Macroscopic properties II

Size: px
Start display at page:

Download "Macroscopic properties II"

Transcription

1 Paolo Allia DISAT Politecnico di Torino acroscopic properties II

2 acroscopic properties II Crucial aspects of macroscopic ferromagnetism Crystalline magnetic anisotropy Shape anisotropy Ferromagnetic domains and domain structures Domain walls The technical magnetization process agnetic losses agnetization dynamics: ferromagnetic resonance

3 agnetic anisotropy: crystalline The Heisenberg exchange hamiltonian is isotropic: it depends on the mutual directions of spins S i and S j only: H i j J ij S i S j i j J ij S xi S xj S yi S yj S Real magnetic materials, however, exhibit magnetic anisotropy, which is essentially caused by the spin-orbit coupling. Spin-orbit coupling implies that the direction of spin depends on the orientation of electron orbits zi S zj Orbital states are determined by the electronic configurations and are influenced by crystal symmetry too therefore, magnetic anisotropy depends on the interplay between shape of electron orbitals and crystal symmetry 3

4 Sketchy examples of actual orbital shapes: Interplay between 3d orbitals and crystal structure (for simple cubic symmetry): 4

5 The crystal field already defined in connection with quenching of orbital momentum - is deemed responsible for the emergence of magnetic anisotropy (single-ion anisotropy). The energy is indeed strongly affected by the actual arrangement of neighboring atoms/ions. Such a localized-spin picture applies to 3d-insulators & 4f-metals mostly. 5

6 For transition metal ions, magnetic anisotropy is usually treated by examining the crystal field splitting and adding spin-orbit coupling as a perturbation. In fact, crystal-field splitting is larger than spin-orbit coupling for 3d electrons. Instead, in rare-earth ( RE ) metals and RE-intermetallic compounds, crystal-field splitting is weak compared to spin-orbit energy. Therefore, magnetic anisotropy of RE metals/intermetallics can be very large. Phenomenology of the magnetic crystalline anisotropy In view of the difficulties in producing a general theory of magnetic anisotropy, from first principles starting from the Heisenberg hamiltonian, it is often preferred to draw a macroscopic, phenomenological picture of the measured effects. 6

7 agnetocrystalline anisotropy: observations Favored/unfavorable directions of the magnetization vector are usually termed easy/hard axes. 7

8 Types of magnetocrystalline anisotropy Uniaxal anisotropy Co crystals show negligible anisotropy in the basal plane. Therefore, Co exhibits uniaxial anisotropy with a preference for magnetization to point along the c axis. Uniaxial anisotropy energy (per unit volume) is expressed as a power series containing even powers of sin q (energy does not change value under space inversion) E U K n n sin n q K K sin q K sin 4 q... 8

9 Usually, K > K. The c-axis is the easy axis if K >. The anisotropy constants K, K are strongly temperature-dependent; they even intersect well above room temperature. K changes of sign at even higher T. E k U l l g l 9

10 Anisotropy field In uniaxial materials, the hard-axis magnetization process is described adding the Zeeman energy (- s H sin θ) to the uniaxial anisotropy energy. Neglecting the K term, one gets: E E U S H sinq K sin q SH sinq The equilibrium condition is found setting the derivative of the energy with respect to q equal to zero: E K sinq cosq q K sinq H S S H cosq The field needed to rotate the S vector by 9 away from the easy axis (sin q = ) is K H S. The same quantity accounts for the strength of the anisotropy in terms of an internal fictitious field: the anisotropy field.

11 Cubic anisotropy In cubic crystals, symmetry considerations require that the anisotropy take the form: E A K K... K where the direction cosines i are defined in terms of the Euler angles as: sinq cos; 3 sinq sin; 3 cosq In cubic systems the [ ], [ ], [] crystallographic axes are equivalent. Usually K > K therefore, [] (edge of the cube) is the easy axis when K > as in Fe; [] (principal diagonal of the cube) is the easy axis when K < as in Ni

12 Room-temperature values of K, K and temperature dependence of K,K,K 3 for Fe and Ni monocrystals. Ki ( T) K () i S S ( T) () l( l) l= for uniaxial anisotropy l=4 for cubic anisotropy S

13 agnetic anisotropy: shape B H Discontinuities of magnetization act as sources of demagnetizing field H d. Generally speaking, H d =-N/. The demagnetization factor N depends on body s shape. For an ellipsoid, three demagnetization factors can be defined: N x + N y + N z = H H H dx dy dz N N N x y z x y z 3

14 4 The magnetic energy (per unit volume) is given by: z z y y x x d d d N N N H General rule: if a>b>c, then N x < N y < N z For an ellipsoid of revolution, N x = N y = ( - N z )/ and q cos 3 4. z s z z y y x x d N const N N N Shape anisotropy is uniaxial; easy axis is always the long axis of ellipsoid.

