Magnetic Force Microscopy

Size: px
Start display at page:

Download "Magnetic Force Microscopy"

Transcription

1 Magnetic Force Microscopy Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France /

2 WHY DO WE NEED MAGNETIC MICROSCOPY? Origins of magnetic energy Echange energy Magnetocrystalline anisotropy energy EEch = J1, 2 S1.S 2 = A( θ ) 2 M 2 E = K sin (θ ) mc Hext Zeeman energy (enthalpy) Dipolar energy 2 1 EZ = µ 0 M S.H 1 Ed = µ 0 M S.H d 2 Olivier Fruchart Solemio School Synchrotron Soleil p.2

3 WHY DO WE NEED MAGNETIC MICROSCOPY? Magnetic characteristic length scales Typical length scale: Bloch wall width B Numerical values λb = π A / K λ B = 2 3 nm Hard λ B 100 nm Soft e = A( dθ / dx ) + K sin 2 θ 2 Exchange J/m Anisotropy J/m 3 Olivier Fruchart Solemio School Synchrotron Soleil p.3

4 WHY DO WE NEED MAGNETIC MICROSCOPY? Magnetic domains Bulk material Mesoscopic scale Nanometric scale Numerous and complex magnetic domains Small number of domains, simple shape Magnetic single-domain Co(1000) crystal SEMPA A. Hubert, Magnetic domains Microfabricated dots Kerr magnetic imaging A. Hubert, Magnetic domains Nanomagnetism ~ mesoscopic magnetism R.P. Cowburn, J.Phys.D:Appl.Phys.33, R1 (2000) Olivier Fruchart Solemio School Synchrotron Soleil p.4

5 Why do we need microcopy? What information may be sought Conditions and environment Distribution of magnetization in Temperature Magnetic field Electrical current, light etc. Additional microscopies sample Direction & magnitude Depth resolution Elemental resolution Lateral resolution Time resolution Olivier Fruchart Solemio School Synchrotron Soleil p.5

6 Atomic Force Microscopy Working principle Key elements of an Atomic Force Microscope (AFM) Measures forces (vertical and lateral) between sample and tip Olivier Fruchart Solemio School Synchrotron Soleil p.6

7 Atomic Force Microscopy Cantilevers and tips Chip Batch fabrication Cantilever Millimeters Full tip + apex 100μm Price /tip Radius of curvature 5nm Images : Olympus catalog ( Olivier Fruchart Solemio School Synchrotron Soleil p.7

8 AFM Many uses Measures Modes of operation Topography Mechanical properties Electric properties Piezoelectric properties Long-range forces (electrostatic, magnetic) Static (deflection) When contact is needed : electric, friction etc. Dynamic (cantilever oscillation) Less damage to sample and tip More sensitive Micromanipulation & fabrication Olivier Fruchart Solemio School Synchrotron Soleil p.8

9 Mechanical oscillator Equations Mechanical excitation of cantilevers m z + Γ z + k z=f (z,t ) m Inertia Γ Damping k Spring F (z,t) External force Notations Seek solutions for F =0 z (t )=z 0 e j ωt Reference angular velocity ω0 = Quality factor Q= k m k m Γ Transfert function H= z 1 = F k 1 2 ( ) ( ) ω j ω + +1 ω0 Q ω0 Olivier Fruchart Solemio School Synchrotron Soleil p.9

10 Mechanical oscillator Solutions Gain 7 G= H = Q=10 / k 5 kg [ ( )] ( ) ω 1 ω0 2 Peak at : 1 Q=1/ ω r =ω0 3 1 ω + 2 Q ω0 kg (0)= Q kg (ω r )=Q ω /ω0 kg ( )=0 Dephasing Q>> cos φ = -1.0 φ Q=1/ Q=10 / ( ) [ ( ) ] ( ) ω 1 ω0 ω 1 ω ω + 2 Q ω0 2 ω r ω0 φ (ωr ) π /2 Δ ωr 3 ω0 Q φ (0)=0 2 3 ω /ω0 φ ( )= π Olivier Fruchart Solemio School Synchrotron Soleil p.10

11 Mechanical oscillator Tip-sample interaction treated as perturbation m z + Γ z + k z=f (z ) with F (z)=f (z 0 )+ (z z 0 ) z F Mere renormalization : ( ω0,eff =ω0 1 1 F 2k z ) Phase shift Attractive force δ φ = Q F k z Red shift Repulsive force Blue shift Forces monitored through phase shift ω exc =ω0 Olivier Fruchart Solemio School Synchrotron Soleil p.11

12 AFM Tapping mode (topography) Resonance spectrum Full resonance spectrum Amplitude 280 khz Amplitude 288 khz 0 khz 500 khz Resonance in tapping mode Phase φ=0 Amplitude φ= - π 79 khz Peak is cut 82 khz Olivier Fruchart Solemio School Synchrotron Soleil p.12

