Bottom-up magnetic systems

Size: px
Start display at page:

Download "Bottom-up magnetic systems"

Transcription

1 Bottom-up magnetic systems Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France Institut Néel, Grenoble, France.

2 Table of contents 1. Introduction 2. Magnetic anisotropy in nanodots 3. Magnetization processes inside domain walls 4. Towards 3D spintronics? Olivier Fruchart CNano IdF School Paris, June 2013 p.2

3 Motivation for magnetism Modern applications of magnetism Where can 'nano' contribute? Materials Magnets ( motors and generators) Transformers Magnetocaloric Data storage Hard disk drives Tapes Magnetic RAM? Sensors Nanoparticles Compass Field mapping HDD Read heads Ferrofluids IRM contrast Hyperthermia Sorting & tagging Olivier Fruchart CNano IdF School Paris, June 2013 p.3

4 Motivation for bottom-up Where can 'bottom-up' contribute? Personal views Lowest size Highest quality Low-cost and/or mass production 3D self-assembly Olivier Fruchart CNano IdF School Paris, June 2013 p.4

5 Introduction The hysteresis loop Manipulation of magnetic materials: Application of a magnetic field Zeeman energy: E Z = μ0 H. M Spontaneous magnetization Remanent magnetization Coercive field Losses W =μ0 (H. d M) Magnetic induction B=μ0 (H+ M) Other notation J=μ0 M Olivier Fruchart CNano IdF School Paris, June 2013 p.5

6 Table of contents 1. Introduction 2. Magnetic anisotropy in nanodots 3. Magnetization processes inside domain walls 4. Towards 3D spintronics? Olivier Fruchart CNano IdF School Paris, June 2013 p.6

7 Magnetization reversal of nano-objects Framework Approximation: r m=0 (uniform magnetization) 2 E= =EV H ) ] EV =V [ K eff sin θ μ 0 M S H cos cos(θ θ K eff =K mc K d Dimension-less units: e=sin2 2 h cos H θh H Magnetic anisotropy e = E / KV h = H /Ha H a =2K / 0 M S θ M L. Néel, Compte rendu Acad. Sciences 224, 1550 (1947) E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Royal. Soc. London A240, 599 (1948) IEEE Trans. Magn. 27(4), 3469 (1991) : reprint Names used Uniform rotation / magnetization reversal Coherent rotation / magnetization reversal Macrospin etc. Olivier Fruchart CNano IdF School Paris, June 2013 p.7

8 Magnetization reversal of nano-objects e=sin 2 θ+2 h cos θ Example for H =180 H>0 Energy barrier Switching field Δ e = e(θmax ) e(0) Switching field ~ coercive field = ( 1 h ) h c 1 2 Δ E = KV (1 H / H a ) H c 2K /μ0 M S ( ln (τ/ τ0 )k B T 2K 1 μ0 M S KV s H c (T )= ) M. P. Sharrock, J. Appl. Phys. 76, 6413 (1994) Hc Blocking temperature T b KV /25k B T Blocked state Superparamagnetism Magnetic anisotropy and volume crucial for thermal stability Olivier Fruchart CNano IdF School Paris, June 2013 p.8

9 A short view on hard disk drives Magnetic bits on hard disk drive Underlying microstructure Co-based Hard disk media : bits 50nm and below B. C. Stipe, Nature Photon. 4, 484 (2010) S. Takenoiri, J. Magn. Magn. Mater. 321, 562 (2009) Questions and dreams Engineer (increase) magnetic anisotropy in nano-objects Self-organize grains for one-grain-per-bit concept Olivier Fruchart CNano IdF School Paris, June 2013 p.9

10 Example Go from 2D to 3D through physical routes Litterature Stacking dots InAs Q.Xie, Phys.Rev.Lett.75(13), 2542 (1995) Driving forces Strain Surface / Interface energy Thermodynamics and kinetics Olivier Fruchart CNano IdF School Paris, June 2013 p.10

11 Go from 2D to 3D through physical routes Growth Step 1 The 2D seed Co/Au(111) dots 300nm FoV Step 2 etc. Vertical replication + Au + Co etc. 300nm FoV 7.5nm 3nm 6nm Olivier Fruchart CNano IdF School Paris, June 2013 p.11

12 Go from 2D to 3D through physical routes Magnetism Increase blocking temperature TB (K) B A 0 Pillar volume C D v (nm ) O. Fruchart et al., Phys. Rev. Lett. 23 (14), 2769 (1999) O. Fruchart et al., J. Cryst. Growth , 2035 (2002) O. Fruchart et al., J. Magn. Magn. Mater. 239, 224 (2002) Olivier Fruchart CNano IdF School Paris, June 2013 p.12