15 Important limiting cases Spherical sample: N x = N y = N z =/3 no shape anisotropy Thin films: one dimension (z) is much smaller than the other two dimensions; according to the general rule N z >> N x,n y, and N z, N x N y. d s cos q The energy is minimized for q = p: the magnetization usually lies in the film s plane at equilibrium. The only way to get a perpendicular equilibrium magnetization in a film is to use a material with an extremely high crystal anisotropy and easy axis along z. icrowires: N z, N x N y /. 4 d s cos q The magnetization is spontaneously directed along the wire axis (even if this is bent). 5

16 Ferromagnetic domains & domain structures agnetic poles (of field H!) may appear at sample surfaces H d d H d The magnetostatic energy for a uniformly magnetized body can be written as: E E d d body H H space d d dv dv where the second integral is to be performed over the space, inside and outside the body. 6

17 For a uniformly magnetized macroscopic body the overall magnetostatic energy can be significant. It can be effectively reduced with the nucleation of magnetic domains of antiparallel magnetization such as those shown in the figure, cases (b) and (c): Positive and negative magnetic poles at the sample surface are finely distributed, and the external field decreases. A quick calculation: consider a slab of Co, with s =.8 T aligned along z by crystal anisotropy. Taking N z one gets, in the single-domain configuration (a): d = s / =.3 6 J/m 3. In the presence of domains of width D, one gets instead: d.3 6 D which can be much smaller. 7

18 Of course, D cannot become equal to zero as suggested by the last formula, because a magnetic domain wall (DW) must exist between two adjacent domains of antiparallel magnetization. Nucleation of a DW requires paying an energy cost, because DW s store both exchange and anisotropy energy. Domain wall thickness and stored energy Within a DW the magnetization points along a direction not corresponding to an easy axis and a quasi-continuous rotation of the vector occurs there. The wall thickness is the space length required for a full rotation of a given angle to occur. The full rotation angle between domains of antiparallel magnetization is p (8 domain wall). 8

19 Domain wall thickness is determined by minimizing the sum of exchange and magnetic anisotropy energies. Exchange energy Exchange energy is a minimum inside each domain. Within a DW instead: exch J SiS j JS cos const. JS The exchange energy per unit area of the DW is: E exch const N a. JS where N is the number of n.n. distances a contained in the DW thickness: d= Na. 9

20 Approximating p/n (homogeneous rotation) one gets: E exch const. JS p Na i.e., the DW should be infinitely large to minimize exchange energy. However, a DW stores anisotropy energy also. Anisotropy energy A rough estimate of the stored anisotropy energy per DW unit surface is given by the product K V (where V is the material s volume within the DW) divided by the DW surface S. The volume V in turn is just NaS. Therefore, E an K Na i.e., the DW should be infinitely narrow to minimize anisotropy energy. Of course, a trade-off between competing energies will occur.

21 The total stored energy (per unit wall surface) is E p const. JS KNa Na The DW thickness is therefore found by putting the derivative E/N equal to zero: E N p JS JS Ka d Na p N a K a and the stored DW energy (per unit wall surface) is: JS a K E wall p Example: Co JS /a =.6 - J/m K = J/m 3 d.7-8 m = 7 nm E wall.5 - J/m

22 Bloch walls vs. Néel walls Across the thickness of a 8 dw there are virtually no magnetic poles ( inhomogeneities of the magnetization in a direction perpendicular to the wall). Of course, some free magnetic poles are created at the top and bottom of the wall on opposite surfaces of a bulk material, where the dw terminates; positive and negative poles they are however separated by a macroscopic distance and the associated magnetostatic energy is negligible agnetic poles appear at the surface in correspondance of a 8 dw (The stray field generated by the poles provides a way to visualize the dw by observing the magnetic micropowders accumulated there)

