Probing Magnetic Order with Neutron Scattering

Size: px
Start display at page:

Download "Probing Magnetic Order with Neutron Scattering"

Transcription

1 Probing Magnetic Order with Neutron Scattering G.J. Mankey, V.V. Krishnamurthy, F.D. Mackey and I. Zoto University of Alabama in collaboration with J.L. Robertson and M.L. Crow Oak Ridge National Laboratory S. Maat and E.E. Fullerton IBM Almaden Research Center MINT Spring Review 2002 Sponsored by ARO DAAH , NSF MRSEC DMR , DOE DMR DE-AC05-96OR22464 and DE-FG02-02ER WWW:

2 Antiferromagnetic Thin Films Goal: Understand exchange bias by relating microstructure with measured magnetic data. Experiments: Produce single-crystal layers for study. Determine spin structure of FeMn with neutron scattering. Measure critical behavior of FeMn with temperaturedependent neutron scattering. Correlate with exchange bias measurements of bilayer films.

3 F/AF Exchange Bias When a ferromagnet (F) is deposited on an antiferromagnet (AF) in an applied field, the hysteresis loop of the F film is altered in two ways: There is a bias (or shift) of the hysteresis loop by an amount called H p or the pinning field. There is an enhancement of the coercive field, H c, particularly along the direction of the applied field.

4 Hypothetical Spin Arrangements of AF FeMn 1Q 2Q 3Q Three spin structures for FeMn are proposed. Each should give distinctly different anisotropy behavior when inserted in an AF/F bilayer system.

5 Spin Hamiltonian The anisotropic Heisenberg Hamiltonian is described by two coupling parameters. J z is the out of plane coupling. J is the in-plane coupling. Special cases are Ising (J = 0), XY (J z = 0), isotropic Heisenberg (J z = J ). The ratio of J z / J gives the anisotropy. The spin ordering in itinerant systems like FeMn is not adequately described by this model.* * S. Maat, Ph.D. dissertation, UA (2000).

6 Determining Spin Ordering from Power Laws The critical behavior depends on the universality class of the system. The magnetization power law exponent, β, is for the 2D Ising model, 0.24 for the finite-size 2D XY model and 0.34 for the 3D Heisenberg model. Determination of β provides an insight into the type of magnetic ordering.

7 2D to 3D Dimensional Crossover The power law exponent β increases in the range of film thickness of 5 to 10 monolayers. Ref: F. Huang, et al., Phys. Rev. B 49, 3962 (1994). For in-plane magnetized films (a) and (b) the crossover is from finite-sized 2D XY to 3D Heisenberg model. For perpendicular magnetized films the crossover is from 2D Ising to 3D Heisenberg model. Do AF films exhibit a similar behavior?

8 Antiferromagnetic Spin Ordering in FePt 3 Two types of spin ordering are observed in the bulk material. Films deposited on MgO(110) exhibit only [1/2 1/2 0] order. Films deposited on sapphire substrates exhibit both types of spin ordering. Epitaxial strain plays a significant role in determining the spin structure of AF films. Ref. S. Maat, et al., Phys. Rev. B 63, (2001).

9 Spin Ordering in FePt 3 /MgO(110) The power law fit is good for all temperatures measured. A characteristic exponent for the finite-size 2D XY model of β = 0.23 is extracted from the data. In layered systems, even a small amount of interplanar coupling makes the system behave as Heisenberg. Can we learn something about the spin ordering from the critical behavior? Ref: S. Maat, et al., Phys. Rev. B 63, (2001).

10 RHEED for Si(110) / Cu(20nm) / Ni 80 Fe 20 (10nm) / Fe 60 Mn 40 (t) t = 20 nm t = 60 nm t = 40 nm t = 100 nm FeMn films can be produced in the metastable fcc phase up to a thickness of 40 nm. Above t = 40 nm, the films revert to the more stable bcc phase as confirmed by RHEED measurements. Thicker films are needed for neutron measurements--make multilayer samples. Ref: C. Liu et al., J. Vac. Sci. Technol. A 19, 1213 (2001).

11 Probing Antiferromagnetic Ordering with Unpolarized Neutrons For unpolarized neutrons dσ = b 2 + p 2 q 2 where b is the nuclear scattering length, p is the magnetic scattering amplitude and q 2 =sin 2 α with α = the angle between the scattering plane normal and the magnetic moment. At half-order diffraction locations, only the magnetic scattering contributes, so the diffracted intensity is proportional to the sublattice magnetization in the scattering plane.

