Voyage au pays du Nanomagnétisme

Size: px
Start display at page:

Download "Voyage au pays du Nanomagnétisme"

Transcription

1 Voyage au pays du Nanomagnétisme Olivier Fruchart Institut Néel (CNRS / Univ. Grenoble-Alpes) Grenoble - France

2 Magnetism in products Modern applications of magnetism Where does 'nano' contribute? Materials Magnets Data storage Hard disk drives Tapes MRAM ( motors and generators) Transformers Magnetocaloric Sensors Nanoparticles Compass Field mapping HDD read heads Ferrofluids MRI contrast Hyperthermia Sorting & tagging Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.2

3 Introduction to magnetism 1. Fields, moments, materials 2. Magnetization processes 3. Low dimensions Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.3

4 FIELDS and MOMENTS Currents produce magnetic field Maxwell equation : B=μ0 j Electric currents produce magnetic fields Oersted field Magnetic dipole Magnetic material μ Bθ= μ0 I 2πr B= μ0 4 π r3 [ ] 3 (μ.r)r μ 2 r Magnetic dipole A.m2 B=μ0 (H+ M) Magnetization A/m Magnetic moment A.m2 Induction B, Magnetic field H, Magnetization M Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.4

5 FIELDS and MOMENTS Types of magnetic order Magnetic ordering Magnetic exchange Ordering temperature between microscopic moments E = 2 J i, j S i. S j i> j Ferromagnet Antiferromagnet J i, j 0 Ferrimagnet J i, j 0 J i, j 0 Helical J1, J2 Fe T C=1043 K CoO T N =292 K Fe3O4 T C=858 K Dy T K M s = A /m J =3/2 M s =480 ka /m μ=10.4μ B Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.5

6 FIELDS and MOMENTS Magnetic periodic table Magnetic properties at room temperature, single elements Periodictable.com Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.6

7 Introduction to magnetism 1. Fields, moments, materials 2. Magnetization processes 3. Low dimensions Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.7

8 MAGNETIZATION PROCESSES Hysteresis loops Manipulation of magnetic materials: Application of a magnetic field Zeeman energy: E Z = μ0 H. M Spontaneous magnetization Remanent magnetization Coercive field Losses W =μ0 (H. d M) Magnetic induction B=μ0 (H+ M) Other notation J=μ0 M Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.8

9 MAGNETIZATION PROCESSES Types of magnetic materials Hard magnetic materials Soft magnetic materials M M Hext Hext Transformers Flux guides, sensors Permanent magnets, motors Magnetic shielding Magnetic recording Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.9

10 MAGNETIZATION PROCESSES From bulk to nano Bulk material Mesoscopic scale Nanometric scale Numerous and complex magnetic domains Small number of domains, simple shape Magnetic single-domain FeSi soft sheet Microfabricated dots Kerr magnetic imaging Nanofabricated dots MFM A. Hubert, Magnetic domains A. Hubert, Magnetic domains Sample courtesy : N. Roug le, I. Chioar Nanomagnetism ~ mesoscopic magnetism How small is 'Nano'? Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.10

11 Introduction to magnetism 1. Fields, moments, materials 2. Magnetization processes 3. Low dimensions Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.11

12 MAGNETIZATION PROCESSES Micromagnetism, continuous approach Magnetization () () Mx mx M= M y =M S my Mz mz Magnetization vector M Can vary in time and space. Modulus is constant (hypothesis in micromagnetism) m x +m y+m z =1 Mean-field approach possible: M S= M S (T ) Exchange interaction Atomistic view : Micromagnetic view : E = 2 J i, j S i.s j i> j (total energy) S i. S j=s 2 cos θi, j S 2 (1 θ2i, j /2) E= A(. m)2 (energy per unit volume) Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.12

13 MAGNETIZATION PROCESSES Micromagnetism, various types of magnetic energy Exchange energy Magnetocrystalline anisotropy energy 2 2 E ex = A (. m ) E mc = K sin θ Zeeman energy Dipolar energy 2 1 E d= μ0 M. H 1 E d= μ0 M. Hd 2 Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.13