23 Bloch walls vs. Néel walls In thin films, the magnetostatic energy of the wall significantly increases as a result of these free poles created of film surfaces. In order to reduce this magnetostatic energy, the spins inside the wall may perform their 8 rotation in such a way as to minimize the density of magnetic poles, which leads to the rotation of spins in the plane of the surface. Such a wall is called a Néel wall. Néel wall (below) becomes more stable than Bloch wall (above) below some critical film thickness (data refer to Permalloy [a soft NiFe alloy]). 3

24 Domain walls patterns agnetic domains reduce the magnetostatic energy of a magnetized body; however, each pair of adjacent domains involves the presence of a dw which stores energy. The actual number of magnetic domains found in a material at equilibrium (no applied field) is dictated by a trade-off between DW and magnetostatic energies. In the simple case treated above, and using energy densities (in J/m 3 ): d wall wall E E wall wall s s D (totalsurface) / volume L x L D x D L y L L E D y z wall L z E D wall where E wall is a known quantity: domain wall width D JS a K E wall p and we look for the 4

25 The magnetic domain width at equilibrium is found by minimizing the total energy density: Ewall s D Example: Co D s =.8 T E E wall wall.5 - J/m s d = 7 nm D D D = -4 m = m Ewall D In actual materials, there is a wide variety of equilibrium magnetic domain patterns; domain shape and width is dictated by the complex interplay of different energies s 5

26 Domain disappearance in fine particles agnetic domains have a typical width; therefore they do not develop in a ferromagnetic body of sufficiently small size. Which is the critical size below which a particle no longer exhibits multiple domains ( i.e., it becomes a single-domain particle)? This is important for applications of fine particles in permanent magnets and recording media. For the single-domain state to be stable, the energy needed to create one domain wall spanning a spherical particle of radius r, E wall pr, must exceed the magnetostatic energy E d = /3 s V (the demagnetizing factor being /3 in this case): r p crit JS a K 9 p 4 pr crit JS a 4p 9 K s s r 3 crit For Co, r crit 5 nm; for SmCo 5 with K u = 7 J/m 3, r crit m. The effect called superparamagnetism of single-domain, magnetic nanoparticles is beyond the scope of these lectures. 6

27 The technical magnetization process in bulk ferromagnetic materials A ferromagnetic body in the absence of applied magnetic field is spontaneously divided into many domains. The initial macroscopic magnetization of the body is zero (or almost zero) because of the mutually compensating contributions from antiparallel domains. An applied field modifies the starting configuration and a net magnetization of the material is measured. 7

28 The technical magnetization process in bulk ferromagnetic materials Al low fields, favored domains (those whose local magnetization is closest to the applied field direction) grow at the expenses of the other unfavorable ones according to a sort of principle of survival of the fittest. At higher fields, the magnetization rotates coherently towards the field direction 8

29 Domain wall displacement DW displacement occurs because of the force (pressure) brought about by the external field and involves a continuous rotation of local magnetization with time. The displacement can be hindered by defects (point defects, dislocations, inclusions, stress centers, ). The wall moves in a complex, multivalley potential energy landscape which is the source of intrinsic irreversibility of this motion. 9

30 In general, both magnetization mechanisms, i.e., DW displacement and coherent rotation of the vector s have intrinsic irreversibility characters. As a consequence, if the magnetization process is done (as usual) under the effect of an alternating magnetic field, it displays hysteresis. The hysteresis loop s area has the meaning of the energy (per unit volume) which must be provided from outside in order to perform the loop; i.e., this is the energy dissipated by the material in the magnetic loop. Consider a toroidal core with area A and length l. Energy loss over a period T: E T i( t) V ( t) dt where i(t) is the eddy current flowing in the toroid and V is the electromotive force 3

31 The quantities in the integrand function can be written as: i(t) H(t)ds V(t) A db dt H(t)l Ampere s law Faraday s law so that E T i( t) V ( t) dt la T H( t) db dt dt Al H( t) db If the loop is performed at higher frequency, the electromotive force increases and the dissipated energy too (the loop becomes wider). The mesoscopic source of eddy currents is the motion of domain walls; their motion is non-uniform because of the multi-valley character of the energy potential landscape, resulting in quick jumps forward followed by stasis. This increases the losses (db/dt becoming exceedingly high during a jump) 3