12 Neutron Scattering Results Si<110>/Cu(100)/[FeMn(5)/Cu(5)]x50/Cu(20) Chemical Magnetic Radial Rocking Antiferromagnetic ordering in and out of the plane is observed for the FeMn layers. Chemical and magnetic diffraction data gives comparable atomic and magnetic correlation lengths. Comparison of intensities shows all of the FeMn exhibits antiferromagnetic ordering.

13 Temperature-Dependent Neutron Scattering [1-1 0] Magnetic Peak Intensity [10 nm Cu(111) / 10 nm Fe 50 Mn 50 ] 50 First Heating Cycle Second Heating Cycle Third Heating Cycle After 275 ºC Anneal Temperature (ºC) For the first heating cycle, the Néel temperature is close to the bulk value for Fe 50 Mn 50. An irreversible structural change occurs at 200 ºC. Is it diffusion from the FeMn into the Cu interlayer? An enhanced Néel temperature results from the structural change. The raw data must be corrected for the Debye-Waller factor to find the critical exponent.

14 Corrected Data First Cycle Second Third For the first heating cycle, a Néel temperature of 510K and critical exponent of are found, consistent with bulk 3D Heisenberg behavior. Subsequent heating cycles showed that annealing to 480 K irreversibly changes the microstructure of the multilayer, resulting in a reduction in the magnetization, a reduction of the critical exponent, and an increase of the Néel temperature.

15 Conclusions Neutron diffraction cannot distinguish between domains of 1Q or 2Q and a single-domain 3Q structure. Heisenberg-like critical behavior is observed for FeMn/Cu multilayers. Access to temperatures near the Néel temperature is limited by the activation of thin film diffusion processes around 200 ºC. Diffusion is dominated by silicide formation, so investigation of multilayers on single crystal Cu or alternative substrates remains a possibility.

16 Future Work More detailed measurements with 0.9 T N < T < T N to accurately determine the critical exponent β. Choose materials with lower T N and interfaces which are more robust against annealing cycles. Make F/AF superlattices to compare temperature dependent exchange bias behavior with critical behavior. Participate in instrument development at the High Flux Isotope Reactor to improve spectrometer efficiency allowing measurements of thinner films.

Neutron Diffraction Study of Antiferromagnetic Phase Transitions in an Ordered Pt 3 Fe(111) Film

Neutron Diffraction Study of Antiferromagnetic Phase Transitions in an Ordered Pt 3 Fe(111) Film Neutron Diffraction Study of Antiferromagnetic Phase Transitions in an Ordered Pt 3 Fe(111) Film G. J. Mankey, V. V. Krishnamurthy, and I. Zoto MINT Center, The University of Alabama, Tuscaloosa, AL 35487-0209

More information

Neutron Reflectometry of Ferromagnetic Arrays

Neutron Reflectometry of Ferromagnetic Arrays Neutron Reflectometry of Ferromagnetic Arrays Z.Y. Zhao a, P. Mani a, V.V.Krishnamurthy a, W.-T. Lee b, F. Klose b, and G.J. Mankey a a Center for Materials for Information Technology and Department of

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal. and E. D. Dahlberg 3. Abstract

Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal. and E. D. Dahlberg 3. Abstract Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal W.-T. Lee 1, S. G. E. te Velthuis 2, G. P. Felcher 2, F. Klose 1, T. Gredig 3, and E. D. Dahlberg 3. 1 Spallation Neutron Source,

More information

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers S. M. Zhou, 1,2 L. Sun, 3 P. C. Searson, 3 and C. L. Chien 1 1 Department of Physics and Astronomy, Johns Hopkins University,

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

EXCHANGE COUPLING IN MAGNETIC MULTILAYERS GROWN ON IRON WHISKERS (INVITED)

EXCHANGE COUPLING IN MAGNETIC MULTILAYERS GROWN ON IRON WHISKERS (INVITED) EXCHANGE COUPLING IN MAGNETIC MULTILAYERS GROWN ON IRON WHISKERS (INVITED) J. Unguris, R. J. Celotta, D. A. Tulchinsky, and D. T. Pierce Electron Physics Group, National Institute of Standards and Technology,

More information

Influence of ferromagnetic antiferromagnetic coupling on the antiferromagnetic ordering temperature in Ni/Fe x Mn 1 x bilayers

Influence of ferromagnetic antiferromagnetic coupling on the antiferromagnetic ordering temperature in Ni/Fe x Mn 1 x bilayers Influence of ferromagnetic antiferromagnetic coupling on the antiferromagnetic ordering temperature in Ni/Fe x Mn 1 x bilayers M. Stampe, P. Stoll, T. Homberg, K. Lenz, and W. Kuch Institut für Experimentalphysik,