14 MAGNETIZATION PROCESSES Dipolar energy Magnetic charges Maxwell equation div (Hd )= div (M) ρ(r)= M S div [m(r)] volume density of magnetic charges σ (r)=m S m (r). n(r) surface density of magnetic charges Examples of magnetic «charges» + Notice: no charges + + and E=0 for infinite + cylinder Charges on surfaces Take-away message Surface and volume charges - Dipolar energy favors alignement of magnetization with longest direction of sample Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.14

15 MAGNETIZATION PROCESSES From bulk to nano Bulk material Mesoscopic scale Nanometric scale Numerous and complex magnetic domains Small number of domains, simple shape Magnetic single-domain FeSi soft sheet Microfabricated dots Kerr magnetic imaging Nanofabricated dots MFM A. Hubert, Magnetic domains A. Hubert, Magnetic domains Sample courtesy : N. Roug le, I. Chioar Nanomagnetism ~ mesoscopic magnetism Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.15

16 MAGNETIZATION PROCESSES Magnetic characteristic length scales Dipolar exchange length Anisotropy exchange length E= A ( x θ )2 + K d sin 2 θ E= A ( x θ )2 + K sin2 θ Exchange J /m Anisotropy J /m3 Exchange J /m Dipolar energy J /m3 1 K d= μ 0 M 2S 2 Dipolar exchange length: Anisotropy exchange length: Δu 1 nm Δ u 100 nm Soft Hard = 2A /μ0 M 2s Δd 3 10 nm Single-domain critical size relevant for nanoparticules made of soft magnetic material Often called Exchange length Often called Bloch parameter or domain-wall width Notice: Other length scales: with field etc. Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.16

17 MAGNETIZATION PROCESSES Domain walls and related low-dimensional objects Bloch domain wall in the bulk (2D) Domain walls in thin films (2D 1D) Bloch wall t w No magnetostatic energy Width Δ = A/ K Areal energy γ =4 AK u W Other angles & anisotropy F. Bloch, Z. Phys. 74, 295 (1932) Néel wall 1000x2000nm t w Contains magnetostatic energy No exact analytics L. Néel, C. R. Acad. Sciences 241, 533 (1956) Magnetic vortex (1D 0D) Bloch point (0D) Point with vanishing Constrained walls (eg : in stripes) Permalloy (15nm) Strip 500nm 300x800nm magnetization T. Shinjo et al., Science 289, 930 (2000) W. Döring, J. Appl. Phys. 39, 1006 (1968) Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.17

18 Some examples of recent work 1. Low-dimensional structures in nanomagnetism 2. What could come next for magnetism in data storage? 3. An example of academic study towards 'next' Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.18

19 An example of academic study Dimensionality crossover Bloch wall Vortex A. Masseboeuf et al., Phys. Rev. Lett. 104, (2010) Elongated dots Breaking of symmetry (2nd order transition) Order parameter Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.19

20 How does an ultra-high vacuum setup for epitaxy (single-crystal) growth look like? Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.20

21 Choice of a model system Single crystalline self-assembled structures Wulff Kaishev s theorem Growth and structure Stacking: Al2O3(11-20) \ W[10nm] \ Co \ Au Growth at 450 C AFM view, 6 mm FoV Co[11-2] Supported crystal (growth on surfaces) hint i hi {001} {110} {111} Truncated crystal Co[1-10] O. Fruchart et al., J. Phys. : Condens. Matter 25, (2013) P. Müller and R. Kern, Surf. Sci. 457, 229 (2000) (and incl. ref.) Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.21

22 High-resolution magnetic imaging Lorentz and holography (TEM based) Fresnel imaging mode Self-assembled fcc Co dots (vortex state) Sensitive mainly to in-plane components of magnetization integrated over the sample s thickness Pascale Bayle-Guillemaud (INAC) Aurélien Masseboeuf et al. (INAC CEMES) Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.22

23 Evidence for the dimensionality cross-over Vortex Bloch wall Vortex Domain wall A. Masseboeuf et al., Phys. Rev. Lett. 104, (2010) Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.23

