugated shape. (1990) work includes the effect of lateral displacement component. Therefore, Linder(1990) results do not match with proposed warping constant result under uniform bending condition. 5.7 CONCLUSION A simplified method for estimating the warping constant of the lipped I-beam with corrugated web is evaluated. In this study, the depth of corrugation varies along the span of the beam for which the average depth is taken for calculating the warping constant. upper and lower flanges. from the middle of the Numerical validation has been carried out to verify the appropriateness of the warping constant proposed in this study by using the FEA software ANSYS. 12 and it is found that the numerical results are quite closer to the proposed method.

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES

APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES 163 APPENDIX 1 MODEL CALCULATION OF VARIOUS CODES A1.1 DESIGN AS PER NORTH AMERICAN SPECIFICATION OF COLD FORMED STEEL (AISI S100: 2007) 1. Based on Initiation of Yielding: Effective yield moment, M n

More information

UNIT- I Thin plate theory, Structural Instability:

UNIT- I Thin plate theory, Structural Instability: UNIT- I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading Thin plates having

More information

2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft

2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft Code No: 07A62102 R07 Set No. 2 III B.Tech II Semester Regular/Supplementary Examinations,May 2010 Aerospace Vehicle Structures -II Aeronautical Engineering Time: 3 hours Max Marks: 80 Answer any FIVE

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams University of Alberta Department of Civil & Environmental Engineering Master of Engineering Report in Structural Engineering Equivalent Uniform Moment Factor for Lateral Torsional Buckling of Steel Beams

More information

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners GRD Journals- Global Research and Development Journal for Engineering Volume 2 Issue 6 May 2017 ISSN: 2455-5703 An Increase in Elastic Buckling Strength of Plate Girder by the Influence of Transverse Stiffeners

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH

FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING WEB DEPTH Journal of Engineering Science and Technology Vol. 12, No. 11 (2017) 2839-2854 School of Engineering, Taylor s University FINITE ELEMENT ANALYSIS OF TAPERED COMPOSITE PLATE GIRDER WITH A NON-LINEAR VARYING

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

Experimental Study and Numerical Simulation on Steel Plate Girders With Deep Section

Experimental Study and Numerical Simulation on Steel Plate Girders With Deep Section 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 2015, University of

More information

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1.

Accordingly, the nominal section strength [resistance] for initiation of yielding is calculated by using Equation C-C3.1. C3 Flexural Members C3.1 Bending The nominal flexural strength [moment resistance], Mn, shall be the smallest of the values calculated for the limit states of yielding, lateral-torsional buckling and distortional

More information

3. Stability of built-up members in compression

3. Stability of built-up members in compression 3. Stability of built-up members in compression 3.1 Definitions Build-up members, made out by coupling two or more simple profiles for obtaining stronger and stiffer section are very common in steel structures,

More information

Due Tuesday, September 21 st, 12:00 midnight

Due Tuesday, September 21 st, 12:00 midnight Due Tuesday, September 21 st, 12:00 midnight The first problem discusses a plane truss with inclined supports. You will need to modify the MatLab software from homework 1. The next 4 problems consider

More information

LATERAL STABILITY OF PLATE GIRDERS WITH CORRUGATED STEEL WEBS

LATERAL STABILITY OF PLATE GIRDERS WITH CORRUGATED STEEL WEBS Congrès annuel de la Société canadienne de génie civil Annual Conference of the Canadian Societ for Civil Engineering oncton, Nouveau-Brunswick, Canada 4-7 juin 2003 / June 4-7, 2003 LATERAL STABILITY

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

Mechanics of Solids notes

Mechanics of Solids notes Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

More information

Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy

Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy The Lecture Contains: Torsion of Rods Torsional Energy This lecture is adopted from the following book 1. Theory of Elasticity, 3 rd edition by Landau and Lifshitz. Course of Theoretical Physics, vol-7

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

The Lateral Torsional Buckling Strength of Steel I- Girders with Corrugated Webs

The Lateral Torsional Buckling Strength of Steel I- Girders with Corrugated Webs Lehigh University Lehigh Preserve ATLSS Reports Civil and Environmental Engineering 5-1-6 The Lateral Torsional Buckling Strength of Steel I- Girders with Corrugated Webs Daming Yu Richard Sause Follow