32 icrowave magnetization dynamics and ferromagnetic resonance Under a magnetic field H, the free magnetization vector precedes around the field axis: d s H dt B g When H is applied along the z axis, the solution is: x mcos t y msin t z const =H being the Larmor frequency, m is the projection of x, y on the z axis. 3

33 icrowave magnetization dynamics and ferromagnetic resonance In a ferromagnetic material there exists an internal field (exchange field) which is of the order of several hundred koe. Therefore. 5 5 s - (f 9 Hz). Of course the magnetization vector will eventually relax towards the field direction on the time scale of magnetometer measurement because of dissipation processes. If it is assumed - as usual in these cases - that the rate of relaxation is proportional to the amount by which the moment is out of equilibrium, addition of the loss term results in: d dt sz H τ is the longitudinal relaxation time. Similarly the transverse components relax toward zero, but with a different (transverse) relaxation time: z z s d dt s x, y H These are the phenomenological Bloch equations. x, y x, y 33

34 icrowave magnetization dynamics and ferromagnetic resonance It is possible to show that the Bloch equations are compatible with a general equation of motion containing a phenomenological damping term. Two suggested forms, due to Landau -Lifschitz and Gilbert respectively, are: d dt d dt H H H d dt is the Gilbert damping, which is of the order.-.; with s -, is the of the order of the nanosecond. Note that the resonance condition of the ferromagnets is altered by magnetostatic fields associated with the sample shape. The components of the internal magnetic field become H i j = H-N j j, with N j = demagnetizing factor and j = x, y, z. 34

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 5: MAGNETIC STRUCTURES - Mean field theory and magnetic order - Classification of magnetic structures - Collinear and non-collinear magnetic structures. - Magnetic

More information

Introduction to magnetism of confined systems

Introduction to magnetism of confined systems Introduction to magnetism of confined systems P. Vavassori CIC nanogune Consolider, San Sebastian, Spain; nano@nanogune.eu Basics: diamagnetism and paramagnetism Every material which is put in a magnetic

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200, 复习题 1 Calculate the magnetic moment of a sphere of radius R made from a magnetic material with magnetic susceptibility, when it is magnetized by an external magnetic field H. How is the value of the moment

More information

Theory of magnetoelastic dissipation due to domain wall width oscillation

Theory of magnetoelastic dissipation due to domain wall width oscillation JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998 Theory of magnetoelastic dissipation due to domain wall width oscillation Y. Liu and P. Grütter a) Centre for the Physics of Materials, Department

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Lecture contents. Magnetic properties Diamagnetism Band paramagnetism Atomic paramagnetism Ferromagnetism. Molecular field theory Exchange interaction

Lecture contents. Magnetic properties Diamagnetism Band paramagnetism Atomic paramagnetism Ferromagnetism. Molecular field theory Exchange interaction 1 Lecture contents Magnetic properties Diamagnetism and paramagnetism Atomic paramagnetism Ferromagnetism Molecular field theory Exchange interaction NNSE 58 EM Lecture #1 [SI] M magnetization or magnetic

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic.

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic. Lecture 5 Induced magnetization: that which is induced in the presence of an applied magnetic field diamagnetic paramagnetic Remanent magnetization: that which remains in the absence of an external field

More information

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets Chapter 2 Theoretical background The first part of this chapter gives an overview of the main static magnetic behavior of itinerant ferromagnetic and antiferromagnetic materials. The formation of the magnetic

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES

THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Saad Alsari

More information

PHYSICS 4750 Physics of Modern Materials Chapter 8: Magnetic Materials

PHYSICS 4750 Physics of Modern Materials Chapter 8: Magnetic Materials PHYSICS 475 Physics of Modern Materials Chapter 8: Magnetic Materials 1. Atomic Magnetic Dipole Moments A magnetic solid is one in which at least some of the atoms have a permanent magnetic dipole moment

More information

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS 1/49 MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS Dieter Suess dieter.suess@tuwien.ac.at Institut of Solid State Physics, Vienna University of Technology, Austria (submitted to Journal

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Basic Magnetism (I. Fundamentals)