24 How does a transmission electron microscope look like? Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.24

25 Some reading (general magnetism) Repository of lectures of the European School on Magnetism: Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.25

26 Some examples of recent work 1. Low-dimensional structures in nanomagnetism 2. What could come next for magnetism in data storage? 3. An example of academic study towards 'next' Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.26

27 What is this? Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.27

28 Current (past?) technology for magnetic data storage Magnetic bits on Hard Disk Drive Underlying microstructure Co-based hard disk media : bits 50nm and below S. Takenoiri, J. Magn. Magn. Mater. 321, 562 (2009) B. C. Stipe, Nature Photon. 4, 484 (2010) Technological / Physical breakdown Compromise time stability, writability, readibility Disruptive solutions sought Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.28

29 Magnetic recording over time 1956 RAMAC, IBM, first hard disk drive Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.29

30 Magnetic recording over time Discovery of Giant Magneto-Resistance Nobel prize in Physics 2007 GMR implemented in HDD read heads X106 increase of density from 1956 Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.30

31 Magnetic recording over time Physics (recent) Spin-transfer torques. Induces magnetization switching, oscillations Interfacial effects, chirality Technology (to come) Magnetic Random Access Memories (dots) Logic and memory devices based on domain walls. 3D memories? Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.31

32 Magnetic Random Access Memories MRAM = Magnetic Random Access Memory Overview Detail of a cell (very old design) Bit ligne I2 Current Spin valve Current Magn flux lines I1 Conductor (Cu) Flux guides Transistor Main features: Solid state memory Non-volatile and fast Issues being fixed entered semiconductor roadmap Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.32

33 What is next? What shall we prepare in labs? Proposal for a race-track memory in 3D Magnetic logic with domain walls (Field driven) D. A. Allwood et al., Science 309, 1688 (2005) Limitation: Requires homogeneous rotating field S. S. P. Parkin, Science 320, 190 (2008) + patents (IBM) Potentially 3D storage, however technologically challenging Cylinders are the 'natural' geometry Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.33

34 Some examples of recent work 1. Low-dimensional structures in nanomagnetism 2. What could come next for magnetism in data storage? 3. An example of academic study towards 'next' Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.34

35 Some of the bottom-up routes implemented at Institut NEEL The basics Specific aspects Anodization of aluminum template ALD to reduce pore diameter 100nm S. Da Col et al., Appl. Phys. Lett. 98, (2011) H. Masuda, Science 268, (1995) Decrease dipolar interactions Electroplating magnetic nanowires Modulation of pore diameter S. Allende et al., Phys. Rev. B 80, (2009) Simple metals and alloys : Co, Ni, Fe20Ni80 Landscape for domain walls 100nm Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.35

36 Nucleate domain-walls Modulated diameters Principle Nucleation of domain walls SEM AFM MFM Provides energy landscape for domain walls Tail-to-tail Head-to-head NB : reports with modulations however no domain walls K. Pitzschel et al., J. Appl. Phys. 109, (2011) Protrusions create a 'box' for domain walls Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.36

37 Propagation of domain walls Experiments Straight sections SEM AFM MFM Distribution of propagation fields, range 1-10mT Similar to the case of strips J. Sampaio et al., J. Appl. Phys. (2013) Protrusions and constrictions Domain-wall motion demonstrated (range 1-10mT) Pinning at modulations of diameter Pinning field ~30mT Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.37

38 Details of domain walls Domain walls in one-dimensional systems Transverse Vortex Bloch Néel Transverse (TW) Bloch-point (BPW) Need for advanced magnetic microscopies to identify domain walls Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.38

39 Experiments on a large scale instrument : synchrotron radiation facility Elettra synchrotron, Trieste, Italy Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.39

40 Inside a synchrotron ring Swiss Light Source (SLS), close to Zürich Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.40

41 XMCD-PEEM microscopy : probing surface magnetization XMCD PEEM X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy Element selectivity Magnetic sensitivity Courtesy: W. Kuch Features Secondary electrons surface sensitive Spatial resolution : 25nm Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.41

42 What does a Photo-Emission Electron Microscope look like? Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.42

43 Experimental contrast (XMCD-PEEM) Two examples Beam along wire Locate domain walls Beam across wire Inspect domain wall Several non-trivial patterns Need for modelling Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.43