13 Other examples of 3D/columnar growth Stacked dots GeMn2 columns inside a Ge matrix Q.Xie, Phys.Rev.Lett.75(13), 2542 (1995) M. Jamet et al., Nature Mater. 5, 653 (2006) Co columns inside a CoO2 matrix Multifunctional metamaterials CoFe2O4 columns BaTiO3 matrix F. Vidal et al., Appl. Phys. Lett. 95, (2009) F. Vidal et al., Phys. Rev. Lett. 109, (2012) H. Zheng et al., Science 303, 661 (2004) Olivier Fruchart CNano IdF School Paris, June 2013 p.13

14 CLUE#1 Olivier Fruchart CNano IdF School Paris, June 2013 p.14

15 Table of contents 1. Introduction 2. Magnetic anisotropy in nanodots 3. Magnetization processes inside domain walls 4. Towards 3D spintronics? Olivier Fruchart CNano IdF School Paris, June 2013 p.15

16 Domains and domain walls Length scales Magnetic domains Length scales (eg domain wall width) Numerous and complex magnetic domains 2 E= A ( x m j ) + K sin 2 θ i Exchange J /m Anisotropy J /m3 Anisotropy exchange length: Δu = A/ K Δu 1 nm Δ u 100 nm Hard Soft (History : Weiss domains) Nanomagnetism ~ Mesomagnetism Need to adapt size of nanostructure to seek new effects Olivier Fruchart CNano IdF School Paris, June 2013 p.16

17 Engineering epitaxial self-assembly Fe/W-Mo(110) Tr <370K, Θ >6AL (for Mo) Overview of Fe(110) growth by PLD Tr >400K, Θ >6AL (for Mo) Tr =700K, Θ [2AL,6AL] t=6al (for Mo) Θ ~3.5AL Nominal coverage (atomic layers, AL) 2 µm Compact 3D dots [-110] >6AL Not explored (110) 4AL [001] 5µm 3AL 2AL Flat islands Compact 3Ddots t~1nm t>30nm (for Fe/Mo) 1AL 1µ m ~750K? 300K 500K 700K 900K Deposition temperature, TS (K) O. Fruchart et al., J. Phys.: Condens. Matter 19, , Topical Review (2007). Olivier Fruchart CNano IdF School Paris, June 2013 p.17

18 Single-crystalline Fe(110) dots Flux closure and Bloch domain wall Hysteresis loops Magnetization states Landau states: two antiparallel domains (110) [001] [-110] 1.0 Magnetization // [001] // [1-10] // [110] Typical length: 1 micron (110) 300K Applied field µ0h (T) P.-O. Jubert et al., Phys. Rev. B64, (2002) P.-O. Jubert et al., Europhys. Lett. 63, 135 (2003) Flux-closure domains Domain wall in a box Olivier Fruchart CNano IdF School Paris, June 2013 p.18

19 Magnetization process inside a domain wall Theory first (+,-) H Remanent state H (+,+) (-,-) H=0 H=0 (+,-) (-,+) Remanent state Remanent state Remanent state can be switched: makes one more controlable bit Remanence of Néel cap is opposite to applied field F. Cheynis et al., Phys. Rev. Lett. 102, (2009) Olivier Fruchart CNano IdF School Paris, June 2013 p.19

20 XMCD-PEEM : high resolution magnetic imaging XMCD PEEM X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy Element selectivity Courtesy: W. Kuch Magnetic sensitivity Features Collection of electrons surface sensitive Spatial resolution : 20-25nm Hardly compatible with applied field SOLEIL ELETTRA Olivier Fruchart CNano IdF School Paris, June 2013 p.20

21 XMCD-PEEM Switching of Néel caps Topography Field of view: 5µm LEEM Magnetic contrast PEEM Population of Néel cap XMCD-PEEM Positive Experiments: 90% switching. F. Cheynis et al., JAP103, 07D915 (2008) Negative F. Cheynis et al., Phys. Rev. Lett. 102, (2009) Olivier Fruchart CNano IdF School Paris, June 2013 p.21

22 High-resolution magnetic imaging Lorentz and holography (TEM based) Fresnel imaging mode Self-assembled fcc Co dots (vortex state) Sensitive mainly to in-plane components of magnetization integrated over the sample s thickness Pascale Bayle-Guillemaud (INAC) Aurélien Masseboeuf et al. (INAC CEMES) Olivier Fruchart CNano IdF School Paris, June 2013 p.22