13 AFM Close-loop versus open-loop operation Close-loop operation Feedback signal and setpoint: amplitude Map at constant force Ex : map = topography with setpoint on the amplitude Open-loop operation Map The force along a predefined trajectory (plane, lift-height etc.) Ex : map = magnetic stray field above sample Olivier Fruchart Solemio School Synchrotron Soleil p.13

14 AFM Tapping mode (topography) Images Phase image Increasing pressure Height image (topography) To notice Non-contact part (bottom of image) Phase does not reflect topography Noise and phase depend on set point Sample : self-organized Anodized Alumina (synthesis L. Cagnon, Institut Néel) Olivier Fruchart Solemio School Synchrotron Soleil p.14

15 AFM Tip shadowing effects Schematics Examples Tip 1.8 x 2 microns Sample : M. Miron (Spintec) Lithography : S. Pizzini (Néel) Sample S. Y. Suck et al., APL95, (2009) Notice Lateral (base) size is over-estimated with AFM Shading, not convolution (no true retrieval possible) Tips are less sharp for MFM due to magnetic coating Olivier Fruchart Solemio School Synchrotron Soleil p.15

16 AFM Tip effects ZIP disk, 400x400 nm Usual tip SWCNT tip Tip : A. M. Bonnot (Institut Néel) Olivier Fruchart Solemio School Synchrotron Soleil p.16

17 MFM Two-pass technique Second pass Monitor long-range forces (magnetic, electrostatic) First-pass Feedback ON Monitor topography (height) and any other signal (phase etc.) Olivier Fruchart Solemio School Synchrotron Soleil p.17

18 Reminder about magnetostatics Calculate energy with magnetic dipoles Magnetic field arising from a magnetic dipole H d (r)= μ0 4πr 3 [ 3(μ 1. r)r r 2 μ 1 μ2 ] μ1 F 2 (r)= E 1,2=μ0 (Hd.μ 2) F 2 (r)= E 1,2 with E 1,2 = μ0 μ 2. Hd Calculate energy with magnetic dipoles Analogy with electrostatics thanks to div(hd ) = div(m) div[m(r ' )].(r ' r ) 3 [m(r ' ).n(r ' )].(r ' r ) 2 Hd (r ) = Ms d r' + d r' 3 3 space sample 4 π r r ' 4 π r r ' ρ (r ) = -M sdiv[m(r )] Volume charges σ (r ) = M sm(r ).n(r ) Surface charges E 1,2 =μ0 σ. ϕ with Hd = ϕ Olivier Fruchart Solemio School Synchrotron Soleil p.18

19 MFM tip/sample interaction Tip is a dipole Tip is a monopole E 1,2 = μ0 μ 2. Hd E 1,2 =μ0 σ. ϕ E 1,2 = μ0 (μ x. H d, x + μ y. H d, y + μ z. H d, z ) δφ= Q μ0 μ i 2z H d, i k F z= μ 0 σ Hd, z δφ= Q μ σ H k 0 z d,z In practice, a combination of both models is best suited (dipole is more important) MFM is sensitive to some derivative(s) of the stray field from the sample MFM may be sensitive to in-plane field, depending on the tip moment. Olivier Fruchart Solemio School Synchrotron Soleil p.19

20 MFM Single-domain nanostructures (planar) Topography MFM, saturated MFM, partly reversed S. Y. Suck et al., APL95, (2009) Single-domain in-plane magnetized dots appear as dipoles Olivier Fruchart Solemio School Synchrotron Soleil p.20

21 MFM Single-domain nanostructures (perpendicular) Structure (SEM) MFM, partly reversed T. Wang et al., APL 92, (2008) Single-domain out-of-plane magnetized dots appear as monopoles Olivier Fruchart Solemio School Synchrotron Soleil p.21

22 MFM Single-domain nanostructures (mutual interaction) Permalloy (15nm), 3x8 microns Principle : 1. Stray field magnetizes sample 2. Sample is non -uniform stray field 3. Tip measures sample's stray field Contrast : -0.1, LM tip Lithography : S. Pizzini (Institut Néel) Imaging : Z. Ishaque (Institut Néel) It is a DOMAIN contrast Interaction is ALWAYS attractive : red shift Contrast is proportionnal to the square of the tip moment Olivier Fruchart Solemio School Synchrotron Soleil p.22

23 MFM Domains in films with perpendicular anisotropy FePt (4nm), 5x5 microns It is a DOMAIN contrast The direction of magnetization is deduced Sample : A. Marty (CEA-Grenoble) Imaging : M. Darques (Institut Néel) Contrast : ±0.4, LM tip Quantitative analysis : L. Belliard et al., J. Appl. Phys. 81, 3849 (1997) Olivier Fruchart Solemio School Synchrotron Soleil p.23

