Self-organized growth on the Au(111) surface

Size: px
Start display at page:

Download "Self-organized growth on the Au(111) surface"

Transcription

1 Self-organized growth on the Au(111) surface Olivier Fruchart 02/03/2002 Olivier Fruchart - Laboratoire Louis Néel, Grenoble, France. Slides on-line:

2 TABLE OF CONTENTS The Au(111) reconstruction, conventional self-organization: growth and magnetism Grazing Incidence Small Angle Xray Scattering : diffraction on dots arrays Vertical self-organization : growth and magnetism Acknowledgments Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.2 ] Slides on-line:

3 Au(111) > A template for self-organization FACTS: 350 x 350 nm Co, Ni, Fe, Cu, Rh growth on Au(111) gives rise to self-organized arrays of dots ORIGIN? (0.20AL Co@300K) nm 0.4 2Co Fe, Ni : 1 AL-high dots nm D.D. Chambliss et al., PRL 66, 1721 (1991) B.Voigtlander et al., PRB 44, (1991) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.3 ] Slides on-line:

4 Au(111) > Basic s x 3 reconstruction Planar view of Au(111) FCC HCP FCC HCP ZOOM 50 x 28 nm fcc : ABC Cross-sectional view Corrugation hcp : ABA C C A A B B B B B B B B B A A A A A A A A A C C C C C C C C C B B B B B B B B B A A A A A A A A A Second layer atoms Site B Atoms of the topmost layer Site A Site C Bridge position (smaller diameter for clarity only) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.4 ] Slides on-line:

5 Au(111) > secondary chevron reconstruction 250 x 250nm Corrugation ~ 0.2 Å Unit cell size : ~ 7.5 x 25nm Isotropic surface relaxation J. V. Barth et al., Phys. Rev. B 42 (15), 9307 (1990) A.R. Sandy et al., Phys. Rev. B 43 (6), 4667 (1991) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.5 ] Slides on-line:

6 Au(111) deposits > nucleation stage Fe, Co, Ni (etc.) nucleation: atomic place exchange mechnism with Au atoms 0.002ML 0.25ML : 1ML-high dots 0.005ML J.A.Meyer et al., Surf.Sci.365, L647 (1996) V. Repain et al., Mater. Sci. Eng., B96, 178 (2002) Leading parameter : deposit has a higher surface energy. (and Au atoms stress near chevrons) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.6 ] Slides on-line:

7 Co/Au(111) magnetism > the superparamagnetic limit issue Spontaneous magnetization is perpendicular to the plane [similar to Co/Au(111) films] Co/Au(111) Anisotropy barrier ~KV ~25kT UP DOWN H.Takeshita et al., JMMM165, 38 (1997) see also: S. Padovani et al., Blocking temperature Tb ~ 20K H.Dürr et al., PRB59, R701 (1999) K. Koide et al., PRL87, (2001) Ph. Ohresser, F. Scheurer et al., private comm. Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.7 ] Slides on-line:

8 Co/Au(111) magnetism > spin and orbital moments Spin and orbital moments at films interfaces: Spin moment : slightly increased because of band narrowing (up to 30%) Orbital moment : quenched in bulk 3d (~0). Symmetry breaking at the interface Non-zero orbital moment (up to some 0.1µ B /atome) Probe: XMCD (X-ray Magnetic Circular Dichroism) and sum rules. Expected in dots: further symmetry breaking at the dots edges: enhanced effects? (similarity with atomic steps) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.8 ] Slides on-line:

9 Co/Au(111) magnetism > spin and orbital moments H.Dürr et al., PRB59, R701 (1999) K. Koide et al., PRL87, (2001) 1/N 1/2 fit Bulk Conclusion: extra orbital 2µ B /edge atome Problems: dots coalescence above 1300 atoms: non-valid fit Estimation of dot size by Langevin function (Brillouin ½ better suited) Conclusion: no extra orbital moment for edge atoms (dot= small thin film ). Problems: dot size is still large. Need smaller systems! Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.9 ] Slides on-line:

10 Fe/Au(111) magnetism > spin and orbital moments P. Ohresser et al., PRB64, (2001) High-spin fcc Conclusions: Spin moment not modified at edges (spin more influenced by deformation) Edge orbital moment ~ 0.5µ B, similar to steps on vicinal Fe. Orbital moment anisotropy: not constant during growth. Strain-dependent interface anisotropy? Problem = not even solved in thin films Low-spin fcc Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.10 ] Slides on-line:

11 Orbital moment > Co/Pt(997) Co/Pt(997) Co/Pt(111) A. Dallmeyer et al., Phys.Rev.B 61(8), R5153 (2000) Conclusions Bulk: m L =0.14µ B /at. Surface: m L =0.31µ B /at. Bi-atomic wire: m L =0.37µ B /at. Mono-atomic wire: m L =0.68µ B /at. bi-atom: m L =0.78µ B /at. atom: m L =1.13µ B /at. P. Gambardella et al., Nature 416, 301 (2002) P. Gambardella et al., Science 300, 1130 (2003) Conclusions From bulk to atoms: considerable increase of orbital moment 2 atoms closer to wire than 1 atom bi-atomic wire closer to surface than wire Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.11 ] Slides on-line:

12 Magnetic anisotropy > From surfaces to atoms From surface to wires (1D) Self-organized Co/Pt(997) Co atoms Pt terrace x z 2. Magnetic anisotropy 4 [3.5 From surfaces to atoms] P. Gambardella et al., Nature 416, 301 (2002) y µ µ L C a.u. a.u L 3 a Monatomic chains L 2 + b 1 monolayer C Bulk Photon energy (ev) Photon energy (ev) Photon energy (ev) L3 + L2 eff s 4 2L3 + L2 + - Conclusion: Increase of orbital moment (necessary condition for anisotropy) Anisotropy of orbital moment? + - Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.12 ] Slides on-line:

13 Magnetic anisotropy > From surfaces to atoms From surface to wires (1D) z z Method XMCD > Orbital moment Fit magnetization curves > Anisotropy functional MAE Bulk Co: 40µeV/atom Co ML: 140µeV/atom Co bi-wire: 0.34meV/atom Co wire: 2meV/atom M (a.u.) y (deg) T = 45 K T = 10 K x (deg) 0 Conclusions: Easy axis of magnetization perpendicular to the wires, but not the the mean film surface, nor to Pt(111) See anisotropy of orbital moment on the saturation XMCD. M (a.u.) B (T) B (T) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.13 ] Slides on-line:

14 Magnetic anisotropy > From surfaces to atoms From surface to atoms (0D) Co/Pt(111) 10K 8 atoms 4 atoms 10K P. Gambardella et al., Science 300, 1130 (2003) 1 atom STM, 8.5nm, 5.5K 5.5K Cf question by Dominique GIVORD Qualitatively: Easy axis of magnetization perpendicular to Pt(111) See anisotropy of orbital moment on the saturation XMCD. Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.14 ] Slides on-line:

15 Magnetic anisotropy > From surfaces to atoms From surface to atoms (0D) Co/Pt(111) MAE Bulk Co: 40µeV/atom Co ML: 140µeV/atom Co bi-wire: 0.34meV/atom Co wire: 2meV/atom Co bi-atom: 3.4meV/atom Co atom: 9.2meV/atom Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.15 ] Slides on-line:

16 Co/Au(111) magnetism > the superparamagnetic limit issue Spontaneous magnetization is perpendicular to the plane [similar to Co/Au(111) films] Co/Au(111) Anisotropy barrier ~KV ~25kT UP DOWN H.Takeshita et al., JMMM165, 38 (1997) see also: S. Padovani et al., Blocking temperature Tb ~ 20K H.Dürr et al., PRB59, R701 (1999) K. Koide et al., PRL87, (2001) Ph. Ohresser, F. Scheurer et al., private comm. Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.16 ] Slides on-line:

17 Co/Au(111) magnetism > the superparamagnetic limit issue T b = KV / 25k B TWO ROUTES TO OVERCOME SUPERPARAMAGNETISM in SO Increase K. Problem: K does not increase as fast as V decreases Co/Au(111) Increase V. Problem : lateral coalescence occurs 0.25AL 1.75AL INCREASE THE HEIGHT OF NANOSTRUCTURES? Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.17 ] Slides on-line:

18 Answer (?) Piling up dots vertically Assembly of isolated dots Vertical 3D self-organization of In x Ga 1-x As/GaAs : Q.Xie et al., Phys.Rev.Lett.75(13), 2542 (1995) Thinning the spacer layer Strong interaction between dots? superparamagnetism overcome? Enhanced magnetic signal Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.18 ] Slides on-line:

19 Step 1 : +Co Co2 Step 1 : 0.2AL 350 x 350 nm Typical cross-section : nm 0.4 2Co nm Co2 Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.19 ] Slides on-line:

20 Step 2 : +Au Co2Au4 400 x 225 nm Step 2 : 3.8AL 410K nm Typical cross-section : nm 1AL Au decoration See also : Wollschläger et al., Surf.Sci.277, 1 (1992) Co2Au4 1AL Co hcp 0.205nm 1AL Au fcc 0.235nm Array of hollows Surface smoothing Unaffected Co dots Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.20 ] Slides on-line:

21 Step 3 : +Co2 Co4Au4 Step 3 : 0.1AL nm Typical cross-section : 200 x 200 nm Au 4 (C o -A u) nm? Co4Au4 Co/Au exchange mechanism The dots are now 4ML high Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.21 ] Slides on-line:

22 Vertical self-organization Scanning Tunneling Spectroscopy 100 x 100 nm TOPOGRAPHY SPECTROSCOPY SAME AREA di/dv (na/v) 2 1 Au Co Sample voltage (V) Co atoms grow only on existing dots VERTICAL SELF-ORGANIZATION Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.22 ] Slides on-line:

23 Further sequences : +Co(0.1MC)Au(0.9MC) CoxAux Co6Au6 One step = (0.1ML Co) + (0.9ML 80 x 80 nm 300 x 300 nm Co10Au10 Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.23 ] Slides on-line:

24 Co pillars of height 20ML 300 x 300 nm 7.5nm 3nm Co Au 6nm Au Au Self-organization nearly undisturbed Pillars with 2:1 vertical aspect ratio Unclear to this point : Exchange mechanism Limitating factors? Composition, microstructure? Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.24 ] Slides on-line:

25 Growth overview Sequential deposition process : from flat dots to vertical pillars. vertical replication of the sub-al flat pattern Partial control of the pillars geometry: lateral size (% of AL per cycle), height (number of cycles). Requirements on materials : lattice parameter mismatch, surface energies? May be OK for other elements as well. Open questions : composition, microstructure, destabilizing factors. O. Fruchart et al., Phys. Rev. Lett. 23 (14), 2769 (1999) O. Fruchart et al., Appl. Surf. Science , 529 (2000) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.25 ] Slides on-line:

26 Exchange versus nucleation mechanisms Facts 80 x 80 nm First Co layer : nucleation on reconstructions Further layers: reconstructions disturbed Questions What drives nucleation over buried dots? Why no nucleation on reconstructions? Understanding Driving parameters: lattice parameter mismatch, immiscibility, surface energy. Nucleation on reconstructions still possible, but energetically less favorable. Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.26 ] Slides on-line:

27 Role of lattice parameter mismatch Au(2.5AL)/Co(0.65AL)/Au(111) Au atoms layer Co atoms layer Au dislocations on Co Au easily expelled by incoming Co atoms Role of lattice parameter mismatch O. Fruchart et al., J. Cryst. Growth , p (2002) ; Proceedings of ICCG13/ICVGE11. Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.27 ] Slides on-line:

28 Magnetism superparamagnetic regime 7.5nm 3nm Co Magnetization essentially perpendicular 6nm Au 2 states: up and down (Ising macrospin) Superparamagnetism fitted using Brillouin 1/2 function Normalized magnetization 300 K 185 K 90 K H dip ~25kT 67 K µ 0 H (T) UP DOWN Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.28 ] Slides on-line:

29 Brillouin versus Langevin Classical spin Uniaxial anisotropy H // anisotropy axis βe = dm 2 d = βk hm K K v = V Anisotropy h = βµ 0 µh Zeeman Exact solution Partition function Z exp( dm + hm)dm = Obstacle (?) 2 t exp( x )dx =? 0 Imaginary Error function, Erfi(t) Magnetization m = h / 2d + (2 / π d ) Erfi( 2 exp( d + h / 4d )sinh( h) d + h / 2 d ) + Erfi( d h / 2 d ) Zero field susceptibility χ = 1/ 2d + exp( d) /( π d Erfi d ) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.29 ] Slides on-line:

30 Brillouin versus Langevin Asymptotic behavior High temperature χ = 1/3+ 4d /45 Langevin-like Low temperature χ =1 1/ d Brillouin ½ -like Blocking temperature T B = K / 25k B τ = τ 0 exp ( β B E ) 1s s Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.30 ] Slides on-line:

31 Brillouin versus Langevin T<5T B Zero field susceptibility Our data Initial susceptibility T>5T B Exact solution High temperature expansion: 1/3+4d/45 Low temperature expansion: 1-1/d d=β K /(β K)=T/T B O. Fruchart et al., J. Magn. Magn. Mater. 239, 224 (2002) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.31 ] Slides on-line:

32 Magnetism superparamagnetic regime Brillouin 1/2 function ( µ µ NH kt) m = B / ½ 0 Effective field Co Heff. = H + r M s m eff. (T) y = x R= /? (Demagnetizing dipolar interactions) First order expansion: susceptibility d( µ 0H) = 1= µ dm? 0 M T µ k Sr+ N a + Co b. T Deduced from STM N=3300 atoms Hdip= -32 mt T(K)... from magnetism N=2800 atoms Hdip= -42 mt Good quantitative agreement 1 pillar = 1 magnetic entity O. Fruchart et al., Phys. Rev. Lett. 23 (14), 2769 (1999) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.32 ] Slides on-line:

33 Magnetization process Textbook cases Loop + M M Distributed assembly Minor loops Easy-axis single domain Symmetrical Easy axis domains Nonsymmetrical Hard axis Symmetrical Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.33 ] Slides on-line:

34 Magnetization processes Polar MOKE T = 67K (b5.5; 3) T = 69K (b8; 4.2) -0.8T +0.8T B (T) B (T) B (T) Similar to «nucleation-annihilation» : domain structure, with zero wall energy. Larger H sat. and more model hard-axis loop for (b8; 4.2) : stronger dipolar interactions. ~ agreement with calculated r z (32 mt and 77 mt, respectively). Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.34 ] Slides on-line:

35 Magnetization processes Polar MOKE (b8; 4.2) 0.25 M + M r z (calculated) Minor loops mt B (T) B (T) Signature of demagnetizing dipolar interactions: agrees with model Antiferromagnetic ground state not reached: Frustration, metastability mt B (T) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.35 ] Slides on-line:

36 Magnetization processes Longitudinal MOKE (b8; 4.2) Loop 0.35 M + M % of M irr B (T) Less than 10% of awaited signal (large reversible part substracted) Very weak hysteresis : perpendicular magnetization. Very weak in-plane interdots dipolar fields : 0-17 mt B (T) Minor loops -50 mt B (T) B (T) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.36 ] Slides on-line:

37 Blocking temperature effect of sample volume T (K) B Pillar volume A B C v (nm ) D Blocking temperature > 300K (~ 30K for flat Co/Au dots) 300 K 185 K 90 K 67 K 70K 285K 61K 290K Sample A Sample C Sample B Expected: KV~25kTb K decreases for the largest pillars 60K 293K Sample D Applied Field (T) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.37 ] Slides on-line:

38 Rise of blocking temperature 18nm Sample with bigger pillars 7.5nm Au 4nm Co Normalized Polar MOKE Mr Field (T) 60K 150K 214K 293K 0.30 Moderate temperature effect Blocking temperature > 300K (~ 20K for flat Co/Au dots) Normalized remanence No saturation at 0.8T below 150K T >300K T (K) O. Fruchart et al., Proceedings of ISPMM/ISAMT 2001, to appear in J. Magn. Magn. Mater. B Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.38 ] Slides on-line:

39 Co/Au(111) pillars conclusion New growth process: vertical replication of sub-ml flat pattern self-organized pillars with vertical aspect ratio Driving forces: lattice parameter mismatch, immiscibility, surface energy. validity for other elements than Co/Au? Motivation for magnetism: dramatic rise of Tb rise of magnetic signal (stray fields, etc.) Olivier Fruchart - LLN-CNRS. [ 02/03/2002 / p.39 ] Slides on-line:

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

Low dimensional magnetism Experiments

Low dimensional magnetism Experiments Low dimensional magnetism Experiments Olivier Fruchart Brasov (Romania), Sept. 2003 1 Introduction...................................... 2 2 Ferromagnetic order................................. 2 2.1 Methods.....................................