23 LORENTZ Dimensionality cross-over from domain-wall to vortex Vortex Bloch wall Vortex Domain wall A. Masseboeuf et al., Phys. Rev. Lett. 104, (2010) Olivier Fruchart CNano IdF School Paris, June 2013 p.23

24 Various magnetic objects in low dimensions to have (more) fun Spin textures : 2D/3D Skyrmions and helix Constrained walls (eg : in stripes) : 1D/2D Cu\Fe\Ni stackings, interfacial Fe0.5Co0.5Si, bulk X. Z. Yu et al., Nature 465, 901 (2010) Magnetic vortices (1D/0D) G. Chen et al., Phys. Rev. Lett. 110, (2013) Permalloy (15nm) - Stripe 500nm Bloch point (0D) Point with vanishing magnetization W. Döring, J. Appl. Phys. 39, 1006 (1968) Diameter ~ 10nm T. Shinjo et al., Science 289, 930 (2000) Olivier Fruchart CNano IdF School Paris, June 2013 p.24

25 CLUE#2 Olivier Fruchart CNano IdF School Paris, June 2013 p.25

26 Table of contents 1. Introduction 2. Magnetic anisotropy in nanodots 3. Magnetization processes inside domain walls 4. Towards 3D spintronics? Olivier Fruchart CNano IdF School Paris, June 2013 p.26

27 Prospects Dreams for domain-wall devices Magnetic logic with domain walls (Field driven) Magnetic memories with domain walls (Current driven) D. A. Allwood et al., Science 309, 1688 (2005) Limitation: Requires homogeneous rotating field S. S. P. Parkin, Science 320, 190 (2008) + patents Makes use of spin transfer effect Potentially 3D storage, however technologically challenging Olivier Fruchart CNano IdF School Paris, June 2013 p.27

28 Some of the bottom-up routes implemented at Institut NEEL The basics Specific aspects Anodization of aluminum template ALD to reduce pore diameter 100nm H. Masuda, Science 268, (1995) Electroplating magnetic nanowires S. Da Col et al., Appl. Phys. Lett. 98, (2011) Decrease dipolar interactions Modulation of pore diameter S. Allende et al., Phys. Rev. B 80, (2009) Simple metals and alloys : Co, Ni, FeNi 100nm Landscape for domain walls Olivier Fruchart CNano IdF School Paris, June 2013 p.28

29 Other bottom-up routes (collaborators) Long-range ordered templates Nanotubes Planar structures Multilayered and core-shell K. Nielsch et al., Univ. Hamburg J. Bachmann et al., Univ. Erlangen J. P. Araujo, Univ. Porto Smartmembrane GmbH, Halle Olivier Fruchart CNano IdF School Paris, June 2013 p.29

30 Domain-walls in one-dimensional systems Stripes, in-plane magnetization Transverse Vortex Bloch Néel Stripes, out-of-plane magnetization Wires, longitudinal magnetization Domain-wall transformation Walker limit, low speed (~100m/s) Experiments and theory BPW in wires Stripes Transverse (TW) Bloch-point (BPW) Theory predictions ; no experiments No domain-wall transformation High speed (>1000m/s) Olivier Fruchart CNano IdF School Paris, June 2013 p.30

31 Bottleneck : how to stabilize a domain-wall? Nucleation Propagation mechanism Sequence of magnetization reversal Single-domain wire (MFM) Y. Henry et al., Eur. Phys. J. B 20, 35 (2001) R. Hertel et al., J. Magn. Magn. Mater. 249, 251 (2002) Explains why domain walls hardly reported in cylindrical nanowires Olivier Fruchart CNano IdF School Paris, June 2013 p.31

32 Collaborative work! Olivier Fruchart CNano IdF School Paris, June 2013 p.39

33 Domain wall nucleation and propagation in cylindrical nanowires S. Da Col, S. Jamet, N. Roug le, R. Afid, M. Darques, L. Cagnon, J. C. Toussaint, O. Fruchart Institut NEEL Grenoble - France A. Locatelli, T. O. Mentes, B. Santos Burgos Sincrotrone Elettra Trieste - Italy The research leading to these results has received funding from the European Unions's 7th Framework Programme under grant agreement n (M3d) Olivier Fruchart CNano IdF School Paris, June 2013 p.40

Voyage au pays du Nanomagnétisme

Voyage au pays du Nanomagnétisme Voyage au pays du Nanomagnétisme Olivier Fruchart Institut Néel (CNRS / Univ. Grenoble-Alpes) Grenoble - France http://neel.cnrs.fr. http://perso.neel.cnrs.fr/olivier.fruchart/ Magnetism in products Modern