Basic Magnetism (I. Fundamentals) Paolo Allia DISAT Politecnico di Torino Associate, INRiM - Torino Basic Magnetism (I. Fundamentals) P. Allia - Italian School of Magnetism 018 1 A journey through Magnetism or, From atoms to macroscopic

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1 Electromagnetism II Instructor: Andrei Sirenko sirenko@njit.edu Spring 013 Thursdays 1 pm 4 pm Spring 013, NJIT 1 PROBLEMS for CH. 6 http://web.njit.edu/~sirenko/phys433/phys433eandm013.htm Can obtain

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN MAGNETIC MATERIALS Fundamentals and device applications NICOLA A. SPALDIN CAMBRIDGE UNIVERSITY PRESS Acknowledgements 1 Review of basic magnetostatics 1.1 Magnetic field 1.1.1 Magnetic poles 1.1.2 Magnetic

More information

An introduction to magnetism in three parts

An introduction to magnetism in three parts An introduction to magnetism in three parts Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D-76131 Karlsruhe 0. Overview Chapters of the three lectures

More information

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2 Magnetic Materials The inductor Φ B = LI (Q = CV) Φ B 1 B = L I E = (CGS) t t c t EdS = 1 ( BdS )= 1 Φ V EMF = N Φ B = L I t t c t B c t I V Φ B magnetic flux density V = L (recall I = C for the capacitor)

More information

Magnetic Force Microscopy practical

Magnetic Force Microscopy practical European School on Magnetism 2015 From basic magnetic concepts to spin currents Magnetic Force Microscopy practical Organized by: Yann Perrin, Michal Staňo and Olivier Fruchart Institut NEEL (CNRS & Univ.

More information

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially MAGNETIC CIRCUITS The study of magnetic circuits is important in the study of energy systems since the operation of key components such as transformers and rotating machines (DC machines, induction machines,

More information

Magnetization Dynamics

Magnetization Dynamics Magnetization Dynamics Italian School on Magnetism Pavia - 6-10 February 2012 Giorgio Bertotti INRIM - Istituto Nazionale di Ricerca Metrologica, Torino, Italy Part I Free energy of a ferromagnetic body:

More information

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles Xavier Batlle and Amílcar Labarta Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia Universitat de Barcelona,

More information

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine in the de Haas van Alphen effect Magnetic domains of non-spin origine related to orbital quantization Jörg Hinderer, Roman Kramer, Walter Joss Grenoble High Magnetic Field laboratory Ferromagnetic domains

More information

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires Benjamin Krüger 17.11.2006 1 Model The Micromagnetic Model Current Induced Magnetisation Dynamics Phenomenological Description Experimental

More information

Fundamentals of Magnetism

Fundamentals of Magnetism Fundamentals of Magnetism Part II Albrecht Jander Oregon State University Real Magnetic Materials, Bulk Properties M-H Loop M M s M R B-H Loop B B s B R H ci H H c H M S - Saturation magnetization H ci

More information

Fast numerical 3D-Scheme for the Simulation of Hysteresis in ferromagnetic Materials

Fast numerical 3D-Scheme for the Simulation of Hysteresis in ferromagnetic Materials 27-28 APRIL 26, GHENT, BELGIUM Fast numerical 3D-Scheme for the Simulation of Hysteresis in ferromagnetic Materials Ben Van de Wiele, Luc Dupré, Member, IEEE, and Femke Olyslager, Fellow, IEEE Abstract

More information

Chapter 6. Magnetostatic Fields in Matter

Chapter 6. Magnetostatic Fields in Matter Chapter 6. Magnetostatic Fields in Matter 6.1. Magnetization Any macroscopic object consists of many atoms or molecules, each having electric charges in motion. With each electron in an atom or molecule

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

physics 590 ruslan prozorov magnetic measurements Nov 9,

physics 590 ruslan prozorov magnetic measurements Nov 9, physics 590 ruslan prozorov magnetic measurements Nov 9, 2009 - magnetic moment of free currents Magnetic moment of a closed loop carrying current I: Magnetic field on the axis of a loop of radius R at

More information

Ch. 28: Sources of Magnetic Fields

Ch. 28: Sources of Magnetic Fields Ch. 28: Sources of Magnetic Fields Electric Currents Create Magnetic Fields A long, straight wire A current loop A solenoid Slide 24-14 Biot-Savart Law Current produces a magnetic field The Biot-Savart