More information

Magnetic recording technology

Magnetic recording technology Magnetic recording technology The grain (particle) can be described as a single macrospin μ = Σ i μ i 1 0 1 0 1 W~500nm 1 bit = 300 grains All spins in the grain are ferromagnetically aligned B~50nm Exchange

More information

Lecture 2: Magnetic Anisotropy Energy (MAE)

Lecture 2: Magnetic Anisotropy Energy (MAE) Lecture : Magnetic Anisotropy Energy (MAE) 1. Magnetic anisotropy energy = f(t). Anisotropic magnetic moment f(t) [111] T=3 K Characteristic energies of metallic ferromagnets M (G) 5 3 [1] 1 binding energy

More information

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...)

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) Jan Vogel Institut Néel (CNRS, UJF), Nanoscience Department Grenoble, France - X-ray (Magnetic) Circular

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR X-Ray Magnetic Dichroism S. Turchini SM-CNR stefano.turchini@ism.cnr.it stefano.turchini@elettra.trieste.it Magnetism spin magnetic moment direct exchange: ferro antiferro superexchange 3d Ligand 2p 3d

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Phase transitions in ferromagnetic monolayers: A playground to study fundamentals

Phase transitions in ferromagnetic monolayers: A playground to study fundamentals Phase transitions in ferromagnetic monolayers: A playground to study fundamentals Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin Arnimallee 14 D-14195 D Berlin-Dahlem e-mail:

More information

Single Atom Magnets? 1. Magnetic Anisotropy 2. Magnetism of individual Co Adatoms 3. Single Atom Magnets? 4. Single Molecule Magnets at Surfaces

Single Atom Magnets? 1. Magnetic Anisotropy 2. Magnetism of individual Co Adatoms 3. Single Atom Magnets? 4. Single Molecule Magnets at Surfaces Single Atom Magnets? 1. Magnetic Anisotropy 2. Magnetism of individual Co Adatoms 3. Single Atom Magnets? 4. Single Molecule Magnets at Surfaces Basic properties of a permanent magnet Magnetization "the

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Bottom-up magnetic systems

Bottom-up magnetic systems Bottom-up magnetic systems Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France. http://perso.neel.cnrs.fr/olivier.fruchart/ Table of contents

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF)

Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF) Cheiron School 014 Soft X-ray Absorption Spectroscopy Kenta Amemiya (KEK-PF) 1 Atomic Number Absorption Edges in the Soft X-ray Region M edge L edge K edge. Li Absorption-edge Energy (ev) Studies using

More information

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter Lectue 4 Trilayers a prototype of multilayers Ni 8 Cu n Ni 9 Important parameters: K anisotropy, E band for FM1 and FM2 interlayer exchange coupling IEC, J inter 1 4a Optical and acoustic modes in the

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Manipulation of interface-induced Skyrmions studied with STM

Manipulation of interface-induced Skyrmions studied with STM Manipulation of interface-induced Skyrmions studied with STM Kirsten von Bergmann S. Heinze, M. Bode, P. Ferriani, E.Y. Vedmedenko, A. Kubetzka, O. Pietzsch and R. Wiesendanger Institute of Applied Physics,,

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Lectures on magnetism at the Fudan University, Shanghai October 2005

Lectures on magnetism at the Fudan University, Shanghai October 2005 Lectures on magnetism at the Fudan University, Shanghai 10. 26. October 2005 Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 D Berlin-Dahlem Germany 1 Introduction

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Nanomagnetism Part III Atomic-scale properties

Nanomagnetism Part III Atomic-scale properties Nanomagnetism Part III Atomic-scale properties Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr SKETCH OF THE LECTURES Part I Magnetization reversal Part II Techniques

More information

Skyrmions à la carte

Skyrmions à la carte This project has received funding from the European Union's Horizon 2020 research and innovation programme FET under grant agreement No 665095 Bertrand Dupé Institute of Theoretical Physics and Astrophysics,

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

Electron transport simulations from first principles

Electron transport simulations from first principles Electron transport simulations from first principles Krisztián Palotás Budapest University of Technology and Economics Department of Theoretical Physics Budapest, Hungary Methods Tunneling & ballistic

More information

What is the susceptibility?