More information

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland SPIE - Spintronics San Diego 28 Aug 1 Sep 2016 Staffa Island, Scotland O. Fruchart 1. Institut NÉEL, Univ. Grenoble Alpes / CNRS, France 2. SPINTEC, Univ. Grenoble Alpes / CNRS / CEA-INAC, France www.spintec.fr

More information

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study

Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study Surface imaging of flux-closure domains in thick micron-size self-assembled dots: a combined LEEM/XMCD-PEEM study O.Fruchart Laboratoire Louis Néel (CNRS-UJF-INPG) Grenoble Jan. 17th, 2007 Olivier Fruchart

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Self-organized growth on the Au(111) surface

Self-organized growth on the Au(111) surface Self-organized growth on the Au(111) surface Olivier Fruchart 02/03/2002 Olivier Fruchart - Laboratoire Louis Néel, Grenoble, France. Slides on-line: http://lab-neel.grenoble.cnrs.fr/themes/couches/ext/

More information

Experimental techniques for the study of small magnetic objects

Experimental techniques for the study of small magnetic objects Experimental techniques for the study of small magnetic objects Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr. France. Foreword Large overview of characterization

More information

Magnetic Force Microscopy

Magnetic Force Microscopy Magnetic Force Microscopy Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr / WHY DO WE NEED MAGNETIC MICROSCOPY? Origins of magnetic energy Echange energy Magnetocrystalline

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

Anisotropy Distributions in Patterned Magnetic Media

Anisotropy Distributions in Patterned Magnetic Media MINT Review & Workshop 24-25 Oct. 2006 Anisotropy Distributions in Patterned Magnetic Media Tom Thomson Hitachi San Jose Research Center Page 1 Acknowledgements Manfred Albrecht (Post-doc) Tom Albrecht

More information

Slides: ReMiSoL Microscopie à champ proche magnétique

Slides:   ReMiSoL Microscopie à champ proche magnétique www.spintec.fr email: olivier.fruchart@cea.fr Slides: http://fruchart.eu/slides ReMiSoL Microscopie à champ proche magnétique Univ. Grenoble Alpes / CNRS / CEA-INAC, France Univ. Grenoble Alpes / CNRS,

More information

Low dimensional magnetism Experiments

Low dimensional magnetism Experiments Low dimensional magnetism Experiments Olivier Fruchart Brasov (Romania), Sept. 2003 1 Introduction...................................... 2 2 Ferromagnetic order................................. 2 2.1 Methods.....................................

More information

Current-induced Domain Wall Dynamics

Current-induced Domain Wall Dynamics Current-induced Domain Wall Dynamics M. Kläui, Fachbereich Physik & Zukunftskolleg Universität Konstanz Konstanz, Germany Starting Independent Researcher Grant Motivation: Physics & Applications Head-to-head

More information

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures O.Boulle Spintec CEA-INAC / CNRS / Université Grenoble Alpes, Grenoble, France SOCSIS 2016 - Spestses - 29/06/2016 Acknowledgements

More information

Magnetic recording technology

Magnetic recording technology Magnetic recording technology The grain (particle) can be described as a single macrospin μ = Σ i μ i 1 0 1 0 1 W~500nm 1 bit = 300 grains All spins in the grain are ferromagnetically aligned B~50nm Exchange

More information

X-ray Imaging and Spectroscopy of Individual Nanoparticles

X-ray Imaging and Spectroscopy of Individual Nanoparticles X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland Intensity [a.u.] 1.4 1.3 1.2 1.1 D 8 nm 1 1 2 3 1.0 770

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

Magnetic Force Microscopy practical

Magnetic Force Microscopy practical European School on Magnetism 2015 From basic magnetic concepts to spin currents Magnetic Force Microscopy practical Organized by: Yann Perrin, Michal Staňo and Olivier Fruchart Institut NEEL (CNRS & Univ.

More information

Nanomagnetism. Part 1 - Macrospins. Olivier Fruchart. Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France

Nanomagnetism. Part 1 - Macrospins. Olivier Fruchart.   Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France Nanomagnetism Part Macrospins Olivier Fruchart (Univ. Grenoble Alpes CNRS) Grenoble France http://neel.cnrs.fr MicroNanoMagnetism team : http://neel.cnrs.fr/mnm,. http://perso.neel.cnrs.fr/olivier.fruchart/

More information

Surface Composition Mapping Of Semiconductor Quantum Dots. Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy.