More information

MODULE C: COMPRESSION MEMBERS

MODULE C: COMPRESSION MEMBERS MODULE C: COMPRESSION MEMBERS This module of CIE 428 covers the following subjects Column theory Column design per AISC Effective length Torsional and flexural-torsional buckling Built-up members READING:

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.4 Beams As stated previousl, the effect of local buckling should invariabl be taken into account in thin walled members, using methods described alread. Laterall stable beams are beams, which do not

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas

Failure in Flexure. Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas Introduction to Steel Design, Tensile Steel Members Modes of Failure & Effective Areas MORGAN STATE UNIVERSITY SCHOOL OF ARCHITECTURE AND PLANNING LECTURE VIII Dr. Jason E. Charalambides Failure in Flexure!

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

Analysis of Shear Lag Effect of Box Beam under Dead Load

Analysis of Shear Lag Effect of Box Beam under Dead Load Analysis of Shear Lag Effect of Box Beam under Dead Load Qi Wang 1, a, Hongsheng Qiu 2, b 1 School of transportation, Wuhan University of Technology, 430063, Wuhan Hubei China 2 School of transportation,

More information

ENCE 455 Design of Steel Structures. III. Compression Members

ENCE 455 Design of Steel Structures. III. Compression Members ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths

Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal Unbraced Lengths Proceedings of the Annual Stability Conference Structural Stability Research Council San Antonio, Texas, March 21-24, 2017 Flexural-Torsional Buckling of General Cold-Formed Steel Columns with Unequal

More information

Verification Examples. FEM-Design. version

Verification Examples. FEM-Design. version FEM-Design 6.0 FEM-Design version. 06 FEM-Design 6.0 StruSoft AB Visit the StruSoft website for company and FEM-Design information at www.strusoft.com Copyright 06 by StruSoft, all rights reserved. Trademarks

More information

APPENDIX A Thickness of Base Metal

APPENDIX A Thickness of Base Metal APPENDIX A Thickness of Base Metal For uncoated steel sheets, the thickness of the base metal is listed in Table A.1. For galvanized steel sheets, the thickness of the base metal can be obtained by subtracting

More information

Workshop 8. Lateral Buckling

Workshop 8. Lateral Buckling Workshop 8 Lateral Buckling cross section A transversely loaded member that is bent about its major axis may buckle sideways if its compression flange is not laterally supported. The reason buckling occurs

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

An Evaluation and Comparison of Models for Maximum Deflection of Stiffened Plates Using Finite Element Analysis

An Evaluation and Comparison of Models for Maximum Deflection of Stiffened Plates Using Finite Element Analysis Marine Technology, Vol. 44, No. 4, October 2007, pp. 212 225 An Evaluation and Comparison of Models for Maximum Deflection of Stiffened Plates Using Finite Element Analysis Lior Banai 1 and Omri Pedatzur

More information

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER

INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE GIRDER International Journal of Civil Structural 6 Environmental And Infrastructure Engineering Research Vol.1, Issue.1 (2011) 1-15 TJPRC Pvt. Ltd.,. INFLUENCE OF FLANGE STIFFNESS ON DUCTILITY BEHAVIOUR OF PLATE

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

Modelling and numerical simulation of the wrinkling evolution for thermo-mechanical loading cases

Modelling and numerical simulation of the wrinkling evolution for thermo-mechanical loading cases Modelling and numerical simulation of the wrinkling evolution for thermo-mechanical loading cases Georg Haasemann Conrad Kloß 1 AIMCAL Conference 2016 MOTIVATION Wrinkles in web handling system Loss of

More information

Presented By: EAS 6939 Aerospace Structural Composites

Presented By: EAS 6939 Aerospace Structural Composites A Beam Theory for Laminated Composites and Application to Torsion Problems Dr. BhavaniV. Sankar Presented By: Sameer Luthra EAS 6939 Aerospace Structural Composites 1 Introduction Composite beams have

