Nanomagnetism Part III Atomic-scale properties

Size: px
Start display at page:

Download "Nanomagnetism Part III Atomic-scale properties"

Transcription

1 Nanomagnetism Part III Atomic-scale properties Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France

2 SKETCH OF THE LECTURES Part I Magnetization reversal Part II Techniques Part III Atomic-scale properties Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.2

3 MOTIVATING THE LECTURE The need for nanomagnetism (reminder) Fundamental issues for nanomagnetism Magnetic grain media of current hard disks Is a small grain (ferro)magnetic? Count number of surface atoms Is a small grain stable against thermal fluctuations? 21 k B T 300 K 4 10 J 25 mev 100 k B T 300 K 2.5 ev Derive from macroscopic arguments Decades-old (yet still modern) topic Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.3

4 TABLE OF CONTENTS 1. Ferromagnetic order in low dimensions Structure and magnetic order Magnetic moments (surfaces etc.) Magnetic ordering (thermal effects) 2. Magnetic energy anisotropy 3. Interfacial effects Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.4

5 1. FERROMAGNETIC ORDER Metastable phases (fcc Fe) Robustness of ferromagnetic orders Properties of bulk Fe Theory: phase diagram of fcc iron (Fe) (P,T) ambiant conditions Body-Centered Cubic (bcc) Ferromagnetic 2.2 B atom 1 Low Spin T C =1043 K T>1185 K Face-Centered Cubic (fcc, -Fe) Non-Magn. No magnetic order & Low Spin Anti-Ferro High Spin V. L. Moruzzi et al., PRB39, 6957 (1989) See also: O.K. Andersen, Physica B 86, 249 (1977) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.5

6 1. FERROMAGNETIC ORDER Metastable phases (fcc Fe) Effect of strain on the crystalline structure Magnetism of fcc Fe Fe/Cu(001) 300K growth with MBE: fcc>bcc 300K growth with PLD: fcc High-spin and low-spin fcc phases? P. Ohresser et al., PRB59, 3696 (1999) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.6

7 1. FERROMAGNETIC ORDER Metastable phases (fcc Fe) Spin-density wave antiferromagnetism Fe/Cu(001) Ferro. SDW - AF See also: H. L. Meyerheim et al., Phys. Rev. Lett. 103, (2009) D. Qian et al., PRL87, (2001) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.7

8 1. FERROMAGNETIC ORDER Surface magnetism Naive views Probing surface magnetization Some results Surface techniques at OK Fe/W(110) : 0.14ml(+0.35µ ) UHV/Fe(110); Ag/Fe(110): 0.26ml(+0.65µ ) Cu/Ni(111): -0.5ml Overlayers: Pd/Ni(111)/Re(0001) B Mossbauer with probe layers B Plot m(t) at 0K: Magnetometry XMCD (Too) simple picture: band narrowing at surfaces E Bulk picture s-p Enhanced moment at surfaces E d Surface picture k s-p d k Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.8

9 1. FERROMAGNETIC ORDER Surface magnetism Towards single atoms Co/Pt(997) Co/Pt(111) A. Dallmeyer et al., Phys.Rev.B 61(8), R5153 (2000) Conclusions Bulk: m =0.14µ /at. P. Gambardella et al., Science 300, 1130 (2003) Surface: m =0.31µ /at. Conclusions Bi-atomic wire: m =0.37µ /at. From bulk to atoms: considerable increase of orbital moment Mono-atomic wire: m =0.68µ /at. 2 atoms closer to wire than 1 atom bi-atom: m =0.78µ /at. bi-atomic wire closer to surface than wire atom: m =1.13 µ /at. P. Gambardella et al., Nature 416, 301 (2002) L B L B L L L L B B B B Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.9

10 1. FERROMAGNETIC ORDER Surface magnetism Polarizability and Stoner criterium Exchange polarization at interfaces Pd(D)/Ni(111)/Re(0001) Spontaneous polarization Stoner criterieum Small Rh(4d) clusters studied in flight (Stern-Gerlach experiment) TOM U. Gradmann, Handbook Fe/Pd multilayers XMCD A. J. Cox et al., PRL71, 923 (1993) A. J. Cox et al., PRB49, (1994) J. Vogel et al., PRB55, 3663 (1997) Conclusion: Pd sigifnicantly polarized over several layers Handwavy explanation based on Stoner criterium I, F 1 Conclusion: recuced bandwidth may even drive ferromagnetism Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.10

11 1. FERROMAGNETIC ORDER Magnetic ordering Elements of theory Ising (1925). No magnetic order at T>0K in 1D Ising chain. (1930). No magnetic order at T>OK in 2D Heisenberg. Bloch (spin-waves; isotropic Heisenberg) N. D. Mermin, H. Wagner, PRL17, 1133 (1966) (1944) + Yang (1951). Onsager 2D Ising model: Tc>0K Experiments Ni(111)/Re(0001) Magnetic anisotropy stabilizes ordering R. Bergholz and U. Gradmann, JMMM45, 389 (1984) Tc interpreted with molecular field Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.11