Surface Composition Mapping Of Semiconductor Quantum Dots. Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy. Surface Composition Mapping Of Semiconductor Quantum Dots Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy. Motivation Quantum Dot Applications based on their particular electronic properties (confinement)

More information

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces

Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism of Atoms and Nanostructures Adsorbed onto Surfaces Magnetism Coordination Small Ferromagnets Superlattices Basic properties of a permanent magnet Magnetization "the strength of the magnet" depends

More information

Nanomagnetism. Part 2 Domains and domain walls. Olivier Fruchart. Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France

Nanomagnetism. Part 2 Domains and domain walls. Olivier Fruchart.   Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France Nanomagnetism Part 2 Domains and domain walls Olivier Fruchart (Univ. Grenoble Alpes CNRS) Grenoble France http://neel.cnrs.fr Micro-NanoMagnetism team : http://neel.cnrs.fr/mnm,. http://perso.neel.cnrs.fr/olivier.fruchart/

More information

Compositional mapping of semiconductor quantum dots by X-ray photoemission electron microscopy

Compositional mapping of semiconductor quantum dots by X-ray photoemission electron microscopy Compositional mapping of semiconductor quantum dots by X-ray photoemission electron microscopy Stefan Heun CNR-INFM, Italy, Laboratorio Nazionale TASC, Trieste and NEST-SNS, Pisa Outline A brief introduction

More information

A detailed study of magnetization reversal in individual Ni nanowires

A detailed study of magnetization reversal in individual Ni nanowires A detailed study of magnetization reversal in individual Ni nanowires Item Type Article Authors Vidal, Enrique Vilanova; Ivanov, Yurii P.; Mohammed, Hanan; Kosel, Jürgen Citation A detailed study of magnetization

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires

Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires Marquette University e-publications@marquette Physics Faculty Research and Publications Physics, Department of 8-1-2010 Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires

More information

Surface compositional gradients of InAs/GaAs quantum dots

Surface compositional gradients of InAs/GaAs quantum dots Surface compositional gradients of InAs/GaAs quantum dots S. Heun, G. Biasiol, V. Grillo, E. Carlino, and L. Sorba Laboratorio Nazionale TASC INFM-CNR, I-34012 Trieste, Italy G. B. Golinelli University

More information

Contents. 1 Imaging Magnetic Microspectroscopy W. Kuch 1

Contents. 1 Imaging Magnetic Microspectroscopy W. Kuch 1 1 Imaging Magnetic Microspectroscopy W. Kuch 1 1.1 Microspectroscopy and Spectromicroscopy - An Overview 2 1.1.1 Scanning Techniques 2 1.1.2 Imaging Techniques 3 1.2 Basics 5 1.2.1 X-Ray Magnetic Circular

More information

Introduction to magnetic recording + recording materials

Introduction to magnetic recording + recording materials Introduction to magnetic recording + recording materials Laurent Ranno Institut Néel, Nanoscience Dept, CNRS-UJF, Grenoble, France I will give two lectures about magnetic recording. In the first one, I

More information

High-density data storage: principle

High-density data storage: principle High-density data storage: principle Current approach High density 1 bit = many domains Information storage driven by domain wall shifts 1 bit = 1 magnetic nanoobject Single-domain needed Single easy axis

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

PEEM and XPEEM: methodology and applications for dynamic processes

PEEM and XPEEM: methodology and applications for dynamic processes PEEM and XPEEM: methodology and applications for dynamic processes PEEM methods and General considerations Chemical imaging Magnetic imaging XMCD/XMLD Examples Dynamic studies PEEM and XPEEM methods 1

More information

Spectromicroscopic investigations of semiconductor quantum dots. Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy.

Spectromicroscopic investigations of semiconductor quantum dots. Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy. Spectromicroscopic investigations of semiconductor quantum dots Stefan Heun, Laboratorio TASC INFM-CNR, Trieste, Italy. Motivation Quantum Dot Applications based on their particular electronic properties

More information

ccsd , version 1-9 May 2005

ccsd , version 1-9 May 2005 Europhysics Letters PREPRINT Flux-closure-domain states and demagnetizing energy determination in sub-micron size magnetic dots P.-O. Jubert 1 ( )( ), J.-C. Toussaint 1, O. Fruchart 1, C. Meyer 1 and Y.