More information

LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS

LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS By John J. Zahn, 1 M. ASCE ABSTRACT: In the analysis of the lateral buckling of simply supported beams, the ends are assumed to be rigidly restrained

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Unit 15 Shearing and Torsion (and Bending) of Shell Beams

Unit 15 Shearing and Torsion (and Bending) of Shell Beams Unit 15 Shearing and Torsion (and Bending) of Shell Beams Readings: Rivello Ch. 9, section 8.7 (again), section 7.6 T & G 126, 127 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad NSTTUTE OF AERONAUTCAL ENGNEERNG (Autonomous) Dundigal, Hyderabad - 00 043 AERONAUTCAL ENGNEERNG TUTORAL QUESTON BANK Course Name : ARCRAFT VEHCLES STRUCTURES Course Code : A2109 Class : B. Tech Semester

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

Parametric study on the transverse and longitudinal moments of trough type folded plate roofs using ANSYS

Parametric study on the transverse and longitudinal moments of trough type folded plate roofs using ANSYS American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-4 pp-22-28 www.ajer.org Research Paper Open Access Parametric study on the transverse and longitudinal moments

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

More information

1. Tasks of designing

1. Tasks of designing 1 Lecture #18(14) Designing calculation of cross section of a highly aspect ratio wing Plan: 1 Tass of designing Distribution of shear force between wing spars Computation of the elastic center 4 Distribution

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element

Dynamic and buckling analysis of FRP portal frames using a locking-free finite element Fourth International Conference on FRP Composites in Civil Engineering (CICE8) 22-24July 8, Zurich, Switzerland Dynamic and buckling analysis of FRP portal frames using a locking-free finite element F.

More information

Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght

Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght Mechanics and Mechanical Engineering Vol. 11, No 1 (2007) 37 48 c Technical University of Lodz Optimization of Thin-Walled Beams Subjected to Bending in Respect of Local Stability and Strenght Tadeusz

More information

National Exams May 2015

National Exams May 2015 National Exams May 2015 04-BS-6: Mechanics of Materials 3 hours duration Notes: If doubt exists as to the interpretation of any question, the candidate is urged to submit with the answer paper a clear

More information

Fundamentals of Structural Design Part of Steel Structures

Fundamentals of Structural Design Part of Steel Structures Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk

Iraq Ref. & Air. Cond. Dept/ Technical College / Kirkuk International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-015 1678 Study the Increasing of the Cantilever Plate Stiffness by Using s Jawdat Ali Yakoob Iesam Jondi Hasan Ass.

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 04 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Compression Members By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering

More information

Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics)

Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics) Week 7, 14 March Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics) Ki-Bok Min, PhD Assistant Professor Energy Resources Engineering i Seoul National University Shear

More information

Numerical Approach for Torsion Properties of Built-Up Runway Girders

Numerical Approach for Torsion Properties of Built-Up Runway Girders Tamkang Journal of Science and Engineering, Vol. 12, No. 4, pp. 381 389 (2009) 381 Numerical Approach for Torsion Properties of Built-Up Runway Girders Wei T. Hsu, Dung M. Lue* and Bor T. Hsiao Department

More information

APPLICATIONS OF PURE AND COMBINED BUCKLING MODE CALCULATION OF THIN-WALLED MEMBERS USING THE FINITE ELEMENT METHOD

APPLICATIONS OF PURE AND COMBINED BUCKLING MODE CALCULATION OF THIN-WALLED MEMBERS USING THE FINITE ELEMENT METHOD SDSS Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 2010 APPLICATIONS OF PURE AND COMBINED BUCKLING MODE CALCULATION

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.)