More information

Influence of ferromagnetic-antiferromagnetic coupling on the antiferromagnetic ordering temperature in NiÕFe x Mn 1 x bilayers

Influence of ferromagnetic-antiferromagnetic coupling on the antiferromagnetic ordering temperature in NiÕFe x Mn 1 x bilayers PHYSICAL REVIEW B 81, 1442 21 Influence of ferromagnetic-antiferromagnetic coupling on the antiferromagnetic ordering temperature in NiÕFe x Mn 1 x bilayers M. Stampe,* P. Stoll, T. Homberg, K. Lenz, and

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University

Magnetic neutron diffraction. Rob McQueeney, Ames Laboratory and Iowa State University Magnetic neutron diffraction Rob McQueeney, Ames Laboratory and Iowa State University September 19, 2018 Magnetic moment-rare earths Progressive filling of 4f levels Strong Hund s rules Strong spin-orbit

More information

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center

Film Characterization Tutorial G.J. Mankey, 01/23/04. Center for Materials for Information Technology an NSF Materials Science and Engineering Center Film Characterization Tutorial G.J. Mankey, 01/23/04 Theory vs. Experiment A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the

More information

arxiv: v1 [cond-mat.mtrl-sci] 15 May 2007

arxiv: v1 [cond-mat.mtrl-sci] 15 May 2007 Exchange bias effect of ferro-/antiferromagnetic heterostructures Florin Radu BESSY GmbH, Albert-Einstein-Str. 15, 12489 Berlin, Germany Hartmut Zabel Department of Physics, Ruhr-University Bochum, D 44780

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 27 Oct 2003

arxiv:cond-mat/ v1 [cond-mat.str-el] 27 Oct 2003 Magnetic versus crystal field linear dichroism in NiO thin films arxiv:cond-mat/0310634v1 [cond-mat.str-el] 27 Oct 2003 M. W. Haverkort, 1 S. I. Csiszar, 2 Z. Hu, 1 S. Altieri, 3 A. Tanaka, 4 H. H. Hsieh,

More information

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200, 复习题 1 Calculate the magnetic moment of a sphere of radius R made from a magnetic material with magnetic susceptibility, when it is magnetized by an external magnetic field H. How is the value of the moment

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 5: MAGNETIC STRUCTURES - Mean field theory and magnetic order - Classification of magnetic structures - Collinear and non-collinear magnetic structures. - Magnetic

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures

Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures Valeria Lauter Quantum Condensed Matter Division, Oak Ridge National Laboratory,

More information

Thermal Effect on Training Effect of F/AF Exchange Coupled Systems

Thermal Effect on Training Effect of F/AF Exchange Coupled Systems Thermal Effect on Training Effect of F/AF Exchange Coupled Systems K. Zhang, T. Zhao, O. Traistaru and H. Fujiwara Partly funded by grant from DOD-ARO (DAAH04-96-1-0316) The University of Alabama Center

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets Chapter 2 Theoretical background The first part of this chapter gives an overview of the main static magnetic behavior of itinerant ferromagnetic and antiferromagnetic materials. The formation of the magnetic

More information

Lateral length scales in exchange bias

Lateral length scales in exchange bias EUROPHYSICS LETTERS 15 July 2005 Europhys. Lett., 71 (2), pp. 297 303 (2005) DOI: 10.1209/epl/i2005-10078-2 Lateral length scales in exchange bias I. V. Roshchin 1,O.Petracic 1,2,R.Morales 1,3,Z.-P.Li

More information

Giant magnetoresistance in electrodeposited Co-Cu/Cu multilayers: origin of absence of oscillatory behaviour

Giant magnetoresistance in electrodeposited Co-Cu/Cu multilayers: origin of absence of oscillatory behaviour Published in: Phys. Rev. B 79, 174421/1-13 (2009) Giant magnetoresistance in electrodeposited Co-Cu/Cu multilayers: origin of absence of oscillatory behaviour I. Bakonyi*, E. Simon, B.G. Tóth, L. Péter

More information

Exchange Coupling and Exchange Bias in FM/AFM Bilayers for a Fully Compensated AFM Interface

Exchange Coupling and Exchange Bias in FM/AFM Bilayers for a Fully Compensated AFM Interface Vol. 115 (2009) ACTA PHYSICA POLONICA A No. 1 Proceedings of the European Conference Physics of Magnetism (PM 08), Poznań 2008 Exchange Coupling and Exchange Bias in FM/AFM Bilayers for a Fully Compensated