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

Simulation of Hysteresis In Permalloy Films

Simulation of Hysteresis In Permalloy Films GQ-02 1 Simulation of Hysteresis In Permalloy Films Andrew Kunz and Chuck Campbell Magnetic Microscopy Center University of Minnesota Minneapolis, MN Introduction 2 Looking for the classical behavior of

More information

JOHN G. EKERDT RESEARCH FOCUS

JOHN G. EKERDT RESEARCH FOCUS JOHN G. EKERDT RESEARCH FOCUS We study the surface, growth and materials chemistry of metal, dielectric, ferroelectric, and polymer thin films. We seek to understand and describe nucleation and growth

More information

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 6656-261 (June 19, 1996) We develop

More information

Direct study of domain and domain wall structure in magnetic films and nanostructures

Direct study of domain and domain wall structure in magnetic films and nanostructures Direct study of domain and domain wall structure in magnetic films and nanostructures John Chapman, University of Glasgow Synopsis Why use Lorentz microscopy? Magnetisation reversal in soft magnetic films

More information

Micromagnetic simulation of dynamic and thermal effects

Micromagnetic simulation of dynamic and thermal effects Micromagnetic simulation of dynamic and thermal effects T. Schrefl, J. Fidler, D. Suess, W. Scholz, V. Tsiantos Institute of Applied and Technical Physics Vienna University of Technology Wiedner Haupstr.

More information

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way Application to Magnetic Systems 1 µm 1895 1993 2003 http://www-ssrl.slac.stanford.edu/stohr/index.htm

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

arxiv: v1 [cond-mat.mtrl-sci] 28 Nov 2013

arxiv: v1 [cond-mat.mtrl-sci] 28 Nov 2013 Observation of Bloch-point domain walls in cylindrical magnetic nanowires arxiv:1311.7368v1 [cond-mat.mtrl-sci] 28 Nov 2013 S. Da Col, 1, 2 S. Jamet, 1, 2 N. Rougemaille, 1, 2 A. Locatelli, 3 T. O. Mentes,

More information

Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy

Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy X M Cheng 1 and D J Keavney 2* 1 Department of Physics, Bryn Mawr College, Bryn Mawr, PA USA 2 Argonne National

More information

Nanostrukturphysik (Nanostructure Physics)

Nanostrukturphysik (Nanostructure Physics) Nanostrukturphysik (Nanostructure Physics) Prof. Yong Lei & Dr. Yang Xu Fachgebiet 3D-Nanostrukturierung, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Unterpoerlitzer

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

THERE are many possibilities by which the hysteresis loop

THERE are many possibilities by which the hysteresis loop 1968 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 7, JULY 2008 Exchange-Biased Magnetic Vortices Axel Hoffmann 1;2, Jordi Sort 3, Kristen S. Buchanan 2, and Josep Nogués 4 Materials Science Division, Argonne

More information

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots Transition from single-domain to vortex state in soft magnetic cylindrical nanodots W. Scholz 1,2, K. Yu. Guslienko 2, V. Novosad 3, D. Suess 1, T. Schrefl 1, R. W. Chantrell 2 and J. Fidler 1 1 Vienna

More information

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures Zulzawawi Bin Haji Hujan A thesis submitted for the degree of MSc by research University of York Department of Physics January

More information

Introduction to Ferromagnetism. Depto. Física de Materiales, Facultad de Química, Universidad del País Vasco, San Sebastián, Spain

Introduction to Ferromagnetism. Depto. Física de Materiales, Facultad de Química, Universidad del País Vasco, San Sebastián, Spain Introduction to Ferromagnetism and Patterned Magnetic Nanostructures Konstantin Yu. Guslienko Depto. Física de Materiales, Facultad de Química, Universidad id d del País Vasco, San Sebastián, Spain Outline

More information

Magnetic imaging at the nanoscale

Magnetic imaging at the nanoscale Magnetic imaging at the nanoscale M. Ghidini Department of Materials Science, University of Cambridge, UK Department of Physics, University of Parma, Italy Magnetic imaging at the nanoscale Comparison

More information

Fast domain wall motion in nanostripes with out-of-plane fields. Andrew Kunz and Sarah C. Reiff

Fast domain wall motion in nanostripes with out-of-plane fields. Andrew Kunz and Sarah C. Reiff Fast domain wall motion in nanostripes with out-of-plane fields Andrew Kunz and Sarah C. Reiff Physics Department, Marquette University, Milwaukee WI 53233 Abstract Controlling domain wall motion is important

More information

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2 Nanostructure Materials Growth Characterization Fabrication More see Waser, chapter 2 Materials growth - deposition deposition gas solid Physical Vapor Deposition Chemical Vapor Deposition Physical Vapor

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

9. Spin Torque Majority Gate

9. Spin Torque Majority Gate eyond MOS computing 9. Spin Torque Majority Gate Dmitri Nikonov Thanks to George ourianoff Dmitri.e.nikonov@intel.com 1 Outline Spin majority gate with in-pane magnetization Spin majority gate with perpendicular