44 Test case : uniform transverse magnetization Schematics Above wire : surface magnetization In the shadow : volume magnetization Non-linear, even change of sign Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.44

45 Formal identification of domain walls Bloch-Point Wall (BPW) Transverse Wall (TW) Wire diameter : 95nm Experiment Simulation Wire diameter : 70nm Experiment Wire Wire Shadow Shadow Simulation 300nm 500nm Orthoradial curling Symmetry with respect to plane Transverse curling Loss of symmetry with respect to perpendicular to axis plane perpendicular to axis Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.45

46 Synthesis Other systems with chemical routes Long-range ordered templates Nanotubes Pre-defined bits Multilayered structures Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.46

47 Figures Strength and weaknesses («business plan») Areal density Prospects for HDD :1 Tbit/in Power Current for spin-torque 10 A/m Resistivity 10 Ω.m Power consumption 10 mw Energy per bit pj bit/cm 2 Pitch 100nm 10 wire/cm Need 100 bits/wire to overcome HDD Goal 1bit/200nm 20μ m Speed Cost per bit Shift wire registers in parallel 2D patterning similar to flash not a limiting factor 2 Determined by R/W (planar) device Similar to 2D competitors Scalability 2D cost + 3D scalability cost/bit decreases No limitation for 3D fabrication Practical limitation for energy consumption Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.47

48 Collaborative work! Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.48

49 Daily work in an academic lab Perform experiments (or simulations, theory) Develop instrumentation, codes etc. Reading recent and less recent publications, books etc. Go to conferences : learn and disseminate Seeking funding Grants, equipment, travel etc. Do some teaching Organize the lab : scientific life, technical versus scientific activity etc. Olivier Fruchart Séminaire de Physique, PHELMA Grenoble, 2014/12/08 p.49

Bottom-up magnetic systems

Bottom-up magnetic systems Bottom-up magnetic systems Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France. http://perso.neel.cnrs.fr/olivier.fruchart/ Table of contents

More information

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland SPIE - Spintronics San Diego 28 Aug 1 Sep 2016 Staffa Island, Scotland O. Fruchart 1. Institut NÉEL, Univ. Grenoble Alpes / CNRS, France 2. SPINTEC, Univ. Grenoble Alpes / CNRS / CEA-INAC, France www.spintec.fr

More information

Magnetic Force Microscopy

Magnetic Force Microscopy Magnetic Force Microscopy Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr / WHY DO WE NEED MAGNETIC MICROSCOPY? Origins of magnetic energy Echange energy Magnetocrystalline

More information

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study O.Fruchart Laboratoire Louis Néel (CNRS-UJF-INPG) Grenoble Jan. 17th, 2007 Olivier Fruchart

More information

Experimental techniques for the study of small magnetic objects

Experimental techniques for the study of small magnetic objects Experimental techniques for the study of small magnetic objects Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr. France. Foreword Large overview of characterization

More information

Low dimensional magnetism Experiments

Low dimensional magnetism Experiments Low dimensional magnetism Experiments Olivier Fruchart Brasov (Romania), Sept. 2003 1 Introduction...................................... 2 2 Ferromagnetic order................................. 2 2.1 Methods.....................................

More information

Contents. 1 Imaging Magnetic Microspectroscopy W. Kuch 1

Contents. 1 Imaging Magnetic Microspectroscopy W. Kuch 1 1 Imaging Magnetic Microspectroscopy W. Kuch 1 1.1 Microspectroscopy and Spectromicroscopy - An Overview 2 1.1.1 Scanning Techniques 2 1.1.2 Imaging Techniques 3 1.2 Basics 5 1.2.1 X-Ray Magnetic Circular

More information

Introduction to magnetic recording + recording materials

Introduction to magnetic recording + recording materials Introduction to magnetic recording + recording materials Laurent Ranno Institut Néel, Nanoscience Dept, CNRS-UJF, Grenoble, France I will give two lectures about magnetic recording. In the first one, I

More information

Nanomagnetism. Part 1 - Macrospins. Olivier Fruchart. Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France