24 MFM Imaging domain walls (Bloch) Fe dot (25nm), 2.5x1 microns Contrast is MONOPOLAR Informs about the polarity of the wall core Down core Up core Olivier Fruchart Solemio School Synchrotron Soleil p.24

25 MFM Imaging domain walls (Néel) Permalloy dot (16nm) 2x2 microns Permalloy film (20nm) 10x10 microns J. M. Garcia et al., APL 79, 656 (2001) Néel wall give rise to DIPOLAR contrast Informs about the chirality of the wall core Olivier Fruchart Solemio School Synchrotron Soleil p.25

26 MFM Imaging domain walls (head-to-head) Permalloy stripes (15nm), 250nm wide Contrast : ±0.3, tip 5nm CoCr Known as vortex domain-wall R. McMichael and M. Donahue, IEEE Trans. Magn. 33, 4167 (1997) Walls in in-plane magnetized stripes MONOPOLAR Contrast informs about head-to-head ot tail-to-tail Olivier Fruchart Solemio School Synchrotron Soleil p.26

27 Tips influencing samples Moderate Moderate Repulsion Attraction Attraction Scanning Repulsion 2. Permalloy (15nm) 500nm wide FePt (4nm) Image 5 microns Permalloy (15nm) 500nm stripes Sample : S. Pizzini Imaging : Z. Ishaque Sample : A. Marty Imaging : M. Darques Sample : S. Pizzini Imaging : Z. Ishaque 1. Co (0.6nm)/ graphene (20 mic) C. Dieudonné Repeat measurement and/or change scanning direction Low-coercive samples require low-moment tips Commercial 'low-moment' may not be low enough Olivier Fruchart Solemio School Synchrotron Soleil p.27

28 Sample influencing tip Forward scan FePt thick film Backward scan G. Ciuta (Institut néel) Moment of tip reverses during scan Permanent magnet Choose high-coercivity tips (eg Asylum) Olivier Fruchart Solemio School Synchrotron Soleil p.28

29 Sample influencing cantilever Soft cantilever (70kHz) Stiff cantilever (300kHz) NdFeB thick film Cantilever repeled for tip and sample opposite 'Attractive' domains are over-dominant in the image 'Repulsive' domains lack of resolution Use stiff cantilever for permanent magnets Contrast : ±20 Contrast : ±0.5 Sample : G. Ciuta (Institut néel) Olivier Fruchart Solemio School Synchrotron Soleil p.29

30 MFM under magnetic field Co(5)\Cu(5)\Py(15nm) 5 microns image Agglomerated Fe3O4 superparamagnetic particles In-plane field (30mT) Out-of-plane field (400mT) Sample : A. Masseboeuf (CEA-Grenoble) Sample : K. Aissou (LCPO, Bordeaux) Coercive field of usual tips of the order of 50mT Olivier Fruchart Solemio School Synchrotron Soleil p.30

31 Tips and cantilevers Summary of choices Moment Cantilever Normal moment for most samples (30-50nm CoCr) Normal stifness ('force modulation') resonance at 70kHz Low moment, or even : Superparamagnetic or ultra-low moment Low-coercivity samples Increased resolution At the expense of sensitivity Tip sharpness Large stifness High stray-field samples (typically permanent magnets) At the expense of sensitivity Coercivity Normal resolution (50nm) Normal (30-70mT) Sharp tips (resolution 25nm), expense : High coercivity (eg Asylum) Commercial and/or spacial High stray-field samples Loss of sensitivity At the expense of cost fabrication (FIB etc.) (typically permanent magnets) Olivier Fruchart Solemio School Synchrotron Soleil p.31

32 Calibration of tips and cantilevers 25nm 40nm 80nm 120nm 55nm Compare tips! Use identical sample and imaging parameters Sample : MnAs(001) R. Belkhou (Soleil) Olivier Fruchart Solemio School Synchrotron Soleil p.32

33 Comparing MFM with other microscopies Game of the seven differences... XMCD-PEEM MFM Olivier Fruchart Solemio School Synchrotron Soleil p.33

34 Comparing MFM with other microscopies XMCD-PEEM MFM Lorentz Olivier Fruchart Solemio School Synchrotron Soleil p.34

35 References Some references Y. Zhu Ed., Modern techniques for characterizing magnetic materials, Springer (2005) A. Schwartz et al., Scanning probe techniques: MFM and SP-STM, in : series Handbook of magnetism and advanced magnetic materials, Novel techniques for characterizing and preparing samples (vol.3), H. Kronmüller, S. Parkin Ed. (2007) Why we DO need 'SOLEIL' A. Hubert, R. Schäfer, Magnetic domains, Springer (1999) Repository of the European School on Magnetism : See 2005 School : «New experimental approaches to Magnetism» Olivier Fruchart Solemio School Synchrotron Soleil p.35

36 The European School on Magnetism 2011 Request participation before May 15th Olivier Fruchart Solemio School Synchrotron Soleil p.36

Magnetic Force Microscopy practical

Magnetic Force Microscopy practical European School on Magnetism 2015 From basic magnetic concepts to spin currents Magnetic Force Microscopy practical Organized by: Yann Perrin, Michal Staňo and Olivier Fruchart Institut NEEL (CNRS & Univ.