More information

Skyrmions in symmetric bilayers

Skyrmions in symmetric bilayers Skyrmions in symmetric bilayers A. Hrabec, J. Sampaio, J.Miltat, A.Thiaville, S. Rohart Lab. Physique des Solides, Univ. Paris-Sud, CNRS, 91405 Orsay, France I. Gross, W. Akhtar, V. Jacques Lab. Charles

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy

Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy Mat. Res. Soc. Symp. Proc. Vol. 690 2002 Materials Research Society Imaging Self-Organized Domains at the Micron Scale in Antiferromagnetic Elemental Cr Using Magnetic X-ray Microscopy P. G. Evans, 1 E.

More information

Properties and applications of ferromagnetic nanostructures

Properties and applications of ferromagnetic nanostructures Properties and applications of ferromagnetic nanostructures Diego Bisero, Lucia Del Bianco, Federico Spizzo Magnetism Experimental group Outline 1.Nanostructures: some examples 2.Why ferromagnetic nanostructures?

More information

Nanoscale magnetic imaging with single spins in diamond

Nanoscale magnetic imaging with single spins in diamond Nanoscale magnetic imaging with single spins in diamond Ania Bleszynski Jayich UC Santa Barbara Physics AFOSR Nanoelectronics Review Oct 24, 2016 Single spin scanning magnetometer Variable temperature

More information

Supplementary Figure 1 Representative sample of DW spin textures in a

Supplementary Figure 1 Representative sample of DW spin textures in a Supplementary Figure 1 Representative sample of DW spin textures in a Fe/Ni/W(110) film. (a) to (d) Compound SPLEEM images of the Fe/Ni/W(110) sample. As in Fig. 2 in the main text, Fe thickness is 1.5

More information

Current and field stimulated motion of domain wall in narrow permalloy stripe

Current and field stimulated motion of domain wall in narrow permalloy stripe Current and field stimulated motion of domain wall in narrow permalloy stripe L.S. Uspenskaya, S.V. Egorov Institute of Solid State Physics Russian Academy of Sciences,142432, Chernogolovka, Moscow region,

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

A flavor of Nanomagnetism and Spintronics

A flavor of Nanomagnetism and Spintronics A flavor of Nanomagnetism and Spintronics Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr / Short presentation Local environment Grenoble : 500 000 inhabitants with

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

Local Anodic Oxidation of GaAs: A Nanometer-Scale Spectroscopic Study with PEEM

Local Anodic Oxidation of GaAs: A Nanometer-Scale Spectroscopic Study with PEEM Local Anodic Oxidation of GaAs: A Nanometer-Scale Spectroscopic Study with PEEM S. Heun, G. Mori, M. Lazzarino, D. Ercolani, G. Biasiol, and L. Sorba Laboratorio TASC-INFM, 34012 Basovizza, Trieste A.

More information

Properties of Materials. Chapter Two Magnetic Properties of Materials

Properties of Materials. Chapter Two Magnetic Properties of Materials 1896 1920 1987 2006 Properties of Materials Chapter Two Magnetic Properties of Materials Key Magnetic Parameters How does M respond to H? Ferromagnetic Fe, Co, Ni Ferrimagnetic Fe 3 O 4 Antiferromagnetic

More information

Planar Hall Effect in Magnetite (100) Films

Planar Hall Effect in Magnetite (100) Films Planar Hall Effect in Magnetite (100) Films Xuesong Jin, Rafael Ramos*, Y. Zhou, C. McEvoy and I.V. Shvets SFI Nanoscience Laboratories, School of Physics, Trinity College Dublin, Dublin 2, Ireland 1 Abstract.

More information

OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS

OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS 1 OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS A. A. Zhukov 1, M. A. Ghanem 2, A. V. Goncharov 1, R. Boardman 3, V. Novosad 4, G. Karapetrov 4, H. Fangohr 3, P.