Nanomagnetism. Part 1 - Macrospins. Olivier Fruchart.   Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France Nanomagnetism Part Macrospins Olivier Fruchart (Univ. Grenoble Alpes CNRS) Grenoble France http://neel.cnrs.fr MicroNanoMagnetism team : http://neel.cnrs.fr/mnm,. http://perso.neel.cnrs.fr/olivier.fruchart/

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Magnetic Force Microscopy practical

Magnetic Force Microscopy practical European School on Magnetism 2015 From basic magnetic concepts to spin currents Magnetic Force Microscopy practical Organized by: Yann Perrin, Michal Staňo and Olivier Fruchart Institut NEEL (CNRS & Univ.

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Nanomagnetism. Part 2 Domains and domain walls. Olivier Fruchart. Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France

Nanomagnetism. Part 2 Domains and domain walls. Olivier Fruchart.   Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France Nanomagnetism Part 2 Domains and domain walls Olivier Fruchart (Univ. Grenoble Alpes CNRS) Grenoble France http://neel.cnrs.fr Micro-NanoMagnetism team : http://neel.cnrs.fr/mnm,. http://perso.neel.cnrs.fr/olivier.fruchart/

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Slides: ReMiSoL Microscopie à champ proche magnétique

Slides:   ReMiSoL Microscopie à champ proche magnétique www.spintec.fr email: olivier.fruchart@cea.fr Slides: http://fruchart.eu/slides ReMiSoL Microscopie à champ proche magnétique Univ. Grenoble Alpes / CNRS / CEA-INAC, France Univ. Grenoble Alpes / CNRS,

More information

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Zulzawawi Bin Haji Hujan A thesis submitted for the degree of MSc by research University of York Department of Physics January

More information

Current-induced Domain Wall Dynamics

Current-induced Domain Wall Dynamics Current-induced Domain Wall Dynamics M. Kläui, Fachbereich Physik & Zukunftskolleg Universität Konstanz Konstanz, Germany Starting Independent Researcher Grant Motivation: Physics & Applications Head-to-head

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance This is a phenomenon that produces a large change in the resistance of certain materials as a magnetic field is applied. It is described as Giant because the observed effect is

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

Magnetic Race- Track Memory: Current Induced Domain Wall Motion!

Magnetic Race- Track Memory: Current Induced Domain Wall Motion! Magnetic Race- Track Memory: Current Induced Domain Wall Motion! Stuart Parkin IBM Fellow IBM Almaden Research Center San Jose, California parkin@almaden.ibm.com Digital data storage Two main types of

More information

Magnetic recording technology

Magnetic recording technology Magnetic recording technology The grain (particle) can be described as a single macrospin μ = Σ i μ i 1 0 1 0 1 W~500nm 1 bit = 300 grains All spins in the grain are ferromagnetically aligned B~50nm Exchange

More information

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures O.Boulle Spintec CEA-INAC / CNRS / Université Grenoble Alpes, Grenoble, France SOCSIS 2016 - Spestses - 29/06/2016 Acknowledgements

More information

Properties of Materials. Chapter Two Magnetic Properties of Materials

Properties of Materials. Chapter Two Magnetic Properties of Materials 1896 1920 1987 2006 Properties of Materials Chapter Two Magnetic Properties of Materials Key Magnetic Parameters How does M respond to H? Ferromagnetic Fe, Co, Ni Ferrimagnetic Fe 3 O 4 Antiferromagnetic

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Anisotropy Distributions in Patterned Magnetic Media

Anisotropy Distributions in Patterned Magnetic Media MINT Review & Workshop 24-25 Oct. 2006 Anisotropy Distributions in Patterned Magnetic Media Tom Thomson Hitachi San Jose Research Center Page 1 Acknowledgements Manfred Albrecht (Post-doc) Tom Albrecht

More information

Introduction to magnetism of confined systems

Introduction to magnetism of confined systems Introduction to magnetism of confined systems P. Vavassori CIC nanogune Consolider, San Sebastian, Spain; nano@nanogune.eu Basics: diamagnetism and paramagnetism Every material which is put in a magnetic