More information

Slides: ReMiSoL Microscopie à champ proche magnétique

Slides:   ReMiSoL Microscopie à champ proche magnétique www.spintec.fr email: olivier.fruchart@cea.fr Slides: http://fruchart.eu/slides ReMiSoL Microscopie à champ proche magnétique Univ. Grenoble Alpes / CNRS / CEA-INAC, France Univ. Grenoble Alpes / CNRS,

More information

Voyage au pays du Nanomagnétisme

Voyage au pays du Nanomagnétisme Voyage au pays du Nanomagnétisme Olivier Fruchart Institut Néel (CNRS / Univ. Grenoble-Alpes) Grenoble - France http://neel.cnrs.fr. http://perso.neel.cnrs.fr/olivier.fruchart/ Magnetism in products Modern

More information

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM

Module 26: Atomic Force Microscopy. Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM Module 26: Atomic Force Microscopy Lecture 40: Atomic Force Microscopy 3: Additional Modes of AFM 1 The AFM apart from generating the information about the topography of the sample features can be used

More information

Scanning Probe Microscopy. L. J. Heyderman

Scanning Probe Microscopy. L. J. Heyderman 1 Scanning Probe Microscopy 2 Scanning Probe Microscopy If an atom was as large as a ping-pong ball......the tip would have the size of the Matterhorn! 3 Magnetic Force Microscopy Stray field interaction

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study O.Fruchart Laboratoire Louis Néel (CNRS-UJF-INPG) Grenoble Jan. 17th, 2007 Olivier Fruchart

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Scanning Force Microscopy II

Scanning Force Microscopy II Scanning Force Microscopy II Measurement modes Magnetic force microscopy Artifacts Lars Johansson 1 SFM - Forces Chemical forces (short range) Van der Waals forces Electrostatic forces (long range) Capillary

More information

Outline Scanning Probe Microscope (SPM)

Outline Scanning Probe Microscope (SPM) AFM Outline Scanning Probe Microscope (SPM) A family of microscopy forms where a sharp probe is scanned across a surface and some tip/sample interactions are monitored Scanning Tunneling Microscopy (STM)

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland SPIE - Spintronics San Diego 28 Aug 1 Sep 2016 Staffa Island, Scotland O. Fruchart 1. Institut NÉEL, Univ. Grenoble Alpes / CNRS, France 2. SPINTEC, Univ. Grenoble Alpes / CNRS / CEA-INAC, France www.spintec.fr

More information

Nanomagnetism. Part 2 Domains and domain walls. Olivier Fruchart. Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France

Nanomagnetism. Part 2 Domains and domain walls. Olivier Fruchart.   Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France Nanomagnetism Part 2 Domains and domain walls Olivier Fruchart (Univ. Grenoble Alpes CNRS) Grenoble France http://neel.cnrs.fr Micro-NanoMagnetism team : http://neel.cnrs.fr/mnm,. http://perso.neel.cnrs.fr/olivier.fruchart/

More information

Experimental techniques for the study of small magnetic objects

Experimental techniques for the study of small magnetic objects Experimental techniques for the study of small magnetic objects Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr. France. Foreword Large overview of characterization

More information

MAGNETIC FORCE MICROSCOPY

MAGNETIC FORCE MICROSCOPY University of Ljubljana Faculty of Mathematics and Physics Department of Physics SEMINAR MAGNETIC FORCE MICROSCOPY Author: Blaž Zupančič Supervisor: dr. Igor Muševič February 2003 Contents 1 Abstract 3

More information

Bottom-up magnetic systems

Bottom-up magnetic systems Bottom-up magnetic systems Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France. http://perso.neel.cnrs.fr/olivier.fruchart/ Table of contents

More information

Low dimensional magnetism Experiments

Low dimensional magnetism Experiments Low dimensional magnetism Experiments Olivier Fruchart Brasov (Romania), Sept. 2003 1 Introduction...................................... 2 2 Ferromagnetic order................................. 2 2.1 Methods.....................................