12 1. FERROMAGNETIC ORDER Magnetic ordering Naïve model Molecular field 0 z n W,1 n g2j 2B J J 1 T C= 3 kb z neighbors zb N atomic layers Less naïve z =z b 2 z b z s N zs Tc (t ) ~ t -1 Experiments Thickness-dependant molecular field Tc (t ) ~ t - λ λ = 1 G.A.T. Allan, PRB1, 352 (1970) Conclusion: Naïve views are roughly correct U. Gradmann, Handbook of Magn. Mater. Vol.7, ch.1 (1993) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.12

13 1. FERROMAGNETIC ORDER Magnetic ordering Effect of lateral size H.J.Elmers et al., Phys.Rev.Lett.73, 898(94) U. Gradmann, Handbook of Magn. Mater. 7 (1993) Conclusion Tc also depends on size of islands (lateral dimensions) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.13

14 3. Magnetic anisotropy 1. Ferromagnetic order in low dimensions 2. Magnetic energy anisotropy Microscopic origins of Magnetic Anisotropy Energy (MAE) Surface versus magneto-elastic anisotropy From surfaces (2D) to atoms (0D) 3. Interfacial effects Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.14

15 2. Magnetic anisotropy Basics Dipolar energy Mutual energy of two magnetic dipoles : E1,2 = µ0 3 μ. μ ( μ. r ).( μ. r ) π r 3 r2 2 Let us assume two magnetic dipoles with vertical direction, either up or down : E1,2 (θ ) = µ0 4π r 3 [ 2 µ 1µ cos θ ] cos 2 (θ C ) = 1/ 3 Parallel alignment is favored for θ < θ C Antiparallel alignment is favored for θ > θ C θ 1 Cone of alignment Conclusions Nanostructures: long axis favored Films: in-plane favored edz = 1 µ 0M Z2 2 Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.15

16 2. Magnetic anisotropy Basics Magnetocrystalline anisotropy energy Electronic cloud Atom nucleus (crystal structure) Spin-orbit coupling the energy of both spin and orbital moment depends on orientation Series development on an angular basis: Anisotropy energy Normalized magnetization components Emc = K1 mz2 + K 2mz Uniaxial Emc = K 4 (m x2m y2 + m y2mz2 + mz2m x2 ) +... Alignement of magnetization is favored along given axes of the crystal Cubic (Derived from slide of A. Thiaville CNRS/Orsay) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.16

17 2. Magnetic anisotropy Basics Magneto-elastic anisotropy + => + Result Origin Distortion of orbitals & crystal field Correction to the magneto-crystalline energy Emel = K mel,1 cos 2 (θ ) +... K mel,i ~ Bi ε Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.17

18 2. Magnetic anisotropy Basics Surface anisotropy L. Néel, J. Phys. Radium 15, 15 (1954) «Superficial magnetic anisotropy and orientational superstructures» Overview Breaking of symmetry for surface/interface atoms Correction to the magneto-crystalline energy Es = K S,1 cos 2 (θ ) + K S,2 cos 4 (θ ) +... «This surface energy, of the order of 0.1 to 1 erg/cm2, is liable to play a significant role in the properties of ferromagnetic materials spread in elements of dimensions smaller than 100Å» Pair model of Néel: Ks estimated from magneto-elastic constants Does not depend on interface material Yields order of magnitude only: correct value from experiments or calculations (precision!) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.18

19 2. Magnetic anisotropy Surface anisotropy Magnetic Anisotropy Energy (MAE): Link with anisotropy of orbital moment Theory Ab initio calculations Perturbation theory for 3d metals: MAE = α µ L ξ 4µ µ B L High precision needed: 1 µ ev < < 10 ev P. Bruno, PRB39, 865 (1989) does not rotate in 3d metals -> MAE reflects cost in ξ Covers magnetocrystalline, magnetoelastic and surface anisotropy Experiments Bulk (Fe, Ni, ) µ L 10 4 µ B / atom MAE 1µ ev O. Hjortstam et al., PRB55, (1997) Conclusions Origin of MAE = anisotropy of orbital moment No strict linearity depend on thickness in thin films (band structure) may alsodirect measurement of MAE preferable Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.19

20 2. Magnetic anisotropy Surface anisotropy History of surface anisotropy : STEP 1 (1/t plot) First example of perpendicular anisotropy E tot (t ) = k V t + 2k S e(t ) = k V + 2k S t Bulk e(t) Bulk ce urfa S --> e p o Sl s T=2AL 1/t U. Gradmann and J. Müller, Phys. Status Solidi 27, 313 (1968) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.20