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Wouldn t it be great if

Wouldn t it be great if IDEMA DISKCON Asia-Pacific 2009 Spin Torque MRAM with Perpendicular Magnetisation: A Scalable Path for Ultra-high Density Non-volatile Memory Dr. Randall Law Data Storage Institute Agency for Science Technology

More information

01 Development of Hard Disk Drives

01 Development of Hard Disk Drives 01 Development of Hard Disk Drives Design Write / read operation MR / GMR heads Longitudinal / perpendicular recording Recording media Bit size Areal density Tri-lemma 11:00 10/February/2016 Wednesday

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course by Mark Jarrel (Cincinnati University), from Ibach and

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays Abstract #: 983 Program # MI+NS+TuA9 Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays D. A. Tulchinsky, M. H. Kelley, J. J. McClelland, R. Gupta, R. J. Celotta National Institute of Standards

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

Introduction to Ferromagnetism. Depto. Física de Materiales, Facultad de Química, Universidad del País Vasco, San Sebastián, Spain

Introduction to Ferromagnetism. Depto. Física de Materiales, Facultad de Química, Universidad del País Vasco, San Sebastián, Spain Introduction to Ferromagnetism and Patterned Magnetic Nanostructures Konstantin Yu. Guslienko Depto. Física de Materiales, Facultad de Química, Universidad id d del País Vasco, San Sebastián, Spain Outline

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Paolo Vavassori. Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain.

Paolo Vavassori. Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain. Magnetic nanostructures Paolo Vavassori Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain. P. Vavassori nano@nanogune.eu I www.nanogune.eu 1 Outline Part I Introduction.

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy

Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy X M Cheng 1 and D J Keavney 2* 1 Department of Physics, Bryn Mawr College, Bryn Mawr, PA USA 2 Argonne National

More information

Synthesis and Spin-Transport Properties of Co/Cu Multilayer Nanowires

Synthesis and Spin-Transport Properties of Co/Cu Multilayer Nanowires Synthesis and Spin-Transport Properties of Co/Cu Multilayer Nanowires Peter Greene Department of Physics, University of Washington, Seattle, Washington, 98105 (Dated: October 10, 2007) Using a combination

More information

Chapter 14. Optical and Magnetic Materials. 경상대학교 Ceramic Design Lab.

Chapter 14. Optical and Magnetic Materials. 경상대학교 Ceramic Design Lab. Chapter 14 Optical and Magnetic Materials Magnetic field strength = H H = Ni/l (amp-turns/m) N = # turns i = current, amps l = conductor length B = Magnetic Induction or Magnetic flux density (Wb/m 2 )

More information

DOMAIN WALL DYNAMICS IN FERROMAGNETIC CYLINDRICAL AND PLANAR NANOSTRUCTURES

DOMAIN WALL DYNAMICS IN FERROMAGNETIC CYLINDRICAL AND PLANAR NANOSTRUCTURES DOMAIN WALL DYNAMICS IN FERROMAGNETIC CYLINDRICAL AND PLANAR NANOSTRUCTURES CHANDRASEKHAR MURAPAKA School of Physical and Mathematical Sciences A THESIS SUBMITTED TO NANYANG TECHNOLOGICAL UNIVERSITY FOR

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

ELECTRON HOLOGRAPHY OF NANOSTRUCTURED MAGNETIC MATERIALS. Now at: Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK

ELECTRON HOLOGRAPHY OF NANOSTRUCTURED MAGNETIC MATERIALS. Now at: Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK ELECTRON HOLOGRAPHY OF NANOSTRUCTURED MAGNETIC MATERIALS R. E. DUNIN-BORKOWSKI a,b, B. KARDYNAL c,d, M. R. MCCARTNEY a, M. R. SCHEINFEIN e,f, DAVID J. SMITH a,e a Center for Solid State Science, Arizona

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Electricity and Magnetism Module 6 Student Guide

Electricity and Magnetism Module 6 Student Guide Concepts of this Module Electricity and Magnetism Module 6 Student Guide Interactions of permanent magnets with other magnets, conductors, insulators, and electric charges. Magnetic fields of permanent

