A flavor of Nanomagnetism and Spintronics

Size: px
Start display at page:

Download "A flavor of Nanomagnetism and Spintronics"

Transcription

1 A flavor of Nanomagnetism and Spintronics Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France /

2 Short presentation Local environment Grenoble : inhabitants with surroundings Universities : Université Joseph Fourier (UJF) / Grenoble Institute of Technology (INP) National Institutes : CNRS (broad topic), CEA (energy), INSERM (health) etc. Large scale facilities : ILL (neutrons) and ESRF (synchrotron) Fundamental research and technology (ex : Minatec, LETI, STMicroelectronics etc.) Institut Néel Staff : 170 scientists ; 125 technical staff ; 140 students & post-docs 3 departments : Nanosciences, low temperatures, materials & functions Nanosciences : 7 research teams Micro- and NanoMagnetism team : 35 staff, including 15 full-staff scientists. Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.2

3 MOTIVATING THE LECTURE Miniaturization is a key for technology Telegraphone (1898, W. Poulsen) Same concept over 100 years Technological innovation? New science? RAMAC (IBM, 1956) 2 kbit/in2 50 disks Ø 60 cm Total 5Mbytes Modern hard disk drive (>1 To) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.3

4 MOTIVATING THE LECTURE The principle of magnetic recording (hard disk drives) Principle of hard-disks Magnetic bits CoPtCrTaB Hard disk (old ) Coils MR Shielding ~100nm Shielding ~7-8nm Substrate Read/Write head Disk (rotation rpm) S. Takenoiri, J. Magn. Magn. Mater. 321, 562 (2009) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.4

5 Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.5

6 MOTIVATING THE LECTURE The need for nanomagnetism Fundamental issues for nanomagnetism Magnetic grain media of current hard disks Is a small grain stable against thermal fluctuations? 21 k B T 300 K 4 10 J 25 mev 100 k B T 300 K 2.5 ev Derive from macroscopic arguments Is a small grain (ferro)magnetic? Count number of surface atoms S. Takenoiri, J. Magn. Magn. Mater. 321, 562 (2009) Decades-old (yet still modern) topic Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.6

7 MOTIVATING THE LECTURE The need for spin electronics The technological need for spin electronics Requires nanometer length scales Coils ~7-8nm Magneto-transport. Shielding Field of spin electronics MR Convert magnetic information to electric signal Substrate How to read information? Shielding ~100nm Official birth: discovery of magneto-resistance N. M. Baibich, Phys. Rev. Lett. 61, 2472 (1988) G. Binach, Phys. Rev. B 39, 4828 (1989) Novel prize 2007: A. Fert & P. Grünberg Disk (rotation rpm) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.7

8 NANOMAGNETISM ToC 0. Motivation 1. Introduction on magnetism 2. Energies and length scales in magnetism 3. Single-domain magnetization reversal 4. Magnetostatics 5. Surfaces and interfaces Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.8

9 INTRODUCTION TO MAGNETISM Currents, magnetic fields and magnetization Oersted field Magnetic dipole Magnetic material μ µ 0I B= 2π r µ0 B= 4π r (μ.r)r r μ Magnetic dipole: A.m2 Magnetization: A.m-1 Magnetic moment: A.m2 Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.9

10 INTRODUCTION TO MAGNETISM Hysteresis and magnetic materials Manipulation of magnetic materials: Spontaneous Saturation Application of a magnetic field Zeeman energy: E Z = µ 0H.Ms Remanent magnetization Mr Spontaneous magnetization Ms Another notation M J s= 0 M s Coercive field Hc Hext Losses E= µ 0 H ext dm Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.10

11 INTRODUCTION TO MAGNETISM Soft and hard magnetic materials Soft materials Hard materials M M Hext Hext Transformers Flux guides, sensors Permanent magnets, motors Magnetic shielding Magnetic recording Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.11

12 NANOMAGNETISM ToC 0. Motivation 1. Introduction on magnetism 2. Energies and length scales in magnetism 3. Single-domain magnetization reversal 4. Magnetostatics 5. Surfaces and interfaces Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.12

13 ENERGIES AND LENGTH SCALES Sources of magnetic energy Echange energy EEch = J1, 2 S1.S 2 = A( θ ) 2 Magnetocrystalline anisotropy energy M Hext Zeeman energy (enthalpy) Emc = K sin 2 (θ ) Dipolar energy 2 1 EZ = µ 0 M S.H 1 Ed = µ 0 M S.H d 2 Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.13

14 ENERGIES AND LENGTH SCALES Magnetic characteristic length scales Bloch parameter Exchange length 2 2 E= A ( x θ ) +K d sin θ Exchange J/m Dipolar energy J/m3 Λ= A/ K d = 2A /μ 0 M 2s Λ 3 10 nm 2 E= A ( x θ ) +K sin2 θ Exchange J/m Anisotropy J/m 3 Bloch parameter: = A / K 1 nm 100 nm Hard Soft Single-domain critical size relevant for nanoparticules made of soft magnetic material Notice: Other length scales: with field etc. Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.14

15 ENERGIES AND LENGTH SCALES Magnetic domains Bulk material Mesoscopic scale Nanometric scale Numerous and complex magnetic domains Small number of domains, simple shape Magnetic single-domain Co(1000) crystal SEMPA Microfabricated dots Kerr magnetic imaging A. Hubert, Magnetic domains A. Hubert, Magnetic domains Nanomagnetism ~ mesoscopic magnetism R.P. Cowburn, J.Phys.D:Appl.Phys.33, R1 (2000) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.15