More information

Sources of Magnetic Field II

Sources of Magnetic Field II Sources of Magnetic Field II Physics 2415 Lecture 18 Michael Fowler, UVa Today s Topics More about solenoids Biot-Savart law Magnetic materials Ampère s Law: General Case Ampère s Law states that for any

More information

PHYS 1444 Section 501 Lecture #17

PHYS 1444 Section 501 Lecture #17 PHYS 1444 Section 501 Lecture #17 Wednesday, Mar. 29, 2006 Solenoid and Toroidal Magnetic Field Biot-Savart Law Magnetic Materials B in Magnetic Materials Hysteresis Today s homework is #9, due 7pm, Thursday,

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

Let's look at the force on a current loop. In a uniform field it is zero: F = I I (dl B) =I I dl B =0 (4) since B is constant and comes outside the in

Let's look at the force on a current loop. In a uniform field it is zero: F = I I (dl B) =I I dl B =0 (4) since B is constant and comes outside the in Midterm: Mean 4.4/30, sigma = 5, high score - 25/30 Topic 3: Magnetostatic Fields in Matter Reading Assignment: Jackson Chapter 5.7-5. The treatment of magnetostatic fields in matter is quite parallel

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Zulzawawi Bin Haji Hujan A thesis submitted for the degree of MSc by research University of York Department of Physics January

More information

Follow this and additional works at: Part of the Physics Commons

Follow this and additional works at:   Part of the Physics Commons Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2016 Surface Effect Of Ferromagnetic Nanoparticles On Transition Between Single- And Multi-Domain Structure

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Simulation Of Spin Wave Switching In Perpendicular Media

Simulation Of Spin Wave Switching In Perpendicular Media Simulation Of Spin Wave Switching In Perpendicular Media P. B.Visscher Department of Physics and Astronomy The University of Alabama Abstract We propose to build on our understanding of spin wave switching

More information

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich Alessandro Vindigni Laboratorium für Festkörperphysik, ETH Zürich ETH October 29, 2012 Lecture plan N-body problem Lecture plan 1. Atomic magnetism (Pescia) 2. Magnetism in solids (Pescia) 3. Magnetic

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes B for a Long, Straight Conductor, Special Case If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes μ I B = o 2πa B for a Curved Wire Segment Find the field at point

More information

Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films

Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 8 15 APRIL 1998 Theory of two magnon scattering microwave relaxation and ferromagnetic resonance linewidth in magnetic thin films M. J. Hurben and C. E. Patton

More information

Micromagnetic simulation of dynamic and thermal effects

Micromagnetic simulation of dynamic and thermal effects Micromagnetic simulation of dynamic and thermal effects T. Schrefl, J. Fidler, D. Suess, W. Scholz, V. Tsiantos Institute of Applied and Technical Physics Vienna University of Technology Wiedner Haupstr.

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Ferromagnetism. In free space, the flux density and magnetizing field strength are related by the expression

Ferromagnetism. In free space, the flux density and magnetizing field strength are related by the expression 1 Ferromagnetism B In free space, the flux density and magnetizing field strength are related by the expression H B =µ 0 H µ 0 =4π x 10-7 H.m -1, the permeability of free space. 2 Ferromagnetism B H For

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Magnetism of Atoms and Ions. Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D Karlsruhe

Magnetism of Atoms and Ions. Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D Karlsruhe Magnetism of Atoms and Ions Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D-76131 Karlsruhe 1 0. Overview Literature J.M.D. Coey, Magnetism and

More information

Lecture 24 - Magnetism

Lecture 24 - Magnetism Lecture 24: Magnetism (Kittel Ch. 1112) Quantum Mechanics Magnetism ElectronElectron Interactions Physics 460 F 2006 Lect 24 1 Outline Magnetism is a purely quantum phenomenon! Totally at variance with

More information

l μ M Right hand Screw rule

l μ M Right hand Screw rule Magnetic materials Magnetic property The response of the materials to external magnetic field All the materials are magnetic, only the degree of response varies, which is measured in terms of their magnetization

More information

Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell

Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell 1. Review of Magnetostatics in Magnetic Materials - Currents give rise to curling magnetic fields:

More information

Material Science. Chapter 16. Magnetic properties

Material Science. Chapter 16. Magnetic properties Material Science Chapter 16. Magnetic properties Engineering materials are important in everyday life because of their versatile structural properties. Other than these properties, they do play an important

More information

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1 Chapter 1 Production of Net Magnetization Magnetic resonance (MR) is a measurement technique used to examine atoms and molecules. It is based on the interaction between an applied magnetic field and a

More information

Roger Johnson Structure and Dynamics: Displacive phase transition Lecture 9

Roger Johnson Structure and Dynamics: Displacive phase transition Lecture 9 9.1. Summary In this Lecture we will consider structural phase transitions characterised by atomic displacements, which result in a low temperature structure that is distorted compared to a higher temperature,

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 5.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 5. Chapter. Magnetostatics Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 5..1 Introduction Just as the electric field vector E is the basic quantity in electrostatics,

More information

Solid state physics. Lecture 9: Magnetism. Prof. Dr. U. Pietsch

Solid state physics. Lecture 9: Magnetism. Prof. Dr. U. Pietsch Solid state physics Lecture 9: Magnetism Prof. Dr. U. Pietsch Diamagnetism and Paramagnetsim Materie in magnetic field m 0 0 H M H(1 H 0 0M m M magnetiszation magnetic susceptibility - magnetic permeability

More information

Magnetic States and Hysteresis Properties of Small Magnetite Particles

Magnetic States and Hysteresis Properties of Small Magnetite Particles The Physics of Metals and Metallography, Vol. 86, No. 3, 998, pp. 269 275. Original Russian Text Copyright 998 by Fizika Metallov i Metallovedenie, Afremov, Panov. English Translation Copyright 998 by

More information

Simulation of Hysteresis In Permalloy Films

Simulation of Hysteresis In Permalloy Films GQ-02 1 Simulation of Hysteresis In Permalloy Films Andrew Kunz and Chuck Campbell Magnetic Microscopy Center University of Minnesota Minneapolis, MN Introduction 2 Looking for the classical behavior of

More information

Magnetism. Ram Seshadri MRL 2031, x6129, Some basics:

Magnetism. Ram Seshadri MRL 2031, x6129, Some basics: Magnetism Ram Seshadri MRL 2031, x6129, seshadri@mrl.ucsb.edu Some basics: A magnet is associated with magnetic lines of force, and a north pole and a south pole. he lines of force come out of the north

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

What is the susceptibility?

What is the susceptibility? What is the susceptibility? Answer which one? M Initial susceptibility Mean susceptibility M st M 0 0 m High field susceptibility i dm = dh H =0 H st H M M st M 0 0 m i H st H H What is the susceptibility?

More information

Dielectrics. Lecture 20: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Dielectrics. Lecture 20: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay What are dielectrics? Dielectrics Lecture 20: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay So far we have been discussing electrostatics in either vacuum or in a conductor.

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 15 Chapter 27 sec. 3-5 Fall 2016 Semester Professor Koltick Magnetic Fields B = μ 0 4π I dl r r 2 = μ 0 4π I dl r r 3 B = μ 0 2I 4π R B = μ 0 2 IR 2 R 2 + z 2

More information

The effect of the spatial correlation length in Langevin. micromagnetic simulations

The effect of the spatial correlation length in Langevin. micromagnetic simulations F043, version 1, 30 May 2001 The effect of the spatial correlation length in Langevin micromagnetic simulations V. Tsiantos a, W. Scholz a, D. Suess a, T. Schrefl a, J. Fidler a a Institute of Applied

More information

ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS

ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS ELECTRON MAGNETIC RESONANCE OF MANGANESE COMPOUNDS Peter C Riedi School of Physics and Astronomy, University of St. Andrews, Fife, Scotland KY16 9SS, UK (pcr@st-and.ac.uk) INTRODUCTION This talk will introduce

More information

lim = F F = F x x + F y y + F z

lim = F F = F x x + F y y + F z Physics 361 Summary of Results from Lecture Physics 361 Derivatives of Scalar and Vector Fields The gradient of a scalar field f( r) is given by g = f. coordinates f g = ê x x + ê f y y + ê f z z Expressed