More information

Self-organized growth on the Au(111) surface

Self-organized growth on the Au(111) surface Self-organized growth on the Au(111) surface Olivier Fruchart 02/03/2002 Olivier Fruchart - Laboratoire Louis Néel, Grenoble, France. Slides on-line: http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

More information

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS 1/49 MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS Dieter Suess dieter.suess@tuwien.ac.at Institut of Solid State Physics, Vienna University of Technology, Austria (submitted to Journal

More information

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 12 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 20/February/2018 (P/T 005) Quick Review over the Last Lecture Origin of magnetism : ( Circular current ) is equivalent to a

More information

Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires

Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires Marquette University e-publications@marquette Physics Faculty Research and Publications Physics, Department of 8-1-2010 Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

490 Index. Heusler alloy 292 Co 2MnSi 292 NiMnSb 292 PtMnSb 292 Hot-electron spin-valve 412

490 Index. Heusler alloy 292 Co 2MnSi 292 NiMnSb 292 PtMnSb 292 Hot-electron spin-valve 412 Index AC circuit theory 424 Alloy cobalt-based 286 iron group 278 iron-based 282 nickel-based 285 Anisotropy field 216 Antiferromagnet 287 artificial (AAF) 289 intrinsic properties 289 synthetic (SAF)

More information

Properties and applications of ferromagnetic nanostructures

Properties and applications of ferromagnetic nanostructures Properties and applications of ferromagnetic nanostructures Diego Bisero, Lucia Del Bianco, Federico Spizzo Magnetism Experimental group Outline 1.Nanostructures: some examples 2.Why ferromagnetic nanostructures?

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Lecture 13: Magnetic Sensors & Actuators

Lecture 13: Magnetic Sensors & Actuators MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 13: Magnetic Sensors & Actuators 1 Magnetic Fields Magnetic Dipoles Magnetization Hysteresis Curve

More information

High-frequency measurements of spin-valve films and devices invited

High-frequency measurements of spin-valve films and devices invited JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 003 High-frequency measurements of spin-valve films and devices invited Shehzaad Kaka, John P. Nibarger, and Stephen E. Russek a) National Institute

More information

SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES

SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES CPC - B82Y - 2017.08 B82Y SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES Definition statement This place covers:

More information

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN MAGNETIC MATERIALS Fundamentals and device applications NICOLA A. SPALDIN CAMBRIDGE UNIVERSITY PRESS Acknowledgements 1 Review of basic magnetostatics 1.1 Magnetic field 1.1.1 Magnetic poles 1.1.2 Magnetic

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Macroscopic properties II

Macroscopic properties II Paolo Allia DISAT Politecnico di Torino acroscopic properties II acroscopic properties II Crucial aspects of macroscopic ferromagnetism Crystalline magnetic anisotropy Shape anisotropy Ferromagnetic domains

More information

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES CRR Report Number 29, Winter 2008 SPIN TRANSFER TORQUES IN HIGH ANISOTROPY AGNETIC NANOSTRUCTURES Eric Fullerton 1, Jordan Katine 2, Stephane angin 3, Yves Henry 4, Dafine Ravelosona 5, 1 University of

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Neutron Reflectometry of Ferromagnetic Arrays

Neutron Reflectometry of Ferromagnetic Arrays Neutron Reflectometry of Ferromagnetic Arrays Z.Y. Zhao a, P. Mani a, V.V.Krishnamurthy a, W.-T. Lee b, F. Klose b, and G.J. Mankey a a Center for Materials for Information Technology and Department of

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Skyrmions in symmetric bilayers

Skyrmions in symmetric bilayers Skyrmions in symmetric bilayers A. Hrabec, J. Sampaio, J.Miltat, A.Thiaville, S. Rohart Lab. Physique des Solides, Univ. Paris-Sud, CNRS, 91405 Orsay, France I. Gross, W. Akhtar, V. Jacques Lab. Charles