16 NANOMAGNETISM ToC 0. Motivation 1. Introduction on magnetism 2. Energies and length scales in magnetism 3. Single-domain magnetization reversal 4. Magnetostatics 5. Surfaces and interfaces Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.16

17 SINGLE-DOMAIN REVERSAL Coherent rotation (1/2) Framework Approximation: r m=0 (uniform magnetization) (strong!) E =EV =V [ K eff sin2 0 M S H cos H ] θh H K eff =K mc K d Dimensionless units: 2 e=sin 2 hcos H e = E / KV h =H /Ha H a =2K / 0 M S θ M L. Néel, Compte rendu Acad. Sciences 224, 1550 (1947) E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Royal. Soc. London A240, 599 (1948) IEEE Trans. Magn. 27(4), 3469 (1991) : reprint Names used Uniform rotation / magnetization reversal Coherent rotation / magnetization reversal Macrospin etc. Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.17

18 SINGLE-DOMAIN REVERSAL Coherent rotation (2/2) 2 e=sin 2 h cos Example for H =180 H>0 Equilibrium states e=2sin cos h cos m =h e= [ ] Stability e =2cos 2 2 h cos e 0 2 = 4cos 2 2 h cos Energy barrier e =e max e 0 =1 h 2 2h 2 2h 2 = 1 h =2 1 h 2 e m =2 h 1 e =2 1 h Switching h =1 H = H a =2K / 0 M S 1 h with exponent 1.5 in general Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.18

19 SINGLE-DOMAIN REVERSAL What is the use of easy and hard axes? Easy axis Hard axis High +/- remanence Coercivity Reversibility Linearity Memory, permanent magnet etc. Sensor, shielding etc. Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.19

20 Think one step ahead You see things and say «Why?», but I dream things that never were and I say «Why not» G. B. Shaw Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.20

21 SINGLE-DOMAIN REVERSAL Thermal energy Barrier height Thermal activation Brown, Phys.Rev.130, 1677 (1963) 2 e=e max e 0 = 1 h h= 0 M S H /2 K h=0.2 E kbt s = 0 exp E =k B T ln / 0 Lab measurement : 1 s H c= Hc E 25 k B T 25k B T 2K 1 0 MS KV Blocking temperature T T b KV /25k B E. F. Kneller, J. Wijn (ed.), Handbuch der Physik XIII/2: Ferromagnetismus, Springer, 438 (1966) M. P. Sharrock, J. Appl. Phys. 76, (1994) 9 Notice, for magnetic recording : 10 s KV b 40 60k B T Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.21

22 SINGLE-DOMAIN REVERSAL What use for nanoparticles? (1/2) Ferrofluids Principle Example of use Surfactant-coated nanoparticles, preferably superparamagnetic Avoid agglomeration of the particles Fluid and polarizable Seals for rotating parts R. E. Rosensweig, Magnetic fluid seals, US patent 3,260,584 (1971) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.22

23 SINGLE-DOMAIN REVERSAL What use for nanoparticles? (2/2) Health and biology RAM (radar absorbing materials) Beads = coated nanoparticles, preferably superparamagnetic Avoid agglomeration of the particles Cell sorting F=. B M Hyperthermia Hext Principle Absorbs energy at a well-defined frequency (ferromagnetic resonance) dl =Γ= 0 H= 0 l H dt d = 0 H dt Use ac magnetic field H c =H c,0 1 ln / 0 k B T KV Contrast agent in Magnetic Resonance Imaging (MRI) = g J e 0 2 me s /2 28 GHz/T Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.23

24 NANOMAGNETISM ToC 0. Motivation 1. Introduction on magnetism 2. Energies and length scales in magnetism 3. Single-domain magnetization reversal 4. Magnetostatics 5. Surfaces and interfaces Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.24

25 MAGNETOSTATICS Treatment of dipolar energy (1/2) Density of dipolar energy E d (r ) = 1 µ M(r ).H (r ) d 2 0 By definition div(hd ) = div(m). As curl(hd ) = 0 we have (analogy with electrostatics): Notation Hd (r ) = Ms div[m(r ' )].(r ' r ) space 4π r r ' 3 M(r)= M s m i (r)u i d3 r ' ρ (r ) = -M sdiv[m(r )] volume density of magnetic charges To lift the divergence arising at sample boundaries: Hd (r ) = Ms space div[m(r ' )].(r ' r ) 4π r r ' 3 3 d r' + sample [m(r ' ).n(r ' )].(r ' r ) 4π r r ' 3 d r ' 2 σ (r ) = M sm(r ).n(r ) surface density of magnetic charges, where n(r) is the outgoing unit vector at boundaries Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.25

26 MAGNETOSTATICS Treatment of dipolar energy (2/2) E= 1µ 2 0 sample M.Hd.dV = 1µ 2 0 space H2d.dV E is always positive Examples of magnetic charges + Notice: no charges + + and E=0 for infinite + cylinder Charges on surfaces Surface and volume charges x Magnetization will tend to align parallel to long axis of samples Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.26

27 MAGNETOSTATICS Demagnetizing coefficients (1/2) Hypothesis Uniform magnetization (strong assumption!) M(r)= M s m i u i Demagnetizing coefficients < Hd (r ) > = M s N.m N is a positive second-order tensor Ed = K dnij mi m j = K d t m.n.m Nx N= Ny Nz and can be defined and diagonalized for any sample shape Ed = K d (N x mx2 + N y my2 + Nz mz2 ) < H d,i (r ) > = M sni Valid along main axes only! N x + N y + Nz = 1 What with ellipsoids??? Requires Hd(r) is uniform. Satisfied only in volumes limited by polynomial surfaces of order 2 or less:slabs, cylinders, ellisoids etc. J. C. Maxwell, Clarendon 2, (1872) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.27