More information

Interlayer Exchange Coupling in Semiconductor EuS PbS Ferromagnetic Wedge Multilayers

Interlayer Exchange Coupling in Semiconductor EuS PbS Ferromagnetic Wedge Multilayers Vol. 110 (2006) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXV International School of Semiconducting Compounds, Jaszowiec 2006 Interlayer Exchange Coupling in Semiconductor EuS PbS Ferromagnetic

More information

Angular dependence of the magnetization reversal in exchange biased Fe/MnF 2. Elke Arenholz

Angular dependence of the magnetization reversal in exchange biased Fe/MnF 2. Elke Arenholz Angular dependence of the magnetization reversal in exchange biased Fe/MnF 2 Elke Arenholz Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Kai Liu Department of Physics,

More information

Coupled perpendicular magnetization in Fe/Cu/Fe trilayers

Coupled perpendicular magnetization in Fe/Cu/Fe trilayers Journal of Magnetism and Magnetic Materials 300 (2006) 479 483 www.elsevier.com/locate/jmmm Coupled perpendicular magnetization in Fe/Cu/Fe trilayers D. Repetto, A. Enders, K. Kern Max Planck Institut

More information

Exchange Bias in [Co/Pd]/IrMn Thin Films. Young Byun

Exchange Bias in [Co/Pd]/IrMn Thin Films. Young Byun Exchange Bias in [Co/Pd]/IrMn Thin Films Young Byun A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Bachelor of Science

More information

Torque magnetometry of perpendicular anisotropy exchange spring heterostructures

Torque magnetometry of perpendicular anisotropy exchange spring heterostructures Torque magnetometry of perpendicular anisotropy exchange spring heterostructures P. Vallobra 1, T. Hauet 1, F. Montaigne 1, E.G Shipton 2, E.E. Fullerton 2, S. Mangin 1 1. Institut Jean Lamour, UMR 7198

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/49403 holds various files of this Leiden University dissertation. Author: Keesman, R. Title: Topological phases and phase transitions in magnets and ice

More information

Supplementary Figure 1 Representative sample of DW spin textures in a

Supplementary Figure 1 Representative sample of DW spin textures in a Supplementary Figure 1 Representative sample of DW spin textures in a Fe/Ni/W(110) film. (a) to (d) Compound SPLEEM images of the Fe/Ni/W(110) sample. As in Fig. 2 in the main text, Fe thickness is 1.5

More information

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer Chapter 6 Antiferromagnetism and Other Magnetic Ordeer 6.1 Mean Field Theory of Antiferromagnetism 6.2 Ferrimagnets 6.3 Frustration 6.4 Amorphous Magnets 6.5 Spin Glasses 6.6 Magnetic Model Compounds TCD

More information

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter

Ni 8 Cu n Ni 9. Lectue 4 Trilayers a prototype of multilayers. for FM1 and FM2 interlayer exchange coupling IEC, J inter Lectue 4 Trilayers a prototype of multilayers Ni 8 Cu n Ni 9 Important parameters: K anisotropy, E band for FM1 and FM2 interlayer exchange coupling IEC, J inter 1 4a Optical and acoustic modes in the

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance This is a phenomenon that produces a large change in the resistance of certain materials as a magnetic field is applied. It is described as Giant because the observed effect is

More information

Tailoring magnetism in artificially structured materials: the new frontier

Tailoring magnetism in artificially structured materials: the new frontier Surface Science 500 (2002) 300 322 www.elsevier.com/locate/susc Tailoring magnetism in artificially structured materials: the new frontier J. Shen a, *, J. Kirschner b a Solid State Division, Oak Ridge

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge

Fe Co Si. Fe Co Si. Ref. p. 59] d elements and C, Si, Ge, Sn or Pb Alloys and compounds with Ge Ref. p. 59] 1.5. 3d elements and C, Si, Ge, Sn or Pb 7 1.75 1.50 Co Si 0.8 0. 3.50 3.5 Co Si 0.8 0. H cr Magnetic field H [koe] 1.5 1.00 0.75 0.50 0.5 C C IF "A" P Frequency ωγ / e [koe] 3.00.75.50.5.00

More information

Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range

Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range CMU. J.Nat.Sci. Special Issue on Nanotechnology (2008) Vol. 7(1) 203 Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range Atchara Punya 1*, Pitak Laoratanakul 2, Rattikorn