More information

A detailed study of magnetization reversal in individual Ni nanowires

A detailed study of magnetization reversal in individual Ni nanowires A detailed study of magnetization reversal in individual Ni nanowires Item Type Article Authors Vidal, Enrique Vilanova; Ivanov, Yurii P.; Mohammed, Hanan; Kosel, Jürgen Citation A detailed study of magnetization

More information

Lecture 6. Alternative storage technologies. All optical recording. Racetrack memory. Topological kink solitons. Flash memory. Holographic memory

Lecture 6. Alternative storage technologies. All optical recording. Racetrack memory. Topological kink solitons. Flash memory. Holographic memory Lecture 6 Alternative storage technologies All optical recording Racetrack memory Topological kink solitons Flash memory Holographic memory Millipede Ferroelectric memory All-optical recording It is possible

More information

Material Property. Dr. Cherdsak Bootjomchai (Dr. Per)

Material Property. Dr. Cherdsak Bootjomchai (Dr. Per) Material Property By Dr. Cherdsak Bootjomchai (Dr. Per) Chapter IV Magnetic Properties Objectives - Magnetic Properties I 1. Equations describing magnetic field strength, induction (several versions),

More information

Challenges for Materials to Support Emerging Research Devices

Challenges for Materials to Support Emerging Research Devices Challenges for Materials to Support Emerging Research Devices C. Michael Garner*, James Hutchby +, George Bourianoff*, and Victor Zhirnov + *Intel Corporation Santa Clara, CA + Semiconductor Research Corporation

More information

9. Spin Torque Majority Gate

9. Spin Torque Majority Gate eyond MOS computing 9. Spin Torque Majority Gate Dmitri Nikonov Thanks to George ourianoff Dmitri.e.nikonov@intel.com 1 Outline Spin majority gate with in-pane magnetization Spin majority gate with perpendicular

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

Theory of magnetoelastic dissipation due to domain wall width oscillation

Theory of magnetoelastic dissipation due to domain wall width oscillation JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998 Theory of magnetoelastic dissipation due to domain wall width oscillation Y. Liu and P. Grütter a) Centre for the Physics of Materials, Department

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance N. Shirato urse: Solid State Physics 2, Spring 2010, Instructor: Dr. Elbio Dagotto Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996

More information

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE GMR Read head Eric Fullerton ECE, CMRR Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE 1 Product scaling 5 Mbyte 100 Gbyte mobile drive 8 Gbyte UCT) ATE

More information

Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe

Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe 760 PIERS Proceedings, Kuala Lumpur, MALAYSIA, March 27 30, 2012 Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe G. Venkat 1, A. Prabhakar 1,

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance 03/18/2010 Instructor: Dr. Elbio R. Dagotto Class: Solid State Physics 2 Nozomi Shirato Department of Materials Science and Engineering ntents: Giant Magnetoresistance (GMR) Discovery

More information

Electric-field control of magnetic domain wall motion and local magnetization reversal

Electric-field control of magnetic domain wall motion and local magnetization reversal Electric-field control of magnetic domain wall motion and local magnetization reversal Tuomas H. E. Lahtinen, Kévin J. A. Franke and Sebastiaan van Dijken* NanoSpin, Department of Applied Physics, Aalto

More information

MRAM: Device Basics and Emerging Technologies

MRAM: Device Basics and Emerging Technologies MRAM: Device Basics and Emerging Technologies Matthew R. Pufall National Institute of Standards and Technology 325 Broadway, Boulder CO 80305-3337 Phone: +1-303-497-5206 FAX: +1-303-497-7364 E-mail: pufall@boulder.nist.gov

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

THERE are many possibilities by which the hysteresis loop

THERE are many possibilities by which the hysteresis loop 1968 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 7, JULY 2008 Exchange-Biased Magnetic Vortices Axel Hoffmann 1;2, Jordi Sort 3, Kristen S. Buchanan 2, and Josep Nogués 4 Materials Science Division, Argonne

More information

OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS

OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS 1 OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS A. A. Zhukov 1, M. A. Ghanem 2, A. V. Goncharov 1, R. Boardman 3, V. Novosad 4, G. Karapetrov 4, H. Fangohr 3, P.

More information