28 MAGNETOSTATICS Demagnetizing coefficients (2/2) Ellipsoids Nx = Nx = 1 abc 2 0 α 2 1 α α 1 Nx = 2 α 1 α 1 (a 2 + η ) (a 2 + η )(b 2 + η )(c 2 + η ) dη 2 2 For prolate revolution ellipsoid: 1 (a,c,c) with =c/a<1 N y = Nz = 21 (1 N x ) α 2 1 For oblate revolution ellipsoid: (a,c,c) with =c/a>1 α 1 α Asinh α Asin α General ellipsoid: main axes (a,c,c) 2 Cylinders N x = 0; N y = c /( b + c ); N z = b /( b + c ) For a cylinder along x J. A. Osborn, Phys. Rev. 67, 351 (1945). For prisms, see: A. Aharoni, J. Appl. Phys. 83, 3432 (1998) More general forms, FFT approach: M. Beleggia et al., J. Magn. Magn. Mater. 263, L1-9 (2003) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.28

29 MICROMAGNETISM Beyond single-domain state C state S state At least 8 nearly-equivalent ground-states for a rectangular dot Numerical simulation becomes important Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.29

30 MICROMAGNETISM Magnetic domain walls and vortices Magnetic vortex Magnetic domain wall Thick and large stripes P.-O. Jubert & R. Allenspach, PRB 70, /1-5 (2004) UP UP DOWN DOWN DOWN UP UP DOWN UP T. Shinjo et al., Science 289, 930 (2000) 500-nm wide, 15nm FeNi thick stripes T. Okuno et al., JMMM240, 1 (2002) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.30

31 SINGLE-DOMAIN REVERSAL Precessional dynamics Basics of precessional switching Démonstration: 1999 Magnetization dynamics: Landau-Lifshitz-Gilbert equation: dm α dm = γ 0 M H eff + M dt M s dt [ γ0 ] Gyromagnetic factor γ = γ 0 = µ 0γ gq 2m γ / 2π = 28 GHz/T H e ff Effective field (including applied) µ 0H eff = α Emag M Damping coefficient (10-3 > 10-1) C. Back et al., Science 285, 864 (1999) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.31

32 SINGLE-DOMAIN REVERSAL Precessional dynamics Precessional trajectories using energy conservation (1) E = (2) 1 µ M 2N m s z z Kmx2 µ 0 M s Hmy In-plane uniaxial anisotropy mx2 + my2 + mz2 = 1 Starting condition: mx = 1 (1) e= 1 N m2 2 z z hk mx2 hmy Using (2) Can be rewritten: Using (2) Can be rewritten: m x2 = 1 mx2 ( my + h / N z ) 2 = hk / N z mz2 = ( 2h Nz my my2 N z + hk N z + hk h2 N z (N z + hk ) 2h hk my my2 N z + hk N z + hk 2 mz2 hk Nz + hk ) h h = + my hk hk 2 Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.32

33 SINGLE-DOMAIN REVERSAL Precessional dynamics my mz Magnetization trajectories h>hk hk>h>0.5hk h<0.5hk h=0.5hk mx mx -h -1 mx ( my + h / N z ) 2 = ω 0.847γ 0 M s (H HK ) / 2 h2 N z (N z + hk ) 1 + hk / N z 0 Field at 135 mz h=0.01 h>0.5hk h=0.5hk h<0.5hk my 0 ( mz2 hk Nz + hk 0.5 ) 2 h h = + my h h K K 21 M. Bauer et al., PRB61, 3410 (2000) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.33

34 NANOMAGNETISM ToC 0. Motivation 1. Introduction on magnetism 2. Energies and length scales in magnetism 3. Single-domain magnetization reversal 4. Magnetostatics 5. Surfaces and interfaces Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.34

35 SURFACE MAGNETISM Ordering and magnetic moments (1/4) Probing surface magnetization Some results Surface techniques at OK Fe/W(110) : 0.14ML(+0.35µ ) UHV/Fe(110); Ag/Fe(110): 0.26ML(+0.65µ ) Cu/Ni(111): -0.5ML Overlayers: Pd/Ni(111)/Re(0001) B Mossbauer with probe layers B Plot m(t) at 0K: Magnetometry XMCD (Too) simple picture: band narrowing at surfaces E Bulk picture s-p Enhanced moment at surfaces E d Surface picture k s-p d k Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.35

36 SURFACE MAGNETISM Ordering and magnetic moments (2/4) Co/Pt(997) Co/Pt(111) A. Dallmeyer et al., Phys.Rev.B 61(8), R5153 (2000) Conclusions Bulk: m =0.14µ /at. P. Gambardella et al., Science 300, 1130 (2003) Surface: m =0.31µ /at. Conclusions Bi-atomic wire: m =0.37µ /at. From bulk to atoms: considerable increase of orbital moment Mono-atomic wire: m =0.68µ /at. 2 atoms closer to wire than 1 atom bi-atom: m =0.78µ /at. bi-atomic wire closer to surface than wire atom: m =1.13 µ /at. P. Gambardella et al., Nature 416, 301 (2002) L B L B L L L L B B B B Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.36

37 SURFACE MAGNETISM Ordering and magnetic moments (3/4) Elements of theory Ising (1925). No magnetic order at T>0K in 1D Ising chain. (1930). No magnetic order at T>OK in 2D Heisenberg. Bloch (spin-waves; isotropic Heisenberg) N. D. Mermin, H. Wagner, PRL17, 1133 (1966) (1944) + Yang (1951). Onsager 2D Ising model: Tc>0K Experiments Ni(111)/Re(0001) Magnetic anisotropy stabilizes ordering R. Bergholz and U. Gradmann, JMMM45, 389 (1984) Tc interpreted with molecular field Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.37