21 2. Magnetic anisotropy Surface anisotropy Structural relaxation Effect on anisotropy Pseudomorphic range Magneto-elastic anisotropy: Relaxation range (introduction of dislocation) k mel ~ Bmelε Strain relaxation regime: k (t ) = k bulk + α Bmel / t Conclusion: tc ε (t ) ~ (asubstrate abulk ) tc t W. A. Jesser et al., Phys. Stat. Sol. 19, 95 (1967) Mixing of surface and magneto-elastic contributions 2k S e(t ) = k V + t C. Chappert and P. Bruno., JAP64, 5736 (1988) Co/Cu(111) U. Gradmann, Appl. Phys.3, 161 (1974) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.21

22 2. Magnetic anisotropy Interface anisotropy What use? Main use in applications : perpendicular magnetic anisotropy Magneto-optical recording Materials and geometry Interfacial elements with large spin-orbit: Pt, Au, Pd Why: large magneto-optical response Material: 3D-Rare-Earth based Often: multilayers T. Johnson et al., Co/Au film M. Rep. Prog. Phys. 59, 1409 (1996) A. Fert et al., J. Magn. Magn. Mater. 200, 338 (1999) S. Tsunashima, J. Phys. D 34, R87 (2001) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.22

23 2. Magnetic anisotropy Interface anisotropy What use? Main use in applications : perpendicular magnetic anisotropy Decreased dipolar coupling in HDD media Longitudinal recording ( ) Enhanced anisotropy for solid-state memories Concerns MRAM: Magnetic Random Access Memories C. Chappert et al., The emergence of spin electronics in data storage, Nat. Mater. 6, 813 (2007) Perpendicular recording (2005 -) Reminder for the thermal stability fo small flat elements: H c= S. N. Piramanayagam, J. Appl. Phys. 102, (2007) High anisotropy with low spread angle Reduced intra- and inter-grain dipolar coupling See lecture: Laurent RANNO 25k B T 2K 1 0 M S KV In-plane magnetization 1 K = N 0 M 2S 2 Issue: N is small with flat elements Perpendicular magnetization 1 2 K 0 M S 2 Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.23

24 2. Magnetic anisotropy Interface anisotropy from 2D to atoms From surfaces (2D) to wires (1D) and atoms (0D) Views of the model systems Method XMCD STM, 8.5nm, 5.5K Fit magnetization curves Magnetic Anisotropy Energy Bulk Co: 40 ev/atom Co ML: 140 ev/atom Co bi-wire: 0.34meV/atom Co wire: 2meV/atom Co bi-atom: 3.4meV/atom Co atom: 9.2meV/atom Conclusions: Model systems to highlight trends in applied materials Anisotropy per atom increases in low dimensions P. Gambardella et al., Nature 416, 301 (2002) P. Gambardella et al., Science 300, 1130 (2003) The TOTAL anisotropy decreases Not thermally stable Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.24

25 TABLE OF CONTENTS 1. Ferromagnetic order in low dimensions 2. Magnetic energy anisotropy 3. Interfacial effects Exchange bias RKKY coupling Dipolar effects Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.25

26 3. INTERFACIAL EFFECTS Exchange-bias Seminal studies FM Oxidized Co nanoparticles AFM ZFC FC Field-cooled hysteresis loops: Increased coercivity µ0he 0.2 T Shifted in field Exchange bias J. Nogués and Ivan K. Schuller J. Magn. Magn. Mater. 192 (1999) 203 Meiklejohn and Bean, Phys. Rev. 102, 1413 (1956), Phys. Rev. 105, 904, (1957) Exchange anisotropy a review A E Berkowitz and K Takano J. Magn. Magn. Mater. 200 (1999) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.26

27 3. INTERFACIAL EFFECTS Exchange-bias: what use? Increase coercivity of layers Application Concept of spin-valve in magnetoresistive elements AF F2 Crude approximation for thin layers: K AF t AF H F AF H F 1 K FtF B. Diény et al., Phys. Rev. B 43, 1297 (1991) Sensors Memory cells Etc. Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.27

28 3. INTERFACIAL EFFECTS RKKY interlayer coupling The physics Figures Spin-dependent quantum confinement in the spacer layer Constructive and destructive interferences Maxima and minima of n r B, B Forth & back phase shift =q t A B r A, A Coupling strength: E S =J t cos in J /m2 = m1, m2 A with: J t = 2 sin q t t Spin-independent + q=k k - Spin-dependent r A, A,r B, B P. Bruno, J. Phys. Condens. Matter 11, 9403 (1999) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.28

29 3. INTERFACIAL EFFECTS RKKY interlayer coupling Illustration of coupling strength J t = A 2 t sin P t2 Note: J(t) extrapolated for t=3å S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.29

30 3. INTERFACIAL EFFECTS RKKY interlayer coupling What use? What constraints? Synthetic Ferrimagnets (SyF) Crude description What use? Increase coercivity of pinned layers Decrease intra- and inter- dot F2 F1 dipolar coupling Hypothesis: Two layers rigidly coupled Reversal modes unchanged Neglect dipolar coupling e1 M 1 e2 M 2 M= e1 e2 e K e K K= e 1 e2 AF F21 Reference layer F22 F1 Free layer Practical aspects H c= e 1 M 1 H c, 1 e 2 M 2 H c, 2 e1 M 1 e2 M 2 Ru spacer layer (largest effect) Control thickness within a few Angströms! Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.30