More information

Displacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time

Displacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time Displacement Current Ampere s law in the original form is valid only if any electric fields present are constant in time Maxwell modified the law to include timesaving electric fields Maxwell added an

More information

Magnetized Material (contd.) and Electromagnetic Induction

Magnetized Material (contd.) and Electromagnetic Induction Magnetized Material (contd.) and Electromagnetic Induction Lecture 28: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay In the first half of this lecture we will continue

More information

Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5

Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5 Supplementary Figure S1 The magneto-optical images of Gd24Fe66.5Co9.5 continuous film obtained after the action of a sequence of the N right-handed (σ+ σ+) σ+ and left-handed (σ σ ) σ circularly-polarized

More information

Torque on a Current Loop

Torque on a Current Loop Today Chapter 19 Magnetism Torque on a current loop, electrical motor Magnetic field around a current carrying wire. Ampere s law Solenoid Material magnetism Clicker 1 Which of the following is wrong?

More information

MAGNETIC ENERGY. E = L di dt. (3)

MAGNETIC ENERGY. E = L di dt. (3) MAGNETIC ENERGY BeforeIgettothemagnetic energy, let meremindyou ofthefaraday slawofinduction. Take any closed loop of coil of wire and place it in presence of magnetic fields; let Φ be the net magnetic

More information

Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions

Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions Department of Physics PRELIMINARY EXAMINATION 2015 Part II. Long Questions Friday May 15th, 2014, 14-17h Examiners: Prof. J. Cline, Prof. H. Guo, Prof. G. Gervais (Chair), and Prof. D. Hanna INSTRUCTIONS

More information

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer Chapter 6 Antiferromagnetism and Other Magnetic Ordeer 6.1 Mean Field Theory of Antiferromagnetism 6.2 Ferrimagnets 6.3 Frustration 6.4 Amorphous Magnets 6.5 Spin Glasses 6.6 Magnetic Model Compounds TCD

More information

arxiv:cond-mat/ v1 1 Dec 1999

arxiv:cond-mat/ v1 1 Dec 1999 Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain Vladimir L. Safonov and H. Neal Bertram Center for Magnetic Recording Research, University of California San arxiv:cond-mat/9912014v1

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/49403 holds various files of this Leiden University dissertation. Author: Keesman, R. Title: Topological phases and phase transitions in magnets and ice

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

3D Elasticity Theory

3D Elasticity Theory 3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.

More information

Downloaded from

Downloaded from Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Repulsive force of magnitude 6 10 3 N Charge on the first sphere, q

More information

Chapter 28 Magnetic Fields Sources

Chapter 28 Magnetic Fields Sources Chapter 28 Magnetic Fields Sources All known magnetic sources are due to magnetic dipoles and inherently macroscopic current sources or microscopic spins and magnetic moments Goals for Chapter 28 Study

More information

Magnetism. March 10, 2014 Physics for Scientists & Engineers 2, Chapter 27 1

Magnetism. March 10, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Magnetism March 10, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Notes! Homework is due on We night! Exam 4 next Tuesday Covers Chapters 27, 28, 29 in the book Magnetism, Magnetic Fields, Electromagnetic

More information

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid V.Zayets * Spintronic Research Center, National Institute of Advanced Industrial Science and Technology

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

General Physics II. Magnetism

General Physics II. Magnetism General Physics II Magnetism Bar magnet... two poles: N and S Like poles repel; Unlike poles attract. Bar Magnet Magnetic Field lines [B]: (defined in a similar way as electric field lines, direction and

More information

Chapter 5. Resonator design. 1 Description of the resonator and the detection scheme

Chapter 5. Resonator design. 1 Description of the resonator and the detection scheme 116 Chapter 5 Resonator design 1 Description of the resonator and the detection scheme Figure 5.1 shows a resonator that we propose to use for NMR study of nanoscale samples. The design has a spin sample

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Chapter 14. Optical and Magnetic Materials. 경상대학교 Ceramic Design Lab.

Chapter 14. Optical and Magnetic Materials. 경상대학교 Ceramic Design Lab. Chapter 14 Optical and Magnetic Materials Magnetic field strength = H H = Ni/l (amp-turns/m) N = # turns i = current, amps l = conductor length B = Magnetic Induction or Magnetic flux density (Wb/m 2 )

More information