38 SURFACE MAGNETISM Ordering and magnetic moments (4/4) Naïve model Molecular field 0 z n W,1 n g2j 2B J J 1 T C= 3 kb z neighbors zb N atomic layers Less naïve z =z b 2 z b z s N zs Tc (t ) ~ t -1 Experiments Thickness-dependent molecular field Tc (t ) ~ t - λ λ = 1 G.A.T. Allan, PRB1, 352 (1970) Conclusion: Naïve views are roughly correct U. Gradmann, Handbook of Magn. Mater. Vol.7, ch.1 (1993) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.38

39 SURFACE MAGNETISM Magnetic anisotropy (1/3) Magnetocrystalline anisotropy energy Electronic cloud Atom nucleus (crystal structure) Spin-orbit coupling the energy of both spin and orbital moment depends on orientation Series development on an angular basis: Anisotropy energy Normalized magnetization components Emc = K1 mz2 + K 2mz Uniaxial Emc = K 4 (m x2m y2 + m y2mz2 + mz2m x2 ) +... Alignement of magnetization is favored along given axes of the crystal Cubic (Derived from slide of A. Thiaville CNRS/Orsay) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.39

40 SURFACE MAGNETISM Magnetic anisotropy (2/3) Surface anisotropy L. Néel, J. Phys. Radium 15, 15 (1954) «Superficial magnetic anisotropy and orientational superstructures» Overview Breaking of symmetry for surface/interface atoms Correction to the magneto-crystalline energy Es = K S,1 cos 2 (θ ) + K S,2 cos 4 (θ ) +... «This surface energy, of the order of 0.1 to 1 erg/cm2, is liable to play a significant role in the properties of ferromagnetic materials spread in elements of dimensions smaller than 100Å» Pair model of Néel: Ks estimated from magneto-elastic constants Does not depend on interface material Yields order of magnitude only: correct value from experiments or calculations (precision!) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.40

41 SURFACE MAGNETISM Magnetic anisotropy (3/3) History of surface anisotropy : STEP 1 (1/t plot) First example of perpendicular anisotropy E tot (t ) = k V t + 2k S e(t ) = k V + 2k S t Bulk e(t) Bulk ce urfa S --> e p o Sl s t=2al 1/t U. Gradmann and J. Müller, Phys. Status Solidi 27, 313 (1968) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.41

42 SURFACE MAGNETISM Magnetic anisotropy, implementation Main use in applications : perpendicular magnetic anisotropy in thin films Magneto-optical recording Materials and geometry Interfacial elements with large spin-orbit: Pt, Au, Pd Why: large magneto-optical response Material: 3D-Rare-Earth based Often: multilayers T. Johnson et al., Co/Au film M. Rep. Prog. Phys. 59, 1409 (1996) A. Fert et al., J. Magn. Magn. Mater. 200, 338 (1999) S. Tsunashima, J. Phys. D 34, R87 (2001) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.42

43 SURFACE MAGNETISM Magnetic anisotropy, implementation Main use in applications : perpendicular magnetic anisotropy Decreased dipolar coupling in HDD media Enhanced anisotropy for solid-state memories Longitudinal recording ( ) Concerns MRAM: Magnetic Random Access Memories C. Chappert et al., The emergence of spin electronics in data storage, Nat. Mater. 6, 813 (2007) Reminder for the thermal stability fo small flat elements: Perpendicular recording (2005 -) H c= S. N. Piramanayagam, J. Appl. Phys. 102, (2007) In-plane magnetization High anisotropy with low spread angle Reduced intra- and inter-grain dipolar coupling 25k B T 2K 1 0 MS KV 1 K = N 0 M 2S 2 Issue: N is small with flat elements Perpendicular magnetization 1 2 K 0 MS 2 Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.43

44 SURFACE MAGNETISM Exchange bias (1/2) Seminal studies FM Oxidized Co nanoparticles AFM ZFC FC Field-cooled hysteresis loops: Increased coercivity µ0he 0.2 T Shifted in field Exchange bias J. Nogués and Ivan K. Schuller J. Magn. Magn. Mater. 192 (1999) 203 Meiklejohn and Bean, Phys. Rev. 102, 1413 (1956), Phys. Rev. 105, 904, (1957) Exchange anisotropy a review A E Berkowitz and K Takano J. Magn. Magn. Mater. 200 (1999) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.44

45 SURFACE MAGNETISM Exchange bias (2/2) Increase coercivity of layers Application Concept of spin-valve in magneto-resistive elements AF F2 Crude approximation for thin layers: K AF t AF H F AF H F 1 K FtF B. Diény et al., Phys. Rev. B 43, 1297 (1991) Sensors Memory cells Etc. Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.45

46 SURFACE MAGNETISM Interlayer exchange coupling (1/2) The physics Figures Spin-dependent quantum confinement in the spacer layer Constructive and destructive interferences Maxima and minima of n r B, B Forth & back phase shift =q t A B r A, A Coupling strength: E S =J t cos in J /m2 = m1, m2 A with: J t = 2 sin q t t Spin-independent + q=k k - Spin-dependent r A, A,r B, B P. Bruno, J. Phys. Condens. Matter 11, 9403 (1999) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.46

47 SURFACE MAGNETISM Interlayer exchange coupling (2/2) Illustration of coupling strength J t = A 2 t sin P t2 Note: J(t) extrapolated for t=3å S. S. P. Parkin, Phys. Rev. Lett. 67, 3598 (1991) Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.47