What is the susceptibility? What is the susceptibility? Answer which one? M Initial susceptibility Mean susceptibility M st M 0 0 m High field susceptibility i dm = dh H =0 H st H M M st M 0 0 m i H st H H What is the susceptibility?

More information

Electronic Properties of Ultimate Nanowires. F. J. Himpsel, S. C. Erwin, I. Barke,

Electronic Properties of Ultimate Nanowires. F. J. Himpsel, S. C. Erwin, I. Barke, Electronic Properties of Ultimate Nanowires F. J. Himpsel, S. C. Erwin, I. Barke, Nanostructures with Atomic Precision Single-Atom Wire, Single Wave Function Ultimate Limits of Electronics, Data Storage

More information

Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface

Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface László Balogh Krisztián Palotás László Udvardi László Szunyogh Department of Theoretical Physics Budapest University

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 5: MAGNETIC STRUCTURES - Mean field theory and magnetic order - Classification of magnetic structures - Collinear and non-collinear magnetic structures. - Magnetic

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

MAGNETIC ANISOTROPY IN TIGHT-BINDING

MAGNETIC ANISOTROPY IN TIGHT-BINDING MAGNETIC ANISOTROPY IN TIGHT-BINDING Cyrille Barreteau Magnetic Tight-Binding Workshop, London10-11 Sept. 2012 9 SEPTEMBRE 2012 CEA 10 AVRIL 2012 PAGE 1 SOMMAIRE TB Model TB 0 : Mehl & Papaconstantopoulos

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets Chapter 2 Theoretical background The first part of this chapter gives an overview of the main static magnetic behavior of itinerant ferromagnetic and antiferromagnetic materials. The formation of the magnetic

More information

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Chapter 103 Spin-Polarized Scanning Tunneling Microscopy Toyo Kazu Yamada Keywords Spin-polarized tunneling current Spin polarization Magnetism 103.1 Principle Spin-polarized scanning tunneling microscopy

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 6656-261 (June 19, 1996) We develop

More information

Neutron Reflectometry of Ferromagnetic Arrays

Neutron Reflectometry of Ferromagnetic Arrays Neutron Reflectometry of Ferromagnetic Arrays Z.Y. Zhao a, P. Mani a, V.V.Krishnamurthy a, W.-T. Lee b, F. Klose b, and G.J. Mankey a a Center for Materials for Information Technology and Department of

More information

Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope

Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope MPhil Thesis Defense Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope Presented by CHEN Cheng 12 th Aug.

More information

Dr. Yannick Fagot Revurat Nancy (France)

Dr. Yannick Fagot Revurat Nancy (France) Reconstruction induced multiple gaps in surface bands of Au(111) vicinal surfaces and nanostructures : from weak to strong coupling limit Dr. Yannick Fagot Revurat Nancy (France) CORPES 2007, April 23-27,

More information

Relaxation effects on the magnetism of decorated step edges: Co/ Pt 664

Relaxation effects on the magnetism of decorated step edges: Co/ Pt 664 Relaxation effects on the magnetism of decorated step edges: Co/ Pt 664 S. Baud and Ch. Ramseyer Laboratoire de physique moléculaire, UMR CNRS 6624, Université de Franche-Comté, F-25030 Besançon Cedex,

More information

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems 27 Nov. 2015 Chun-Yeol You (cyyou@inha.ac.kr) Dept. of Physics, Inha University, Korea

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Probing Magnetic Order with Neutron Scattering

Probing Magnetic Order with Neutron Scattering Probing Magnetic Order with Neutron Scattering G.J. Mankey, V.V. Krishnamurthy, F.D. Mackey and I. Zoto University of Alabama in collaboration with J.L. Robertson and M.L. Crow Oak Ridge National Laboratory

More information

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study O.Fruchart Laboratoire Louis Néel (CNRS-UJF-INPG) Grenoble Jan. 17th, 2007 Olivier Fruchart