31 3. INTERFACIAL EFFECTS Collective effects: bilayers Stacked dots : dipolar In-plane magnetization Out-of-plane magnetization Stacked dots : orange-peel coupling In-plane magnetization Always parallel coupling L. Néel, C. R. Acad. Sci. 255, 1676 (1962) (valid only for thick films) Hint: An upper bound for the dipolar coupling is the self demagnetizing field Notice: similar situation as for RKKY coupling J. C. S. Kools et al., J. Appl. Phys. 85, 4466 (1999) (valid for any films) Out-of-plane magnetization May be parallel or antiparallel J. Moritz et al., Europhys. Lett. 65, 123 (2004) Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.31

32 3. INTERFACIAL EFFECTS Collective effects: range of interaction Upper bound for dipolar fields in 2D Estimation of an upper range of dipolar field in a 2D system Hd (R ) 2π rdr Non-homogeneity of dipolar fields in 2D Example: flat stripe with thickness/height = Integration r3 Local dipole: 1/r3 R Hd (R ) Cte + 1/ R Convergence with finite radius (typically thickness) Real Average Position (a.u.) Dipolar fields are weak and short-ranged in 2D or even lower-dimensionality systems Dipolar fields can be highly non-homogeneous in anisotropic systems like 2D Consequences on dot s non-homogenous state, magnetization reversal, collective effects etc. Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.32

33 Some literature Moment and anisotropy of ultrathin films Magneto-elasticity in thin films U. Gradmann, Handbook of magnetic materials vol. 7, K. H.K. Buschow Ed., Elsevier, Magnetism of transition metal films, 1 (1993) D. Sander, The correlation between mechanical stress and magnetic anisotropy in ultrathin films, Rep. Prog. Phys. 62, 809 (1999) M. Farle, Ferromagnetic resonance of ultrathin metallic layers, Rep. Prog. Phys. 61, 755 (1998) P. Poulopoulos et al., K. Baberschke, Magnetism in thin films, J. Phys.: Condens. Matter 11, 9495 (1999) H. J. Elmers, Ferromagnetic Monolayers, Int. J. Mod. Phys. B 9 (24), 3115 (1995) O. Fruchart, Epitaxial self-organization: from surfaces to magnetic materials, C. R. Phys. 6, 61 (2005) Theory (misc) T. Asada et al., G. Bihlmayer, S. Handschuh, S. Heinze, P. Kurz, S. Blügel, First-principles theory of ultrathin magnetic films, J. Phys.: Condens. Matter 11, 9347 (1999) F. J. Himpsel et al., Magnetic Nanostructures, Adv. Phys. 47 (4), 511 (1998) O. Fruchart et al., Magnetism in reduced dimensions, C. R. Phys. 6, 921 (2005) P. Bruno, Theory of interlayer exchange interactions in magnetic multilayers, J. Phys.: Condens. Matter 11, 9403 (1999) Perpendicular anisotropy F. E. Gabaly et al., Noble metal capping effects on the spin-reorientation transitions of Co/Ru(0001), N. J. Phys. 10, (2008) M. T. Johnson et al., Magnetic anisotropy in metallic multilayers, Rep. Prog. Phys. 59, 1409 (1996) Exchange-bias J. Nogues et al., I. K. Schuller, Exchange bias, J. Magn. Magn. Mater 192 (2), 203 (1999). Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.33

34 Online literature: Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.34

35 Charte graphique ToC I. Overview of self-organization processes 1. Introduction 2. Self-assembled epitaxial growth 3. Self-organized epitaxial growth 4. Engineered and 3D self-organization 5. Perspectives of self-organization 6. X-ray investigation of SO systems Olivier Fruchart IWOS MASENA Hanoi, Vietnam, Nov.2010 p.35

Low dimensional magnetism Experiments

Low dimensional magnetism Experiments Low dimensional magnetism Experiments Olivier Fruchart Brasov (Romania), Sept. 2003 1 Introduction...................................... 2 2 Ferromagnetic order................................. 2 2.1 Methods.....................................

More information

A flavor of Nanomagnetism and Spintronics

A flavor of Nanomagnetism and Spintronics A flavor of Nanomagnetism and Spintronics Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr / Short presentation Local environment Grenoble : 500 000 inhabitants with

More information

Self-organized growth on the Au(111) surface

Self-organized growth on the Au(111) surface Self-organized growth on the Au(111) surface Olivier Fruchart 02/03/2002 Olivier Fruchart - Laboratoire Louis Néel, Grenoble, France. Slides on-line: http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Phase transitions in ferromagnetic monolayers: A playground to study fundamentals

Phase transitions in ferromagnetic monolayers: A playground to study fundamentals Phase transitions in ferromagnetic monolayers: A playground to study fundamentals Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin Arnimallee 14 D-14195 D Berlin-Dahlem e-mail:

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter Lectue 4 Trilayers a prototype of multilayers Ni 8 Cu n Ni 9 Important parameters: K anisotropy, E band for FM1 and FM2 interlayer exchange coupling IEC, J inter 1 4a Optical and acoustic modes in the

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

Magnetic recording technology

Magnetic recording technology Magnetic recording technology The grain (particle) can be described as a single macrospin μ = Σ i μ i 1 0 1 0 1 W~500nm 1 bit = 300 grains All spins in the grain are ferromagnetically aligned B~50nm Exchange

More information

Lecture 2: Magnetic Anisotropy Energy (MAE)

Lecture 2: Magnetic Anisotropy Energy (MAE) Lecture : Magnetic Anisotropy Energy (MAE) 1. Magnetic anisotropy energy = f(t). Anisotropic magnetic moment f(t) [111] T=3 K Characteristic energies of metallic ferromagnets M (G) 5 3 [1] 1 binding energy

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR X-Ray Magnetic Dichroism S. Turchini SM-CNR stefano.turchini@ism.cnr.it stefano.turchini@elettra.trieste.it Magnetism spin magnetic moment direct exchange: ferro antiferro superexchange 3d Ligand 2p 3d

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles Xavier Batlle and Amílcar Labarta Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia Universitat de Barcelona,

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Magnetism of ultrathin films: Theory and Experiment

Magnetism of ultrathin films: Theory and Experiment 1/23 Magnetism of ultrathin films: Theory and Experiment Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin 2/23 New and fundamental aspects are found in nanomagnetism with

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

Angular dependence of the magnetization reversal in exchange biased Fe/MnF 2. Elke Arenholz

Angular dependence of the magnetization reversal in exchange biased Fe/MnF 2. Elke Arenholz Angular dependence of the magnetization reversal in exchange biased Fe/MnF 2 Elke Arenholz Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Kai Liu Department of Physics,

More information

Lectures on magnetism at the Fudan University, Shanghai October 2005

Lectures on magnetism at the Fudan University, Shanghai October 2005 Lectures on magnetism at the Fudan University, Shanghai 10. 26. October 2005 Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 D Berlin-Dahlem Germany 1 Introduction

More information

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200, 复习题 1 Calculate the magnetic moment of a sphere of radius R made from a magnetic material with magnetic susceptibility, when it is magnetized by an external magnetic field H. How is the value of the moment

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

A15. Circular dichroism absorption spectroscopy and its application

A15. Circular dichroism absorption spectroscopy and its application A15. Circular dichroism in X-ray X absorption spectroscopy and its application Klaus Baberschke Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem Germany 1. Introduction

More information

Magnetic anisotropy energy and interlayer exchange coupling in ultrathin ferromagnets: experiment versus theory

Magnetic anisotropy energy and interlayer exchange coupling in ultrathin ferromagnets: experiment versus theory Philosophical Magazine 28, 1 12, ifirst Magnetic anisotropy energy and interlayer exchange coupling in ultrathin ferromagnets: experiment versus theory Klaus Baberschke* Institut fu r Experimentalphysik,

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

Skyrmions à la carte

Skyrmions à la carte This project has received funding from the European Union's Horizon 2020 research and innovation programme FET under grant agreement No 665095 Bertrand Dupé Institute of Theoretical Physics and Astrophysics,

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Probing Magnetic Order with Neutron Scattering

Probing Magnetic Order with Neutron Scattering Probing Magnetic Order with Neutron Scattering G.J. Mankey, V.V. Krishnamurthy, F.D. Mackey and I. Zoto University of Alabama in collaboration with J.L. Robertson and M.L. Crow Oak Ridge National Laboratory

More information

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...)

X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) X-ray Magnetic Circular and Linear Dichroism (XMCD, XMLD) and X-ray Magnetic Imaging (PEEM,...) Jan Vogel Institut Néel (CNRS, UJF), Nanoscience Department Grenoble, France - X-ray (Magnetic) Circular

More information

Manipulation of interface-induced Skyrmions studied with STM

Manipulation of interface-induced Skyrmions studied with STM Manipulation of interface-induced Skyrmions studied with STM Kirsten von Bergmann S. Heinze, M. Bode, P. Ferriani, E.Y. Vedmedenko, A. Kubetzka, O. Pietzsch and R. Wiesendanger Institute of Applied Physics,,

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets Chapter 2 Theoretical background The first part of this chapter gives an overview of the main static magnetic behavior of itinerant ferromagnetic and antiferromagnetic materials. The formation of the magnetic

More information

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers S. M. Zhou, 1,2 L. Sun, 3 P. C. Searson, 3 and C. L. Chien 1 1 Department of Physics and Astronomy, Johns Hopkins University,

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Supplementary Figure 1 Representative sample of DW spin textures in a

Supplementary Figure 1 Representative sample of DW spin textures in a Supplementary Figure 1 Representative sample of DW spin textures in a Fe/Ni/W(110) film. (a) to (d) Compound SPLEEM images of the Fe/Ni/W(110) sample. As in Fig. 2 in the main text, Fe thickness is 1.5