More information

Current-induced Domain Wall Dynamics

Current-induced Domain Wall Dynamics Current-induced Domain Wall Dynamics M. Kläui, Fachbereich Physik & Zukunftskolleg Universität Konstanz Konstanz, Germany Starting Independent Researcher Grant Motivation: Physics & Applications Head-to-head

More information

Micromechanical Instruments for Ferromagnetic Measurements

Micromechanical Instruments for Ferromagnetic Measurements Micromechanical Instruments for Ferromagnetic Measurements John Moreland NIST 325 Broadway, Boulder, CO, 80305 Phone:+1-303-497-3641 FAX: +1-303-497-3725 E-mail: moreland@boulder.nist.gov Presented at

More information

Principle of Magnetic Force Microscopy

Principle of Magnetic Force Microscopy Principle of Magnetic Force Microscopy Leon Abelmann Systems and Materials for Information Storage University of Twente, The Netherlands July 2, 200 The technique of Magnetic Force Microscopy has been

More information

AFM Imaging In Liquids. W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division

AFM Imaging In Liquids. W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division AFM Imaging In Liquids W. Travis Johnson PhD Agilent Technologies Nanomeasurements Division Imaging Techniques: Scales Proteins 10 nm Bacteria 1μm Red Blood Cell 5μm Human Hair 75μm Si Atom Spacing 0.4nm

More information

Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM)

Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM) WORKSHOP Nanoscience on the Tip Intermittent-Contact Mode Force Microscopy & Electrostatic Force Microscopy (EFM) Table of Contents: 1. Motivation... 1. Simple Harmonic Motion... 1 3. AC-Mode Imaging...

More information

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays Abstract #: 983 Program # MI+NS+TuA9 Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays D. A. Tulchinsky, M. H. Kelley, J. J. McClelland, R. Gupta, R. J. Celotta National Institute of Standards

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

Contents. 1 Imaging Magnetic Microspectroscopy W. Kuch 1

Contents. 1 Imaging Magnetic Microspectroscopy W. Kuch 1 1 Imaging Magnetic Microspectroscopy W. Kuch 1 1.1 Microspectroscopy and Spectromicroscopy - An Overview 2 1.1.1 Scanning Techniques 2 1.1.2 Imaging Techniques 3 1.2 Basics 5 1.2.1 X-Ray Magnetic Circular

More information

Magnetic Force Microscopy

Magnetic Force Microscopy Magnetic Force Microscopy June 1, 1998 Kim Byung-Il Dept. of Physics Seoul National Univ. 6/19/1 1 Superconductivity Lab. Development of MFM Noncontact mode weak interaction magnetic, electric and attr.

More information

Atomic Force Microscopy imaging and beyond

Atomic Force Microscopy imaging and beyond Atomic Force Microscopy imaging and beyond Arif Mumtaz Magnetism and Magnetic Materials Group Department of Physics, QAU Coworkers: Prof. Dr. S.K.Hasanain M. Tariq Khan Alam Imaging and beyond Scanning

More information

Introduction to Scanning Probe Microscopy

Introduction to Scanning Probe Microscopy WORKSHOP Nanoscience on the Tip Introduction to Scanning Probe Microscopy Table of Contents: 1 Historic Perspectives... 1 2 Scanning Force Microscopy (SFM)... 2 2.1. Contact Mode... 2 2.2. AC Mode Imaging...

More information

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION Peter Liljeroth Department of Applied Physics, Aalto University School of Science peter.liljeroth@aalto.fi Projekt współfinansowany

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Supplementary Methods Characterization of AFM resolution We employed amplitude-modulation AFM in non-contact mode to characterize the topography of the graphene samples. The measurements were performed

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) Scanning Probe Microscopy (SPM) Scanning Tunneling Microscopy (STM) --- G. Binnig, H. Rohrer et al, (1982) Near-Field Scanning Optical Microscopy (NSOM) --- D. W. Pohl (1982) Atomic Force Microscopy (AFM)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magnetic Exchange Force Microscopy with Atomic Resolution Uwe Kaiser, Alexander Schwarz and Roland Wiesendanger S1 AFM set-up Figure S1 shows the block diagram of the AFM data acquisition set-up using

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

Magnetic Force Microscopy (MFM) F = µ o (m )H

Magnetic Force Microscopy (MFM) F = µ o (m )H Magnetic Force Microscopy (MFM) F = µ o (m )H 1. MFM is based on the use of a ferromagnetic tip as a local field sensor. Magnetic interaction between the tip and the surface results in a force acting on

More information

CNPEM Laboratório de Ciência de Superfícies

CNPEM Laboratório de Ciência de Superfícies Investigating electrical charged samples by scanning probe microscopy: the influence to magnetic force microscopy and atomic force microscopy phase images. Carlos A. R. Costa, 1 Evandro M. Lanzoni, 1 Maria

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

Introduction to Ferromagnetism. Depto. Física de Materiales, Facultad de Química, Universidad del País Vasco, San Sebastián, Spain

Introduction to Ferromagnetism. Depto. Física de Materiales, Facultad de Química, Universidad del País Vasco, San Sebastián, Spain Introduction to Ferromagnetism and Patterned Magnetic Nanostructures Konstantin Yu. Guslienko Depto. Física de Materiales, Facultad de Química, Universidad id d del País Vasco, San Sebastián, Spain Outline

More information

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures O.Boulle Spintec CEA-INAC / CNRS / Université Grenoble Alpes, Grenoble, France SOCSIS 2016 - Spestses - 29/06/2016 Acknowledgements