More information

Supplementary Figure 1 Representative sample of DW spin textures in a

Supplementary Figure 1 Representative sample of DW spin textures in a Supplementary Figure 1 Representative sample of DW spin textures in a Fe/Ni/W(110) film. (a) to (d) Compound SPLEEM images of the Fe/Ni/W(110) sample. As in Fig. 2 in the main text, Fe thickness is 1.5

More information

Self-assembled SiGe single hole transistors

Self-assembled SiGe single hole transistors Self-assembled SiGe single hole transistors G. Katsaros 1, P. Spathis 1, M. Stoffel 2, F. Fournel 3, M. Mongillo 1, V. Bouchiat 4, F. Lefloch 1, A. Rastelli 2, O. G. Schmidt 2 and S. De Franceschi 1 1

More information

Experimental methods in physics. Local probe microscopies I

Experimental methods in physics. Local probe microscopies I Experimental methods in physics Local probe microscopies I Scanning tunnelling microscopy (STM) Jean-Marc Bonard Academic year 09-10 1. Scanning Tunneling Microscopy 1.1. Introduction Image of surface

More information

Skyrmions in symmetric bilayers

Skyrmions in symmetric bilayers Skyrmions in symmetric bilayers A. Hrabec, J. Sampaio, J.Miltat, A.Thiaville, S. Rohart Lab. Physique des Solides, Univ. Paris-Sud, CNRS, 91405 Orsay, France I. Gross, W. Akhtar, V. Jacques Lab. Charles

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

A15. Circular dichroism absorption spectroscopy and its application

A15. Circular dichroism absorption spectroscopy and its application A15. Circular dichroism in X-ray X absorption spectroscopy and its application Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem Germany 1. Introduction

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 27 Oct 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 27 Oct 2003 Magnetic versus crystal field linear dichroism in NiO thin films arxiv:cond-mat/0310634v1 [cond-mat.str-el] 27 Oct 2003 M. W. Haverkort, 1 S. I. Csiszar, 2 Z. Hu, 1 S. Altieri, 3 A. Tanaka, 4 H. H. Hsieh,

More information

Tailoring magnetism in artificially structured materials: the new frontier

Tailoring magnetism in artificially structured materials: the new frontier Surface Science 500 (2002) 300 322 www.elsevier.com/locate/susc Tailoring magnetism in artificially structured materials: the new frontier J. Shen a, *, J. Kirschner b a Solid State Division, Oak Ridge

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals. Stefania PIZZINI Laboratoire Louis Néel - Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and theory for 4f rare earth ions and 3d metals Stefania PIZZINI Laboratoire Louis Néel - Grenoble I) - History and basic concepts of XAS - XMCD at M 4,5

More information

8 Summary and outlook

8 Summary and outlook 91 8 Summary and outlook The main task of present work was to investigate the growth, the atomic and the electronic structures of Co oxide as well as Mn oxide films on Ag(001) by means of STM/STS at LT

More information

Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal

Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal T. Ostler, J. Barker, R. F. L. Evans and R. W. Chantrell Dept. of Physics, The University of York, York, United Kingdom. Seagate,

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Mat. Res. Soc. Symp. Proc. Vol. 696 22 Materials Research Society Surface reconstruction and induced uniaxial magnetic fields on Ni films R. A. Lukaszew, B. McNaughton 1, V. Stoica 2 and R. Clarke 2 Department

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface J.-S. Lee 1,*, Y. W. Xie 2, H. K. Sato 3, C. Bell 3, Y. Hikita 3, H. Y. Hwang 2,3, C.-C. Kao 1 1 Stanford Synchrotron Radiation Lightsource,

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see?

Scanning Tunneling Microscopy. how does STM work? the quantum mechanical picture example of images how can we understand what we see? Scanning Tunneling Microscopy how does STM work? the quantum mechanical picture example of images how can we understand what we see? Observation of adatom diffusion with a field ion microscope Scanning

More information

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures O.Boulle Spintec CEA-INAC / CNRS / Université Grenoble Alpes, Grenoble, France SOCSIS 2016 - Spestses - 29/06/2016 Acknowledgements

More information

Anisotropy Distributions in Patterned Magnetic Media

Anisotropy Distributions in Patterned Magnetic Media MINT Review & Workshop 24-25 Oct. 2006 Anisotropy Distributions in Patterned Magnetic Media Tom Thomson Hitachi San Jose Research Center Page 1 Acknowledgements Manfred Albrecht (Post-doc) Tom Albrecht