More information

Magnetocrystalline volume and interface anisotropies in epitaxial films: Universal relation and Néel s model invited

Magnetocrystalline volume and interface anisotropies in epitaxial films: Universal relation and Néel s model invited JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 2003 Magnetocrystalline volume and interface anisotropies in epitaxial films: Universal relation and Néel s model invited Günther Bayreuther, a) Martin

More information

The Quantum Theory of Magnetism

The Quantum Theory of Magnetism The Quantum Theory of Magnetism Norberto Mains McGill University, Canada I: 0 World Scientific Singapore NewJersey London Hong Kong Contents 1 Paramagnetism 1.1 Introduction 1.2 Quantum mechanics of atoms

More information

Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal. and E. D. Dahlberg 3. Abstract

Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal. and E. D. Dahlberg 3. Abstract Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal W.-T. Lee 1, S. G. E. te Velthuis 2, G. P. Felcher 2, F. Klose 1, T. Gredig 3, and E. D. Dahlberg 3. 1 Spallation Neutron Source,

More information

Bottom-up magnetic systems

Bottom-up magnetic systems Bottom-up magnetic systems Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France. http://perso.neel.cnrs.fr/olivier.fruchart/ Table of contents

More information

Tailoring magnetism in artificially structured materials: the new frontier

Tailoring magnetism in artificially structured materials: the new frontier Surface Science 500 (2002) 300 322 www.elsevier.com/locate/susc Tailoring magnetism in artificially structured materials: the new frontier J. Shen a, *, J. Kirschner b a Solid State Division, Oak Ridge

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Giant exchange bias in a single-phase magnet with two magnetic

Giant exchange bias in a single-phase magnet with two magnetic Giant exchange bias in a single-phase magnet with two magnetic sublattices Y. Sun, 1,a) J.-Z. Cong, 1 Y.-S. Chai, 1 L.-Q. Yan, 1 Y.-L. Zhao, 1 S.-G. Wang, 1 W. Ning, 2 and Y.-H Zhang 2 1 Beijing National

More information

Fabrication and magnetism of nano-objects

Fabrication and magnetism of nano-objects Fabrication and magnetism of nano-objects Olivier Fruchart Constanta (Romania), Sept. 2005 1 Introduction The lecture has been divided in roughly two parts. In the first part fabrication methods of nano-objects

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course by Mark Jarrel (Cincinnati University), from Ibach and

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance This is a phenomenon that produces a large change in the resistance of certain materials as a magnetic field is applied. It is described as Giant because the observed effect is

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Damping of magnetization dynamics

Damping of magnetization dynamics Damping of magnetization dynamics Andrei Kirilyuk! Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands 1 2 Landau-Lifshitz equation N Heff energy gain:! torque equation:

More information

arxiv:cond-mat/ v1 7 Aug 1996

arxiv:cond-mat/ v1 7 Aug 1996 EXCHANGE COUPLING AND MAGNETIZATION PROFILES OF BINARY AND TERNARY MAGNETIC MULTILAYERS F. Süss, U. Krey 1 Institut für Physik II der Universität, D-93040 Regensburg, Germany arxiv:cond-mat/9608037v1 7

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

What is the susceptibility?

What is the susceptibility? What is the susceptibility? Answer which one? M Initial susceptibility Mean susceptibility M st M 0 0 m High field susceptibility i dm = dh H =0 H st H M M st M 0 0 m i H st H H What is the susceptibility?

More information

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE-

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- NOMENOLOGY In the main text we introduce anisotropic magnetoresistance (AMR) in analogy to ferromagnets where non-crystalline and crystalline contributions

More information

Combined neutron and synchrotron studies of magnetic films

Combined neutron and synchrotron studies of magnetic films PRAMANA c Indian Academy of Sciences Vol. 67, No. 1 journal of July 2006 physics pp. 47 55 Combined neutron and synchrotron studies of magnetic films SUNIL K SINHA 1,2, S ROY 1, M R FITZSIMMONS 2, S PARK

More information

Exchange Coupling and Exchange Bias in FM/AFM Bilayers for a Fully Compensated AFM Interface

Exchange Coupling and Exchange Bias in FM/AFM Bilayers for a Fully Compensated AFM Interface Vol. 115 (2009) ACTA PHYSICA POLONICA A No. 1 Proceedings of the European Conference Physics of Magnetism (PM 08), Poznań 2008 Exchange Coupling and Exchange Bias in FM/AFM Bilayers for a Fully Compensated

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 5: MAGNETIC STRUCTURES - Mean field theory and magnetic order - Classification of magnetic structures - Collinear and non-collinear magnetic structures. - Magnetic

More information

Exchange bias of polycrystalline antiferromagnets with perfectly compensated interface

Exchange bias of polycrystalline antiferromagnets with perfectly compensated interface Exchange bias of polycrystalline antiferromagnets with perfectly compensated interface D. Suess, M. Kirschner, T. Schrefl, J. Fidler 1 Institute of Solid State Physics, Vienna University of Technology,