More information

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010 Scanning Probe Microscopy High-Resolution Surface Analysis

More information

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman General concept and defining characteristics of AFM Dina Kudasheva Advisor: Prof. Mary K. Cowman Overview Introduction History of the SPM invention Technical Capabilities Principles of operation Examples

More information

AFM for Measuring Surface Topography and Forces

AFM for Measuring Surface Topography and Forces ENB 2007 07.03.2007 AFM for Measuring Surface Topography and Forces Andreas Fery Scanning Probe : What is it and why do we need it? AFM as a versatile tool for local analysis and manipulation Dates Course

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Magnetic structure of vortex and antivortex states in patterned Co elements

Magnetic structure of vortex and antivortex states in patterned Co elements Magnetic structure of vortex and antivortex states in patterned Co elements studied by using scanning ion microscopy with polarization analysis (SIMPA). Jian Li and Carl Rau Department of Physics and Astronomy,

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy Scanning Direction References: Classical Tunneling Quantum Mechanics Tunneling current Tunneling current I t I t (V/d)exp(-Aφ 1/2 d) A = 1.025 (ev) -1/2 Å -1 I t = 10 pa~10na

More information

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages

Contents. What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Contents What is AFM? History Basic principles and devices Operating modes Application areas Advantages and disadvantages Figure1: 2004 Seth Copen Goldstein What is AFM? A type of Scanning Probe Microscopy

More information

ccsd , version 1-9 May 2005

ccsd , version 1-9 May 2005 Europhysics Letters PREPRINT Flux-closure-domain states and demagnetizing energy determination in sub-micron size magnetic dots P.-O. Jubert 1 ( )( ), J.-C. Toussaint 1, O. Fruchart 1, C. Meyer 1 and Y.

More information

Proceedings of SPIE, Micro- and Nanoelectronics -2003, Vol. 5401, pp (2003).

Proceedings of SPIE, Micro- and Nanoelectronics -2003, Vol. 5401, pp (2003). Proceedings of SPIE, Micro- and Nanoelectronics -2003, Vol. 5401, pp 555-560 (2003). Magnetic force microscopy of magnetization reversal of microstructures in situ in the external field of up to 2000Oe

More information

Introduction to magnetism Part II Magnetization reversal

Introduction to magnetism Part II Magnetization reversal Introduction to magnetism Part II Magnetization reversal Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Sep.011: next European School on Magnetism (ESM). Romania.

More information

Theory of magnetoelastic dissipation due to domain wall width oscillation

Theory of magnetoelastic dissipation due to domain wall width oscillation JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998 Theory of magnetoelastic dissipation due to domain wall width oscillation Y. Liu and P. Grütter a) Centre for the Physics of Materials, Department

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]

SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM] G01Q SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM] Scanning probes, i.e. devices having at least a tip of nanometre sized dimensions

More information

Magnetic dissipation force microscopy studies of magnetic materials invited

Magnetic dissipation force microscopy studies of magnetic materials invited JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998 Advances in Magnetic Force Microscopy John Moreland, Chairman Magnetic dissipation force microscopy studies of magnetic materials invited Y.

More information

b imaging by a double tip potential

b imaging by a double tip potential Supplementary Figure Measurement of the sheet conductance. Resistance as a function of probe spacing including D and 3D fits. The distance is plotted on a logarithmic scale. The inset shows corresponding

More information

Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope

Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 70, NUMBER 3 MARCH 1999 Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope J. W. Hong,

More information

BDS2016 Tutorials: Local Dielectric Spectroscopy by Scanning Probes

BDS2016 Tutorials: Local Dielectric Spectroscopy by Scanning Probes BDS2016 Tutorials: Local Dielectric Spectroscopy by Scanning Probes Massimiliano Labardi CNR Institute for Physico-Chemical Processes (IPCF) Pisa (Italy) OUTLINE Broadband Dielectric Spectroscopy (BDS):

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Characterization of MEMS

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe

Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe 760 PIERS Proceedings, Kuala Lumpur, MALAYSIA, March 27 30, 2012 Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe G. Venkat 1, A. Prabhakar 1,

More information

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Zulzawawi Bin Haji Hujan A thesis submitted for the degree of MSc by research University of York Department of Physics January

More information

Point mass approximation. Rigid beam mechanics. spring constant k N effective mass m e. Simple Harmonic Motion.. m e z = - k N z

Point mass approximation. Rigid beam mechanics. spring constant k N effective mass m e. Simple Harmonic Motion.. m e z = - k N z Free end Rigid beam mechanics Fixed end think of cantilever as a mass on a spring Point mass approximation z F Hooke s law k N = F / z This is beam mechanics, standard in engineering textbooks. For a rectangular

More information

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Benjamin Krüger 17.11.2006 1 Model The Micromagnetic Model Current Induced Magnetisation Dynamics Phenomenological Description Experimental

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

High-resolution Magnetic Force Microscope

High-resolution Magnetic Force Microscope High-resolution Magnetic Force Microscope hr-mfm Gigasteps on a nanoscale hr-mfm the key instrument for research and development of high-density magnetic media. 1 nm magnetic resolution guaranteed. Winner

More information

NIS: what can it be used for?