48 SURFACE MAGNETISM Synthetic antiferromagnets Synthetic Ferrimagnets (SyF) Crude description What use? Increase coercivity of pinned layers Decrease intra- and inter- dot F2 F1 dipolar coupling Hypothesis: AF Two layers rigidly coupled Reversal modes unchanged Neglect dipolar coupling e1 M 1 e2 M 2 M= e1 e2 F21 Reference layer F22 e K e K K= e 1 e2 F1 Free layer Practical aspects H c= e 1 M 1 H c, 1 e 2 M 2 H c, 2 e1 M 1 e2 M 2 Ru spacer layer (largest effect) Control thickness within a few Angströms! Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.48

49 Some reading (single-domain, domains and domain walls) [1] Magnetic domains, A. Hubert, R. Schäfer, Springer (1999, reed. 2001) [2] R. Skomski, Simple models of Magnetism, Oxford (2008). [3] R. Skomski, Nanomagnetics, J. Phys.: Cond. Mat. 15, R (2003). [4] O. Fruchart, A. Thiaville, Magnetism in reduced dimensions, C. R. Physique 6, 921 (2005) [Topical issue, Spintronics]. [5] O. Fruchart, Couches minces et nanostructures magnétiques, Techniques de l Ingénieur, E (2007) [FRENCH] [6] Lecture notes from undergraduate lectures, plus various slides: / [7] G. Chaboussant, Nanostructures magnétiques, Techniques de l Ingénieur, revue 10-9 (RE51) (2005) [8] D. Givord, Q. Lu, M. F. Rossignol, P. Tenaud, T. Viadieu, Experimental approach to coercivity analysis in hard magnetic materials, J. Magn. Magn. Mater. 83, (1990). [9] D. Givord, M. Rossignol, V. M. T. S. Barthem, The physics of coercivity, J. Magn. Magn. Mater. 258, 1 (2003). [10] J.I. Martin et coll., Ordered magnetic nanostructures: fabrication and properties, J. Magn. Magn. Mater. 256, (2003) [11] Lecture notes in magnetism: Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.49

50 Some literature (surfaces / interfaces) Moment and anisotropy of ultrathin films Magneto-elasticity in thin films U. Gradmann, Handbook of magnetic materials vol. 7, K. H.K. Buschow Ed., Elsevier, Magnetism of transition metal films, 1 (1993) D. Sander, The correlation between mechanical stress and magnetic anisotropy in ultrathin films, Rep. Prog. Phys. 62, 809 (1999) M. Farle, Ferromagnetic resonance of ultrathin metallic layers, Rep. Prog. Phys. 61, 755 (1998) P. Poulopoulos et al., K. Baberschke, Magnetism in thin films, J. Phys.: Condens. Matter 11, 9495 (1999) H. J. Elmers, Ferromagnetic Monolayers, Int. J. Mod. Phys. B 9 (24), 3115 (1995) O. Fruchart, Epitaxial self-organization: from surfaces to magnetic materials, C. R. Phys. 6, 61 (2005) Theory (misc) T. Asada et al., G. Bihlmayer, S. Handschuh, S. Heinze, P. Kurz, S. Blügel, First-principles theory of ultrathin magnetic films, J. Phys.: Condens. Matter 11, 9347 (1999) F. J. Himpsel et al., Magnetic Nanostructures, Adv. Phys. 47 (4), 511 (1998) O. Fruchart et al., Magnetism in reduced dimensions, C. R. Phys. 6, 921 (2005) P. Bruno, Theory of interlayer exchange interactions in magnetic multilayers, J. Phys.: Condens. Matter 11, 9403 (1999) Perpendicular anisotropy F. E. Gabaly et al., Noble metal capping effects on the spin-reorientation transitions of Co/Ru(0001), N. J. Phys. 10, (2008) M. T. Johnson et al., Magnetic anisotropy in metallic multilayers, Rep. Prog. Phys. 59, 1409 (1996) Exchange-bias J. Nogues et al., I. K. Schuller, Exchange bias, J. Magn. Magn. Mater 192 (2), 203 (1999). Olivier Fruchart Physics at nanoscale Devět Skal, May 30 June 3, 2011 p.50

Nanomagnetism Part III Atomic-scale properties

Nanomagnetism Part III Atomic-scale properties Nanomagnetism Part III Atomic-scale properties Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr SKETCH OF THE LECTURES Part I Magnetization reversal Part II Techniques

More information

Introduction to magnetism Part II Magnetization reversal

Introduction to magnetism Part II Magnetization reversal Introduction to magnetism Part II Magnetization reversal Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Sep.011: next European School on Magnetism (ESM). Romania.

More information

Low dimensional magnetism Experiments

Low dimensional magnetism Experiments Low dimensional magnetism Experiments Olivier Fruchart Brasov (Romania), Sept. 2003 1 Introduction...................................... 2 2 Ferromagnetic order................................. 2 2.1 Methods.....................................