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

The temperature and field stability of exchange biased magnetic multilayers containing a synthetic antiferromagnet

The temperature and field stability of exchange biased magnetic multilayers containing a synthetic antiferromagnet Eindhoven University of Technology MASTER The temperature and field stability of exchange biased magnetic multilayers containing a synthetic antiferromagnet Deen, L.D.P. Award date: 2015 Disclaimer This

More information

Italian School of Magnetism

Italian School of Magnetism Spintronics I 1. Introduction 3. Mott paradigm: two currents model 4. Giant MagnetoResistance: story and basic principles 5. Semiclassical model for CIP GMR Italian School of Magnetism Prof. Riccardo Bertacco

More information

Dominant role of thermal magnon excitation in temperature dependence of interlayer exchange coupling: Experimental verification

Dominant role of thermal magnon excitation in temperature dependence of interlayer exchange coupling: Experimental verification Dominant role of thermal magnon excitation in temperature dependence of interlayer exchange coupling: Experimental verification S. S. Kalarickal,* X. Y. Xu, K. Lenz, W. Kuch, and K. Baberschke Institut

More information

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms

Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Tuning magnetic anisotropy, Kondo screening and Dzyaloshinskii-Moriya interaction in pairs of Fe adatoms Department of Physics, Hamburg University, Hamburg, Germany SPICE Workshop, Mainz Outline Tune magnetic

More information

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures O.Boulle Spintec CEA-INAC / CNRS / Université Grenoble Alpes, Grenoble, France SOCSIS 2016 - Spestses - 29/06/2016 Acknowledgements

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Voyage au pays du Nanomagnétisme

Voyage au pays du Nanomagnétisme Voyage au pays du Nanomagnétisme Olivier Fruchart Institut Néel (CNRS / Univ. Grenoble-Alpes) Grenoble - France http://neel.cnrs.fr. http://perso.neel.cnrs.fr/olivier.fruchart/ Magnetism in products Modern

More information

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic.

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic. Lecture 5 Induced magnetization: that which is induced in the presence of an applied magnetic field diamagnetic paramagnetic Remanent magnetization: that which remains in the absence of an external field

More information

Origin of spontaneous magnetization reversal in exchange biased heterostructures

Origin of spontaneous magnetization reversal in exchange biased heterostructures PHYSICAL REVIEW B 76, 14423 27 Origin of spontaneous magnetization reversal in exchange biased heterostructures Zhi-Pan Li,* Casey W. Miller, Igor V. Roshchin, and Ivan K. Schuller Physics Department,

More information

Lateral length scales in exchange bias

Lateral length scales in exchange bias EUROPHYSICS LETTERS 15 July 2005 Europhys. Lett., 71 (2), pp. 297 303 (2005) DOI: 10.1209/epl/i2005-10078-2 Lateral length scales in exchange bias I. V. Roshchin 1,O.Petracic 1,2,R.Morales 1,3,Z.-P.Li

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

TEMPERATURE DEPENDENCE OF TUNNEL MAGNETORESISTANCE OF IrMn BASED MTJ

TEMPERATURE DEPENDENCE OF TUNNEL MAGNETORESISTANCE OF IrMn BASED MTJ MOLECULAR PHYSICS REPORTS 40 (2004) 192-199 TEMPERATURE DEPENDENCE OF TUNNEL MAGNETORESISTANCE OF IrMn BASED MTJ P. WIŚNIOWSKI 1, T. STOBIECKI 1, M. CZAPKIEWICZ, J. WRONA 1, M. RAMS 2, C. G. KIM 3, M.

More information

Magnetic imaging of layer-by-layer reversal in Co/ Pt multilayers with perpendicular anisotropy

Magnetic imaging of layer-by-layer reversal in Co/ Pt multilayers with perpendicular anisotropy Magnetic imaging of layer-by-layer reversal in Co/ Pt multilayers with perpendicular anisotropy M. Robinson, Y. Au, J. W. Knepper, F. Y. Yang, and R. Sooryakumar Department of Physics, The Ohio State University,

More information

arxiv: v1 [cond-mat.mes-hall] 25 Nov 2013

arxiv: v1 [cond-mat.mes-hall] 25 Nov 2013 Target-skyrmions and skyrmion clusters in nanowires of chiral magnets A. O. Leonov 1, U. K. Rößler 2, and M. Mostovoy 1 1 Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9700AB,

More information

ACOUSTIC WAVE VELOCITY IN Ag/Fe NANOLAYERS. Mikołaj ALEKSIEJUK, Feliks REJMUND

ACOUSTIC WAVE VELOCITY IN Ag/Fe NANOLAYERS. Mikołaj ALEKSIEJUK, Feliks REJMUND ARCHIVES OF ACOUSTICS 32, 4 (Supplement), 47 51 (2007) ACOUSTIC WAVE VEOCITY IN Ag/Fe NANOAYERS Mikołaj AEKSIEJUK, Feliks REJMUND Institute of Fundamental Technological Research Polish Academy of Sciences