NIS: what can it be used for? AFM @ NIS: what can it be used for? Chiara Manfredotti 011 670 8382/8388/7879 chiara.manfredotti@to.infn.it Skype: khiaram 1 AFM: block scheme In an Atomic Force Microscope (AFM) a micrometric tip attached

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center Film Characterization Tutorial G.J. Mankey, 01/23/04 Theory vs. Experiment A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the

More information

Introduction to magnetism of confined systems

Introduction to magnetism of confined systems Introduction to magnetism of confined systems P. Vavassori CIC nanogune Consolider, San Sebastian, Spain; nano@nanogune.eu Basics: diamagnetism and paramagnetism Every material which is put in a magnetic

More information

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools 1. Introduction Solid Surfaces Analysis Group, Institute of Physics, Chemnitz University of Technology, Germany 2. Limitations of Conventional Optical Microscopy 3. Electron Microscopies Transmission Electron

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

Magnetic imaging and dissipation force microscopy of vortices on superconducting Nb films

Magnetic imaging and dissipation force microscopy of vortices on superconducting Nb films Applied Surface Science 188 (2002) 416 420 Magnetic imaging and dissipation force microscopy of vortices on superconducting Nb films M. Roseman *,P.Grütter Department of Physics, Centre for the Physics

More information

Magnetic properties of Co nanocolumns fabricated by oblique-angle deposition

Magnetic properties of Co nanocolumns fabricated by oblique-angle deposition JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 7 1 APRIL 2003 Magnetic properties of Co nanocolumns fabricated by oblique-angle deposition F. Tang, a) D.-L. Liu, D.-X. Ye, Y.-P. Zhao, T.-M. Lu, and G.-C.

More information

Magnetic imaging at the nanoscale

Magnetic imaging at the nanoscale Magnetic imaging at the nanoscale M. Ghidini Department of Materials Science, University of Cambridge, UK Department of Physics, University of Parma, Italy Magnetic imaging at the nanoscale Comparison

More information

Optimal Design and Evaluation of Cantilever Probe for Multifrequency Atomic Force Microscopy

Optimal Design and Evaluation of Cantilever Probe for Multifrequency Atomic Force Microscopy 11 th World Congress on Structural and Multidisciplinary Optimisation 07 th -12 th, June 2015, Sydney Australia Optimal Design and Evaluation of Cantilever Probe for Multifrequency Atomic Force Microscopy

More information

Techniken der Oberflächenphysik (Techniques of Surface Physics)

Techniken der Oberflächenphysik (Techniques of Surface Physics) Techniken der Oberflächenphysik (Techniques of Surface Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de yang.xu@tu-ilmenau.de

More information

Test of response linearity for magnetic force microscopy data

Test of response linearity for magnetic force microscopy data JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 3 1 AUGUST 2002 Test of response linearity for magnetic force microscopy data R. Yongsunthon and E. D. Williams a) Department of Physics, University of Maryland,

More information

Scanning Probe Microscopy (SPM)

Scanning Probe Microscopy (SPM) CHEM53200: Lecture 9 Scanning Probe Microscopy (SPM) Major reference: 1. Scanning Probe Microscopy and Spectroscopy Edited by D. Bonnell (2001). 2. A practical guide to scanning probe microscopy by Park

More information

Paolo Vavassori. Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain.

Paolo Vavassori. Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain. Magnetic nanostructures Paolo Vavassori Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain. P. Vavassori nano@nanogune.eu I www.nanogune.eu 1 Outline Part I Introduction.

More information

Lecture 12: Biomaterials Characterization in Aqueous Environments

Lecture 12: Biomaterials Characterization in Aqueous Environments 3.051J/20.340J 1 Lecture 12: Biomaterials Characterization in Aqueous Environments High vacuum techniques are important tools for characterizing surface composition, but do not yield information on surface

More information

Magnetic nanoparticles containing soft-hard diblock

Magnetic nanoparticles containing soft-hard diblock Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Magnetic nanoparticles containing soft-hard diblock copolymer

More information

Magnetic Force Microscopy Studies of Patterned Magnetic Structures

Magnetic Force Microscopy Studies of Patterned Magnetic Structures 3420 IEEE TRANSACTIONS ON MAGNETICS, VOL. 39, NO. 5, SEPTEMBER 2003 Magnetic Force Microscopy Studies of Patterned Magnetic Structures Xiaobin Zhu and Peter Grutter Abstract Magnetic force microscopy is