More information

Nanomagnetism. Part 1 - Macrospins. Olivier Fruchart. Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France

Nanomagnetism. Part 1 - Macrospins. Olivier Fruchart.   Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France Nanomagnetism Part Macrospins Olivier Fruchart (Univ. Grenoble Alpes CNRS) Grenoble France http://neel.cnrs.fr MicroNanoMagnetism team : http://neel.cnrs.fr/mnm,. http://perso.neel.cnrs.fr/olivier.fruchart/

More information

Magnetic Force Microscopy

Magnetic Force Microscopy Magnetic Force Microscopy Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr / WHY DO WE NEED MAGNETIC MICROSCOPY? Origins of magnetic energy Echange energy Magnetocrystalline

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

Voyage au pays du Nanomagnétisme

Voyage au pays du Nanomagnétisme Voyage au pays du Nanomagnétisme Olivier Fruchart Institut Néel (CNRS / Univ. Grenoble-Alpes) Grenoble - France http://neel.cnrs.fr. http://perso.neel.cnrs.fr/olivier.fruchart/ Magnetism in products Modern

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Self-organized growth on the Au(111) surface

Self-organized growth on the Au(111) surface Self-organized growth on the Au(111) surface Olivier Fruchart 02/03/2002 Olivier Fruchart - Laboratoire Louis Néel, Grenoble, France. Slides on-line: http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

Bottom-up magnetic systems

Bottom-up magnetic systems Bottom-up magnetic systems Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Institut Néel, Grenoble, France. http://perso.neel.cnrs.fr/olivier.fruchart/ Table of contents

More information

Magnetic recording technology

Magnetic recording technology Magnetic recording technology The grain (particle) can be described as a single macrospin μ = Σ i μ i 1 0 1 0 1 W~500nm 1 bit = 300 grains All spins in the grain are ferromagnetically aligned B~50nm Exchange

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study O.Fruchart Laboratoire Louis Néel (CNRS-UJF-INPG) Grenoble Jan. 17th, 2007 Olivier Fruchart

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

Introduction to magnetism of confined systems

Introduction to magnetism of confined systems Introduction to magnetism of confined systems P. Vavassori CIC nanogune Consolider, San Sebastian, Spain; nano@nanogune.eu Basics: diamagnetism and paramagnetism Every material which is put in a magnetic

More information

Anisotropy Distributions in Patterned Magnetic Media

Anisotropy Distributions in Patterned Magnetic Media MINT Review & Workshop 24-25 Oct. 2006 Anisotropy Distributions in Patterned Magnetic Media Tom Thomson Hitachi San Jose Research Center Page 1 Acknowledgements Manfred Albrecht (Post-doc) Tom Albrecht

More information

Nanomagnetism. Part 2 Domains and domain walls. Olivier Fruchart. Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France

Nanomagnetism. Part 2 Domains and domain walls. Olivier Fruchart.   Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France Nanomagnetism Part 2 Domains and domain walls Olivier Fruchart (Univ. Grenoble Alpes CNRS) Grenoble France http://neel.cnrs.fr Micro-NanoMagnetism team : http://neel.cnrs.fr/mnm,. http://perso.neel.cnrs.fr/olivier.fruchart/

More information

Magnetism of ultrathin films: Theory and Experiment

Magnetism of ultrathin films: Theory and Experiment 1/23 Magnetism of ultrathin films: Theory and Experiment Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin 2/23 New and fundamental aspects are found in nanomagnetism with

More information

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS 1/49 MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS Dieter Suess dieter.suess@tuwien.ac.at Institut of Solid State Physics, Vienna University of Technology, Austria (submitted to Journal

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES CRR Report Number 29, Winter 2008 SPIN TRANSFER TORQUES IN HIGH ANISOTROPY AGNETIC NANOSTRUCTURES Eric Fullerton 1, Jordan Katine 2, Stephane angin 3, Yves Henry 4, Dafine Ravelosona 5, 1 University of

More information

Introduction to magnetic recording + recording materials

Introduction to magnetic recording + recording materials Introduction to magnetic recording + recording materials Laurent Ranno Institut Néel, Nanoscience Dept, CNRS-UJF, Grenoble, France I will give two lectures about magnetic recording. In the first one, I

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles Xavier Batlle and Amílcar Labarta Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia Universitat de Barcelona,

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter Lectue 4 Trilayers a prototype of multilayers Ni 8 Cu n Ni 9 Important parameters: K anisotropy, E band for FM1 and FM2 interlayer exchange coupling IEC, J inter 1 4a Optical and acoustic modes in the

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Simulation of Magnetization Switching in Nanoparticle Systems

Simulation of Magnetization Switching in Nanoparticle Systems Simulation of Magnetization Switching in Nanoparticle Systems D. Hinzke and U. Nowak Theoretische Physik, Gerhard-Mercator-Universität 47048 Duisburg, Germany Pacs-numbers: 75.10.Hk; 75.40.Mg; 75.40.Gb

More information

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200, 复习题 1 Calculate the magnetic moment of a sphere of radius R made from a magnetic material with magnetic susceptibility, when it is magnetized by an external magnetic field H. How is the value of the moment

More information

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course by Mark Jarrel (Cincinnati University), from Ibach and

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Macroscopic properties II

Macroscopic properties II Paolo Allia DISAT Politecnico di Torino acroscopic properties II acroscopic properties II Crucial aspects of macroscopic ferromagnetism Crystalline magnetic anisotropy Shape anisotropy Ferromagnetic domains

More information

Phase transitions in ferromagnetic monolayers: A playground to study fundamentals

Phase transitions in ferromagnetic monolayers: A playground to study fundamentals Phase transitions in ferromagnetic monolayers: A playground to study fundamentals Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin Arnimallee 14 D-14195 D Berlin-Dahlem e-mail:

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Magnetic Force Microscopy practical

Magnetic Force Microscopy practical European School on Magnetism 2015 From basic magnetic concepts to spin currents Magnetic Force Microscopy practical Organized by: Yann Perrin, Michal Staňo and Olivier Fruchart Institut NEEL (CNRS & Univ.