More information

An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams

An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 9 1 MAY 1999 An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams Chris Pike a) Department of Geology,

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11733 1 Ising-Macrospin model The Ising-Macrospin (IM) model simulates the configuration of the superlattice (SL) by assuming every layer is a single spin (macrospin)

More information

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS 1/49 MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS Dieter Suess dieter.suess@tuwien.ac.at Institut of Solid State Physics, Vienna University of Technology, Austria (submitted to Journal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

01 Development of Hard Disk Drives

01 Development of Hard Disk Drives 01 Development of Hard Disk Drives Design Write / read operation MR / GMR heads Longitudinal / perpendicular recording Recording media Bit size Areal density Tri-lemma 11:00 10/February/2016 Wednesday

More information

Local Anodic Oxidation with AFM: A Nanometer-Scale Spectroscopic Study with Photoemission Microscopy

Local Anodic Oxidation with AFM: A Nanometer-Scale Spectroscopic Study with Photoemission Microscopy Local Anodic Oxidation with AFM: A Nanometer-Scale Spectroscopic Study with Photoemission Microscopy S. Heun, G. Mori, M. Lazzarino, D. Ercolani,* G. Biasiol, and L. Sorba* Laboratorio Nazionale TASC-INFM,

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Mat. Res. Soc. Symp. Proc. Vol. 696 22 Materials Research Society Surface reconstruction and induced uniaxial magnetic fields on Ni films R. A. Lukaszew, B. McNaughton 1, V. Stoica 2 and R. Clarke 2 Department

More information

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS Journal of Optoelectronics and Advanced Materials, Vol. 4, No. 1, March 2002, p. 79-84 HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS M. Volmer, J. Neamtu

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Nanomagnetism Part III Atomic-scale properties

Nanomagnetism Part III Atomic-scale properties Nanomagnetism Part III Atomic-scale properties Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr SKETCH OF THE LECTURES Part I Magnetization reversal Part II Techniques

More information

Introduction to magnetism Part II Magnetization reversal

Introduction to magnetism Part II Magnetization reversal Introduction to magnetism Part II Magnetization reversal Olivier Fruchart Institut Néel (CNRS-UJF-INPG) Grenoble - France http://neel.cnrs.fr Sep.011: next European School on Magnetism (ESM). Romania.

More information

Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers

Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers Tunable Room Temp. Skyrmions in Ir/Fe/Co/Pt Multilayers Anjan Soumyanarayanan Panagopoulos Group, NTU, Singapore Data Storage Institute, A*STAR, Singapore A.S. et al., arxiv:1606.06034 (2016) Collaborators

More information

Preparation, Structural Characterization, and Dynamic Properties Investigation of Permalloy Antidot Arrays

Preparation, Structural Characterization, and Dynamic Properties Investigation of Permalloy Antidot Arrays University of Montana ScholarWorks at University of Montana Chemistry and Biochemistry Faculty Publications Chemistry and Biochemistry 5-12-2005 Preparation, Structural Characterization, and Dynamic Properties

More information

Paolo Vavassori. Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain.

Paolo Vavassori. Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain. Magnetic nanostructures Paolo Vavassori Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain. P. Vavassori nano@nanogune.eu I www.nanogune.eu 1 Outline Part I Introduction.

More information

Electron Microscopy & Micro-magnetism. Micromagnetic Objects and dynamical imaging

Electron Microscopy & Micro-magnetism. Micromagnetic Objects and dynamical imaging Electron Microscopy & Micro-magnetism Micromagnetic Objects and dynamical imaging Interferometry Instrumentation & In situ for Electron Microscopy Christophe Gatel Aurélien MASSEBOEUF Etienne Snoeck Martin

More information

Finite element micromagnetics

Finite element micromagnetics Finite element micromagnetics Thomas Schrefl, Dieter Suess, Werner Scholz, Hermann Forster, Vassilios Tsiantos, and Josef Fidler Vienna University of Technology, Institute of Applied and Technical Physics,

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Wide-Range Probing of Dzyaloshinskii Moriya Interaction

Wide-Range Probing of Dzyaloshinskii Moriya Interaction Wide-Range Probing of Dzyaloshinskii Moriya Interaction Duck-Ho Kim, 1 Sang-Cheol Yoo, 1,2 Dae-Yun Kim, 1 Byoung-Chul Min, 2 and Sug-Bong Choe 1 1 Department of Physics and Institute of Applied Physics,

More information

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers S. M. Zhou, 1,2 L. Sun, 3 P. C. Searson, 3 and C. L. Chien 1 1 Department of Physics and Astronomy, Johns Hopkins University,

More information

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays Abstract #: 983 Program # MI+NS+TuA9 Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays D. A. Tulchinsky, M. H. Kelley, J. J. McClelland, R. Gupta, R. J. Celotta National Institute of Standards

More information

Micromagnetic simulations of magnetization reversal. in Co/Ni multilayers

Micromagnetic simulations of magnetization reversal. in Co/Ni multilayers 16 May 2001 Micromagnetic simulations of magnetization reversal in Co/Ni multilayers V. D. Tsiantos a, T. Schrefl a, D. Suess a, W. Scholz a, J. Fidler a, and J. M. Gonzales b a Vienna University of Technology,

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information