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

Contents. 1 Imaging Magnetic Microspectroscopy W. Kuch 1

Contents. 1 Imaging Magnetic Microspectroscopy W. Kuch 1 1 Imaging Magnetic Microspectroscopy W. Kuch 1 1.1 Microspectroscopy and Spectromicroscopy - An Overview 2 1.1.1 Scanning Techniques 2 1.1.2 Imaging Techniques 3 1.2 Basics 5 1.2.1 X-Ray Magnetic Circular

More information

Tuning the magnetic properties of Co nanoparticles by Pt capping

Tuning the magnetic properties of Co nanoparticles by Pt capping 1 Tuning the magnetic properties of Co nanoparticles by Pt capping A. Ebbing, 1,a) O. Hellwig, 2 L. Agudo, 3 G. Eggeler, 3 and O. Petracic 1,b) 1 Institute of Experimental Physics/Condensed Matter Physics,

More information

Evolution of magnetic domain reversal with temperature in CoÕ Pt multilayers observed by magneto-optical Kerr imaging

Evolution of magnetic domain reversal with temperature in CoÕ Pt multilayers observed by magneto-optical Kerr imaging Evolution of magnetic domain reversal with temperature in CoÕ Pt multilayers observed by magneto-optical Kerr imaging X. P. Xie, X. W. Zhao, J. W. Knepper, F. Y. Yang, and R. Sooryakumar Department of

More information

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Mahendra Pakala, Silicon Systems Group, AMAT Dec 16 th, 2014 AVS 2014 *All data in presentation is internal Applied generated data

More information

Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields

Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields Symmetry breaking in spin spirals and skyrmions by in-plane and canted magnetic fields L. Schmidt, J. Hagemeister, P.-J. Hsu, A. Kubetzka, K. von Bergmann and R. Wiesendanger Department of Physics, University

More information

Anisotropy Distributions in Patterned Magnetic Media

Anisotropy Distributions in Patterned Magnetic Media MINT Review & Workshop 24-25 Oct. 2006 Anisotropy Distributions in Patterned Magnetic Media Tom Thomson Hitachi San Jose Research Center Page 1 Acknowledgements Manfred Albrecht (Post-doc) Tom Albrecht

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

Magnetic Force Microscopy practical

Magnetic Force Microscopy practical European School on Magnetism 2015 From basic magnetic concepts to spin currents Magnetic Force Microscopy practical Organized by: Yann Perrin, Michal Staňo and Olivier Fruchart Institut NEEL (CNRS & Univ.

More information

Temperature Dependence of Exchange Bias and Coercivity in Ferromagnetic Layer Coupled with Polycrystalline Antiferromagnetic Layer

Temperature Dependence of Exchange Bias and Coercivity in Ferromagnetic Layer Coupled with Polycrystalline Antiferromagnetic Layer Commun. Theor. Phys. (Beijing, China) 41 (2004) pp. 623 628 c International Academic Publishers Vol. 41, No. 4, April 15, 2004 Temperature Dependence of Exchange Bias and Coercivity in Ferromagnetic Layer

More information

Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect

Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect Johan Meersschaut Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, Belgium Johan.Meersschaut@fys.kuleuven.be

More information

Macroscopic properties II

Macroscopic properties II Paolo Allia DISAT Politecnico di Torino acroscopic properties II acroscopic properties II Crucial aspects of macroscopic ferromagnetism Crystalline magnetic anisotropy Shape anisotropy Ferromagnetic domains

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information

Electric field control of magnetization using AFM/FM interfaces. Xiaoshan Xu

Electric field control of magnetization using AFM/FM interfaces. Xiaoshan Xu Electric field control of magnetization using AFM/FM interfaces Xiaoshan Xu Magnetoelectric effects α = μ 0 M E H M H = 0, E = 0 = 0 (General magnetoelectrics) M H = 0, E = 0 0, P H = 0, E = 0 0, (Multiferroics)

More information

Exchange Bias in [Co/Pd]/IrMn Thin Films. Young Byun

Exchange Bias in [Co/Pd]/IrMn Thin Films. Young Byun Exchange Bias in [Co/Pd]/IrMn Thin Films Young Byun A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Bachelor of Science

More information

MAGNETIC BEHAVIOUR OF CORE/SHELL NANOPARTICLE ASSEMBLIES: INTERPARTICLE INTERACTIONS EFFECTS

MAGNETIC BEHAVIOUR OF CORE/SHELL NANOPARTICLE ASSEMBLIES: INTERPARTICLE INTERACTIONS EFFECTS IMS MAGNETIC BEHAVIOUR OF CORE/SHELL NANOPARTICLE ASSEMBLIES: INTERPARTICLE INTERACTIONS EFFECTS Kalliopi Trohidou Computational Materials Science Group Institute of Materials Science, NCSR Demokritos,

More information