Compression Members. ENCE 455 Design of Steel Structures. III. Compression Members. Introduction. Compression Members (cont.) ENCE 455 Design of Steel Structures III. Compression Members C. C. Fu, Ph.D., P.E. Civil and Environmental Engineering Department University of Maryland Compression Members Following subjects are covered:

More information

SIMPLE MODEL FOR PRYING FORCES IN T-HANGER CONNECTIONS WITH SNUG TIGHTENED BOLTS

SIMPLE MODEL FOR PRYING FORCES IN T-HANGER CONNECTIONS WITH SNUG TIGHTENED BOLTS SIMPLE MODEL FOR PRYING FORCES IN T-HANGER CONNECTIONS WITH SNUG TIGHTENED BOLTS By Fathy Abdelmoniem Abdelfattah Faculty of Engineering at Shoubra, Zagazig University, Banha Branch Mohamed Salah A. Soliman

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module - 01 Lecture - 13 In the last class, we have seen how

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Stability of Simply Supported Square Plate with Concentric Cutout

Stability of Simply Supported Square Plate with Concentric Cutout International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Stability of Simply Supported Square Plate with Concentric Cutout Jayashankarbabu B. S. 1, Dr. Karisiddappa 1 (Civil Engineering

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

FIXED BEAMS IN BENDING

FIXED BEAMS IN BENDING FIXED BEAMS IN BENDING INTRODUCTION Fixed or built-in beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported

More information

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling In the case of elements subjected to compressive forces, secondary bending effects caused by,

More information

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir Unit III Theory of columns 1 Unit III Theory of Columns References: Punmia B.C.,"Theory of Structures" (SMTS) Vol II, Laxmi Publishing Pvt Ltd, New Delhi 2004. Rattan.S.S., "Strength of Materials", Tata

More information

Comparison of AISI Specification Methods for Members with Single Intermediate Longitudinal Stiffeners

Comparison of AISI Specification Methods for Members with Single Intermediate Longitudinal Stiffeners Missouri University of Science and Technology Scholars' Mine AISI-Specifications for the Design of Cold-Formed Steel Structural Members Wei-Wen Yu Center for Cold-Formed Steel Structures 7-1-006 Comparison

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach)

research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach) research report Design Example for Analytical Modeling of a Curtainwall and Considering the Effects of Bridging (All-Steel Design Approach) RESEARCH REPORT RP18- August 018 Committee on Specifications

More information

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses 7 TRANSVERSE SHEAR Before we develop a relationship that describes the shear-stress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

Tekla Structural Designer 2016i

Tekla Structural Designer 2016i Tekla Structural Designer 2016i Reference Guides (Australian Codes) September 2016 2016 Trimble Solutions Corporation part of Trimble Navigation Ltd. Table of Contents Analysis Verification Examples...

More information

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS).

DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). DEPARTMENT OF MECHANICAL ENIGINEERING, UNIVERSITY OF ENGINEERING & TECHNOLOGY LAHORE (KSK CAMPUS). Lab Director: Coordinating Staff: Mr. Muhammad Farooq (Lecturer) Mr. Liaquat Qureshi (Lab Supervisor)

More information

Behaviour of Single Laced Columns versus Double Laced Columns

Behaviour of Single Laced Columns versus Double Laced Columns Behaviour of Single Laced Columns versus Double Laced Columns Pamwenafye Fillemon Hasheela 0410096A A research report submitted to the Faculty of Engineering and Built Environment, University of the Witwatersrand,

More information

DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD

DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD DYNAMIC RESPONSE OF THIN-WALLED GIRDERS SUBJECTED TO COMBINED LOAD P. WŁUKA, M. URBANIAK, T. KUBIAK Department of Strength of Materials, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź,

More information

Lateral Torsional Buckling of Welded Wide Flange Beams

Lateral Torsional Buckling of Welded Wide Flange Beams Lateral Torsional Buckling of Welded Wide Flange Beams Md. Imran Kabir A Thesis in The Department of Building, Civil and Environmental Engineering Presented in Partial Fulfillment of the Requirements for

More information

DESIGN OF BEAMS AND SHAFTS

DESIGN OF BEAMS AND SHAFTS DESIGN OF EAMS AND SHAFTS! asis for eam Design! Stress Variations Throughout a Prismatic eam! Design of pristmatic beams! Steel beams! Wooden beams! Design of Shaft! ombined bending! Torsion 1 asis for

More information

3.4 Analysis for lateral loads

3.4 Analysis for lateral loads 3.4 Analysis for lateral loads 3.4.1 Braced frames In this section, simple hand methods for the analysis of statically determinate or certain low-redundant braced structures is reviewed. Member Force Analysis