More information

Mesoscopic Spintronics

Mesoscopic Spintronics Mesoscopic Spintronics Taro WAKAMURA (Université Paris-Sud) Lecture 1 Today s Topics 1.1 History of Spintronics 1.2 Fudamentals in Spintronics Spin-dependent transport GMR and TMR effect Spin injection

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal. and E. D. Dahlberg 3. Abstract

Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal. and E. D. Dahlberg 3. Abstract Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal W.-T. Lee 1, S. G. E. te Velthuis 2, G. P. Felcher 2, F. Klose 1, T. Gredig 3, and E. D. Dahlberg 3. 1 Spallation Neutron Source,

More information

Contents. Acknowledgments

Contents. Acknowledgments MAGNETIC MATERIALS Fundamentals and Applications Second edition NICOLA A. SPALDIN University of California, Santa Barbara CAMBRIDGE UNIVERSITY PRESS Contents Acknowledgments page xiii I Basics 1 Review

More information

Exchange bias of polycrystalline antiferromagnets with perfectly compensated interface

Exchange bias of polycrystalline antiferromagnets with perfectly compensated interface Exchange bias of polycrystalline antiferromagnets with perfectly compensated interface D. Suess, M. Kirschner, T. Schrefl, J. Fidler 1 Institute of Solid State Physics, Vienna University of Technology,

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Magnetization Dynamics

Magnetization Dynamics Magnetization Dynamics Italian School on Magnetism Pavia - 6-10 February 2012 Giorgio Bertotti INRIM - Istituto Nazionale di Ricerca Metrologica, Torino, Italy Part I Free energy of a ferromagnetic body:

More information

Micromagnetic simulation of dynamic and thermal effects

Micromagnetic simulation of dynamic and thermal effects Micromagnetic simulation of dynamic and thermal effects T. Schrefl, J. Fidler, D. Suess, W. Scholz, V. Tsiantos Institute of Applied and Technical Physics Vienna University of Technology Wiedner Haupstr.

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures O.Boulle Spintec CEA-INAC / CNRS / Université Grenoble Alpes, Grenoble, France SOCSIS 2016 - Spestses - 29/06/2016 Acknowledgements

More information

01 Development of Hard Disk Drives

01 Development of Hard Disk Drives 01 Development of Hard Disk Drives Design Write / read operation MR / GMR heads Longitudinal / perpendicular recording Recording media Bit size Areal density Tri-lemma 11:00 10/February/2016 Wednesday

More information

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR

X-Ray Magnetic Dichroism. S. Turchini ISM-CNR X-Ray Magnetic Dichroism S. Turchini SM-CNR stefano.turchini@ism.cnr.it stefano.turchini@elettra.trieste.it Magnetism spin magnetic moment direct exchange: ferro antiferro superexchange 3d Ligand 2p 3d

More information

Fabrication and magnetism of nano-objects

Fabrication and magnetism of nano-objects Fabrication and magnetism of nano-objects Olivier Fruchart Constanta (Romania), Sept. 2005 1 Introduction The lecture has been divided in roughly two parts. In the first part fabrication methods of nano-objects

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers S. M. Zhou, 1,2 L. Sun, 3 P. C. Searson, 3 and C. L. Chien 1 1 Department of Physics and Astronomy, Johns Hopkins University,

More information

MSE 7025 Magnetic Materials (and Spintronics)

MSE 7025 Magnetic Materials (and Spintronics) MSE 7025 Magnetic Materials (and Spintronics) Lecture 14: Spin Transfer Torque And the future of spintronics research Chi-Feng Pai cfpai@ntu.edu.tw Course Outline Time Table Week Date Lecture 1 Feb 24

More information

Angular dependence of the magnetization reversal in exchange biased Fe/MnF 2. Elke Arenholz

Angular dependence of the magnetization reversal in exchange biased Fe/MnF 2. Elke Arenholz Angular dependence of the magnetization reversal in exchange biased Fe/MnF 2 Elke Arenholz Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Kai Liu Department of Physics,

More information

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Siying Liu, Hongyi Zhang, Hao Yu * Department of Mathematical Sciences, Xi an Jiaotong-Liverpool University,

More information

Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information.

Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information. Spin pumping in magnetic trilayer structures with an MgO barrier Supplementary Information. A. A. Baker, 1, 2 A. I. Figueroa, 2 D. Pingstone, 3 V. K. Lazarov, 3 G. van der Laan, 2 and 1, a) T. Hesjedal

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

Lecture 6: Spin Dynamics

Lecture 6: Spin Dynamics Lecture 6: Spin Dynamics All kinds of resonance spectroscopies deliver (at least) 3 informations: 1. The resonance position. The width of the resonance (and its shape) 3. The area under the resonance From

More information

Skyrmions à la carte

Skyrmions à la carte This project has received funding from the European Union's Horizon 2020 research and innovation programme FET under grant agreement No 665095 Bertrand Dupé Institute of Theoretical Physics and Astrophysics,

More information

THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES

THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES THE INFLUENCE OF A SURFACE ON HYSTERESIS LOOPS FOR SINGLE-DOMAIN FERROMAGNETIC NANOPARTICLES A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Saad Alsari

More information

V High frequency magnetic measurements

V High frequency magnetic measurements V High frequency magnetic measurements Rémy Lassalle-Balier What we are doing and why Ferromagnetic resonance CHIMP memory Time-resolved magneto-optic Kerr effect NISE Task 8 New materials Spin dynamics

More information

Magnetization Processes I (and II) C.H. Back. Bert Koopmans / TU Eindhoven

Magnetization Processes I (and II) C.H. Back. Bert Koopmans / TU Eindhoven Magnetization Processes I (and II) C.H. Back Universität Regensburg Bert Koopmans / TU Eindhoven 1 Tentative Title: Magnetization processes in bulk materials and films, and control: H and E, current, strain,

More information

Magnetization reversal in the presence of thermal agitation and spin-transfer torques