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Dopant Concentration Measurements by Scanning Force Microscopy

Dopant Concentration Measurements by Scanning Force Microscopy 73.40L Scanning Microsc. Microanal. Microstruct. 551 Classification Physics Abstracts - - 61.16P 73.00 Dopant Concentration Measurements by Scanning Force Microscopy via p-n Junctions Stray Fields Jacopo

More information

Reducing dimension. Crystalline structures

Reducing dimension. Crystalline structures Reducing dimension 2D surfaces, interfaces and quantum wells 1D carbon nanotubes, quantum wires and conducting polymers 0D nanocrystals, nanoparticles, lithographically patterned quantum dots Crystalline

More information

Control of the Magnetic State of Massifs of Ferromagnetic Nanoparticles with the Aid of the Inhomogeneous Field of a Magnetic-Force-Microscope Probe 1

Control of the Magnetic State of Massifs of Ferromagnetic Nanoparticles with the Aid of the Inhomogeneous Field of a Magnetic-Force-Microscope Probe 1 ISSN 0031-918X, The Physics of Metals and Metallography, 2010, Vol. 110, No. 7, pp. 1 27. Pleiades Publishing, Ltd., 2010. Control of the Magnetic State of Massifs of Ferromagnetic Nanoparticles with the

More information

Application of electrostatic force microscopy in nanosystem diagnostics

Application of electrostatic force microscopy in nanosystem diagnostics Materials Science, Vol., No. 3, 003 Application of electrostatic force microscopy in nanosystem diagnostics TEODOR P. GOTSZALK *, PIOTR GRABIEC, IVO W. RANGELOW 3 Fulty of Microsystem Electronics and Photonics,

More information

Magnetic ordering in two-dimensional. nanoparticle assemblies

Magnetic ordering in two-dimensional. nanoparticle assemblies Magnetic ordering in two-dimensional nanoparticle assemblies Pedro Zeijlmans van Emmichoven Faculty of Science, Utrecht University Leiden, June 18 th, 2007 Collaborators Mirela Georgescu Mark Klokkenburg

More information

Direct study of domain and domain wall structure in magnetic films and nanostructures

Direct study of domain and domain wall structure in magnetic films and nanostructures Direct study of domain and domain wall structure in magnetic films and nanostructures John Chapman, University of Glasgow Synopsis Why use Lorentz microscopy? Magnetisation reversal in soft magnetic films

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS

OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS 1 OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS A. A. Zhukov 1, M. A. Ghanem 2, A. V. Goncharov 1, R. Boardman 3, V. Novosad 4, G. Karapetrov 4, H. Fangohr 3, P.

More information

Macroscopic properties II

Macroscopic properties II Paolo Allia DISAT Politecnico di Torino acroscopic properties II acroscopic properties II Crucial aspects of macroscopic ferromagnetism Crystalline magnetic anisotropy Shape anisotropy Ferromagnetic domains

More information

Neutron Reflectometry of Ferromagnetic Arrays

Neutron Reflectometry of Ferromagnetic Arrays Neutron Reflectometry of Ferromagnetic Arrays Z.Y. Zhao a, P. Mani a, V.V.Krishnamurthy a, W.-T. Lee b, F. Klose b, and G.J. Mankey a a Center for Materials for Information Technology and Department of

More information

Principle of Electrostatic Force Microscopy and Applications. Thierry Mélin.

Principle of Electrostatic Force Microscopy and Applications. Thierry Mélin. Principle of Electrostatic Force Microscopy and Applications Thierry Mélin thierry.melin@univ-lille1.fr ANF-DFRT CEA Leti, Dec 1 st 2016 I Introduction II Electrostatic Force Microscopy (EFM) III Kelvin

More information

Metal-coated carbon nanotube tips for Magnetic Force Microscopy

Metal-coated carbon nanotube tips for Magnetic Force Microscopy Metal-coated carbon nanotube tips for Magnetic Force Microscopy Zhifeng Deng 1,4, Erhan Yenilmez 2,4, Josh Leu 1,4, J.E. Hoffman 2,4, Eric Straver 2,4, Hongjie Dai 3,4, Kathryn A. Moler 1,2,4 1 Department

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

AMETHOD of reconstructing the in-plane component of

AMETHOD of reconstructing the in-plane component of 2324 IEEE TRANSACTIONS ON MAGNETICS, VOL. 34, NO. 4, JULY 1998 Magnetization Reconstruction from Differential Phase Contrast Lorentz Microscopy and Magnetic Force Microscopy M. Wdowin, J. J. Miles, B.

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

And Manipulation by Scanning Probe Microscope

And Manipulation by Scanning Probe Microscope Basic 15 Nanometer Scale Measurement And Manipulation by Scanning Probe Microscope Prof. K. Fukuzawa Dept. of Micro/Nano Systems Engineering Nagoya University I. Basics of scanning probe microscope Basic

More information