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

PLATE AND BOX GIRDER STIFFENER DESIGN IN VIEW OF EUROCODE 3 PART 1.5

PLATE AND BOX GIRDER STIFFENER DESIGN IN VIEW OF EUROCODE 3 PART 1.5 PLATE AD BOX GIRDER STIFFEER DESIG I VIEW OF EUROCODE 3 PART 1.5 Darko Beg Professor University of Ljubljana, Faculty of Civil and Geodetic Engineering Ljubljana, Slovenia Email: dbeg@fgg.uni-lj.si 1.

More information

AN IMPROVED NUMERICAL MODEL FOR CALCULATING SHIP HULL FRAME TRANSVERSAL STRUCTURE

AN IMPROVED NUMERICAL MODEL FOR CALCULATING SHIP HULL FRAME TRANSVERSAL STRUCTURE COMPUTATIONAL MECHANICS New Trends and Applications E. Oñate and S. R. Idelsohn (Eds.) CIMNE, Barcelona, Spain 1998 AN IMPROVED NUMERICAL MODEL FOR CALCULATING SHIP HULL FRAME TRANSVERSAL STRUCTURE Oscar

More information

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi

Karbala University College of Engineering Department of Civil Eng. Lecturer: Dr. Jawad T. Abodi Chapter 05 Structural Steel Design According to the AISC Manual 13 th Edition Analysis and Design of Beams By Dr. Jawad Talib Al-Nasrawi University of Karbala Department of Civil Engineering 71 Introduction

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 2014-2015 UNIT - 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART- A 1. Define tensile stress and tensile strain. The stress induced

More information

Elastic buckling of web plates in I-girders under patch and wheel loading

Elastic buckling of web plates in I-girders under patch and wheel loading Engineering Structures 27 (2005) 1528 156 www.elsevier.com/locate/engstruct Elastic buckling of web plates in I-girders under patch and wheel loading T. Ren, G.S. Tong Department of Civil Engineering,

More information

Shear Strength of End Web Panels

Shear Strength of End Web Panels Paper 10 Shear Strength of End Web Panels Civil-Comp Press, 2012 Proceedings of the Eleventh International Conference on Computational Structures Technology, B.H.V. Topping, (Editor), Civil-Comp Press,

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental

More information

Research Collection. Numerical analysis on the fire behaviour of steel plate girders. Conference Paper. ETH Library

Research Collection. Numerical analysis on the fire behaviour of steel plate girders. Conference Paper. ETH Library Research Collection Conference Paper Numerical analysis on the fire behaviour of steel plate girders Author(s): Scandella, Claudio; Knobloch, Markus; Fontana, Mario Publication Date: 14 Permanent Link:

More information

Chapter 6: Cross-Sectional Properties of Structural Members

Chapter 6: Cross-Sectional Properties of Structural Members Chapter 6: Cross-Sectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross

More information

THE BENDING STIFFNESSES OF CORRUGATED BOARD

THE BENDING STIFFNESSES OF CORRUGATED BOARD AMD-Vol. 145/MD-Vol. 36, Mechanics of Cellulosic Materials ASME 1992 THE BENDING STIFFNESSES OF CORRUGATED BOARD S. Luo and J. C. Suhling Department of Mechanical Engineering Auburn University Auburn,

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode 3 Module 7 : Worked Examples Lecture 20 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic

More information

Torsional Analysis of

Torsional Analysis of Steel Design Guide Series Torsional Analysis of Structured Steel Members Steel Design Guide Series Torsional Analysis of Structural Steel Members Paul A. Seaburg, PhD, PE Head, Department of Architectural

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

Elastic shear buckling capacity of the longitudinally stiffened flat panels

Elastic shear buckling capacity of the longitudinally stiffened flat panels Analysis and Design of Marine Structures Guedes Soares & Shenoi (Eds) 015 Taylor & Francis Group, London, ISBN 978-1-138-0789-3 Elastic shear buckling capacity of the longitudinally stiffened flat panels

More information