Magnetization reversal in the presence of thermal agitation and spin-transfer torques Magnetization reversal in the presence of thermal agitation and spin-transfer torques Y.P. Kalmykov, W.T. Coffey, S.V. Titov, J.E. Wegrowe, D. Byrne Université de Perpignan Trinity College Dublin IREE

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

Spin-torque nano-oscillators trends and challenging

Spin-torque nano-oscillators trends and challenging Domain Microstructure and Dynamics in Magnetic Elements Heraklion, Crete, April 8 11, 2013 Spin-torque nano-oscillators trends and challenging N H ext S Giovanni Finocchio Department of Electronic Engineering,

More information

Temperature Dependence of Exchange Bias and Coercivity in Ferromagnetic Layer Coupled with Polycrystalline Antiferromagnetic Layer

Temperature Dependence of Exchange Bias and Coercivity in Ferromagnetic Layer Coupled with Polycrystalline Antiferromagnetic Layer Commun. Theor. Phys. (Beijing, China) 41 (2004) pp. 623 628 c International Academic Publishers Vol. 41, No. 4, April 15, 2004 Temperature Dependence of Exchange Bias and Coercivity in Ferromagnetic Layer

More information

0.002 ( ) R xy

0.002 ( ) R xy a b z 0.002 x H y R xy () 0.000-0.002 0 90 180 270 360 (degree) Supplementary Figure 1. Planar Hall effect resistance as a function of the angle of an in-plane field. a, Schematic of the planar Hall resistance

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

What is the susceptibility?

What is the susceptibility? What is the susceptibility? Answer which one? M Initial susceptibility Mean susceptibility M st M 0 0 m High field susceptibility i dm = dh H =0 H st H M M st M 0 0 m i H st H H What is the susceptibility?

More information

THERE are many possibilities by which the hysteresis loop

THERE are many possibilities by which the hysteresis loop 1968 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 7, JULY 2008 Exchange-Biased Magnetic Vortices Axel Hoffmann 1;2, Jordi Sort 3, Kristen S. Buchanan 2, and Josep Nogués 4 Materials Science Division, Argonne

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 5: MAGNETIC STRUCTURES - Mean field theory and magnetic order - Classification of magnetic structures - Collinear and non-collinear magnetic structures. - Magnetic

More information

ccsd , version 1-9 May 2005

ccsd , version 1-9 May 2005 Europhysics Letters PREPRINT Flux-closure-domain states and demagnetizing energy determination in sub-micron size magnetic dots P.-O. Jubert 1 ( )( ), J.-C. Toussaint 1, O. Fruchart 1, C. Meyer 1 and Y.

More information

Simulation of Hysteresis In Permalloy Films

Simulation of Hysteresis In Permalloy Films GQ-02 1 Simulation of Hysteresis In Permalloy Films Andrew Kunz and Chuck Campbell Magnetic Microscopy Center University of Minnesota Minneapolis, MN Introduction 2 Looking for the classical behavior of

More information

Simulation Of Spin Wave Switching In Perpendicular Media

Simulation Of Spin Wave Switching In Perpendicular Media Simulation Of Spin Wave Switching In Perpendicular Media P. B.Visscher Department of Physics and Astronomy The University of Alabama Abstract We propose to build on our understanding of spin wave switching

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

Micromagnetic simulations of magnetization reversal. in Co/Ni multilayers

Micromagnetic simulations of magnetization reversal. in Co/Ni multilayers 16 May 2001 Micromagnetic simulations of magnetization reversal in Co/Ni multilayers V. D. Tsiantos a, T. Schrefl a, D. Suess a, W. Scholz a, J. Fidler a, and J. M. Gonzales b a Vienna University of Technology,

More information

Study of Magnetization Switching in Coupled Magnetic Nanostructured Systems

Study of Magnetization Switching in Coupled Magnetic Nanostructured Systems University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 12-19-2008 Study of Magnetization Switching in Coupled Magnetic Nanostructured Systems

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland SPIE - Spintronics San Diego 28 Aug 1 Sep 2016 Staffa Island, Scotland O. Fruchart 1. Institut NÉEL, Univ. Grenoble Alpes / CNRS, France 2. SPINTEC, Univ. Grenoble Alpes / CNRS / CEA-INAC, France www.spintec.fr

More information

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN

MAGNETIC MATERIALS. Fundamentals and device applications CAMBRIDGE UNIVERSITY PRESS NICOLA A. SPALDIN MAGNETIC MATERIALS Fundamentals and device applications NICOLA A. SPALDIN CAMBRIDGE UNIVERSITY PRESS Acknowledgements 1 Review of basic magnetostatics 1.1 Magnetic field 1.1.1 Magnetic poles 1.1.2 Magnetic

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems 27 Nov. 2015 Chun-Yeol You (cyyou@inha.ac.kr) Dept. of Physics, Inha University, Korea

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 12. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 12 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 20/February/2018 (P/T 005) Quick Review over the Last Lecture Origin of magnetism : ( Circular current ) is equivalent to a

More information

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Zulzawawi Bin Haji Hujan A thesis submitted for the degree of MSc by research University of York Department of Physics January

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic.

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic. Lecture 5 Induced magnetization: that which is induced in the presence of an applied magnetic field diamagnetic paramagnetic Remanent magnetization: that which remains in the absence of an external field

More information

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009 Overview Background A brief history GMR and why it occurs TMR structure What is spin transfer? A novel device A future

More information

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories Spin-transfer-torque efficiency enhanced by edge-damage of perpendicular magnetic random access memories Kyungmi Song 1 and Kyung-Jin Lee 1,2,* 1 KU-KIST Graduate School of Converging Science and Technology,

More information