More information

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine in the de Haas van Alphen effect Magnetic domains of non-spin origine related to orbital quantization Jörg Hinderer, Roman Kramer, Walter Joss Grenoble High Magnetic Field laboratory Ferromagnetic domains

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

Magnetic properties of nanoparticles: from individual objects to cluster assemblies

Magnetic properties of nanoparticles: from individual objects to cluster assemblies Magnetic properties of nanoparticles: from individual objects to cluster assemblies Florent TOURNUS Magnetic nanostructures group Institut Lumière Matière, UMR 5306 CNRS & Univ. Lyon 1 Université de Lyon,

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect

Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect Johan Meersschaut Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, Belgium Johan.Meersschaut@fys.kuleuven.be

More information

Exchange coupling mechanism for magnetization reversal and thermal stability of Co nanoparticles embedded in a CoO matrix

Exchange coupling mechanism for magnetization reversal and thermal stability of Co nanoparticles embedded in a CoO matrix Exchange coupling mechanism for magnetization reversal and thermal stability of Co nanoparticles embedded in a CoO matrix Dominique Givord, Vassil Skumryev, Josep Nogués To cite this version: Dominique

More information

Magnetism of ultrathin films: Theory and Experiment

Magnetism of ultrathin films: Theory and Experiment 1/23 Magnetism of ultrathin films: Theory and Experiment Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin 2/23 New and fundamental aspects are found in nanomagnetism with

More information

An introduction to magnetism in three parts

An introduction to magnetism in three parts An introduction to magnetism in three parts Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D-76131 Karlsruhe 0. Overview Chapters of the three lectures

More information

An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams

An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 9 1 MAY 1999 An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams Chris Pike a) Department of Geology,

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

Self-assembly of molecules on surfaces. Manuel Alcamí Departamento de Química Universidad Autónoma de Madrid

Self-assembly of molecules on surfaces. Manuel Alcamí Departamento de Química Universidad Autónoma de Madrid Self-assembly of molecules on surfaces Manuel Alcamí Departamento de Química Universidad Autónoma de Madrid Outline Outline Motivation Examples of molecules deposited on surfaces Graphene/Ru(0001) TQ /

More information

Coupled perpendicular magnetization in Fe/Cu/Fe trilayers

Coupled perpendicular magnetization in Fe/Cu/Fe trilayers Journal of Magnetism and Magnetic Materials 300 (2006) 479 483 www.elsevier.com/locate/jmmm Coupled perpendicular magnetization in Fe/Cu/Fe trilayers D. Repetto, A. Enders, K. Kern Max Planck Institut

More information

Recent Developments in Magnetoelectrics Vaijayanti Palkar

Recent Developments in Magnetoelectrics Vaijayanti Palkar Recent Developments in Magnetoelectrics Vaijayanti Palkar Department of Condensed Matter Physics & Materials Science Tata Institute of Fundamental Research Mumbai 400 005, India. Tata Institute of Fundamental

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

Spin excitations in magnetic structures of different dimensions

Spin excitations in magnetic structures of different dimensions Spin excitations in magnetic structures of different dimensions Wulf Wulfhekel Physikalisches Institut, Universität Karlsruhe (TH) Wolfgang Gaede Str. 1, D-76131 Karlsruhe 0. Overview Chapters of spin

More information

THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES

THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Saad Alsari

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

Supplementary figures

Supplementary figures Supplementary figures Supplementary Figure 1. A, Schematic of a Au/SRO113/SRO214 junction. A 15-nm thick SRO113 layer was etched along with 30-nm thick SRO214 substrate layer. To isolate the top Au electrodes

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Magnetic Resonance in magnetic materials

Magnetic Resonance in magnetic materials Ferdinando Borsa, Dipartimento di Fisica, Universita di Pavia Magnetic Resonance in magnetic materials Information on static and dynamic magnetic properties from Nuclear Magnetic Resonance and Relaxation

More information

Experimental techniques for the study of small magnetic objects

Experimental techniques for the study of small magnetic objects Experimental techniques for the study of small magnetic objects Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr. France. Foreword Large overview of characterization

More information