More information

High Resolution Photoemission Study of the Spin-Dependent Band Structure of Permalloy and Ni

High Resolution Photoemission Study of the Spin-Dependent Band Structure of Permalloy and Ni High Resolution Photoemission Study of the Spin-Dependent Band Structure of Permalloy and Ni K. N. Altmann, D. Y. Petrovykh, and F. J. Himpsel Department of Physics, University of Wisconsin, Madison, 1150

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012267 TITLE: Exchange Coupling and Spin-Flip Transition of CoFe204/alpha-Fe2O3 Bilayered Films DISTRIBUTION: Approved for public

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

The Physics of Ferromagnetism

The Physics of Ferromagnetism Terunobu Miyazaki Hanmin Jin The Physics of Ferromagnetism Springer Contents Part I Foundation of Magnetism 1 Basis of Magnetism 3 1.1 Basic Magnetic Laws and Magnetic Quantities 3 1.1.1 Basic Laws of

More information

Low dimensional magnetism Experiments

Low dimensional magnetism Experiments Low dimensional magnetism Experiments Olivier Fruchart Brasov (Romania), Sept. 2003 1 Introduction...................................... 2 2 Ferromagnetic order................................. 2 2.1 Methods.....................................

More information

GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES

GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES etnnu. Rev. Mater. Sci. 1995.25." 357-88 Copyright 1995 by Annual Reviews 1no. All rights reserved GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES S. S. P. Park& IBM Research Division, Almaden Research

More information

Magnetism. Ram Seshadri MRL 2031, x6129, Some basics:

Magnetism. Ram Seshadri MRL 2031, x6129, Some basics: Magnetism Ram Seshadri MRL 2031, x6129, seshadri@mrl.ucsb.edu Some basics: A magnet is associated with magnetic lines of force, and a north pole and a south pole. he lines of force come out of the north

More information

Ferromagnetism. Iron, nickel, and cobalt are ferromagnetic.

Ferromagnetism. Iron, nickel, and cobalt are ferromagnetic. Ferromagnetism Technische Universität Graz Institute of Solid State Physics Ferromagnetism elow a critical temperature (called the Curie temperature) a magnetization spontaneously appears in a ferromagnet

More information

Antiferromagnetism at the YBa 2 Cu 3 O 7 / La 2/3 Ca 1/3 MnO 3 interface

Antiferromagnetism at the YBa 2 Cu 3 O 7 / La 2/3 Ca 1/3 MnO 3 interface Submitted to Applied Physics Letters 09/22/03 Antiferromagnetism at the YBa 2 Cu 3 O 7 / La 2/3 Ca 1/3 MnO 3 interface N. Haberkorn Universidad Nacional del Sur, Avda. Alem 1253, Bahía Blanca, 8000 Bs.

More information

Presentation Groupmeeting June 3 rd, sorry 10 th, 2009 by Jacques Klaasse

Presentation Groupmeeting June 3 rd, sorry 10 th, 2009 by Jacques Klaasse Presentation Groupmeeting June 3 rd, sorry 10 th, 2009 by Jacques Klaasse Spin Density Waves This talk is based on a book-chapter on antiferromagnetism, written by Anthony Arrott in Rado-Suhl, Volume IIB,

More information

Study on Magnetic Properties of Vermiculite Intercalation compounds

Study on Magnetic Properties of Vermiculite Intercalation compounds Study on Magnetic Properties of Vermiculite Intercalation compounds M. Suzuki and I.S. Suzuki Department of Physics, State University of New York at Binghamton (October, ) I. INTRODUCTION In recent years

More information

The electronic structure of materials 1

The electronic structure of materials 1 Quantum mechanics 2 - Lecture 9 December 18, 2013 1 An overview 2 Literature Contents 1 An overview 2 Literature Electronic ground state Ground state cohesive energy equilibrium crystal structure phase

More information

Magnetic neutron diffraction

Magnetic neutron diffraction Magnetic neutron diffraction Rob McQueeney Physics 590 1 Magnetic moment-rare earths Progressive filling of 4f levels Strong Hund s rules Strong spin-orbit interaction Weak CEF Unpaired electrons Total

More information

Planar Hall Effect in Magnetite (100) Films

Planar Hall Effect in Magnetite (100) Films Planar Hall Effect in Magnetite (100) Films Xuesong Jin, Rafael Ramos*, Y. Zhou, C. McEvoy and I.V. Shvets SFI Nanoscience Laboratories, School of Physics, Trinity College Dublin, Dublin 2, Ireland 1 Abstract.

More information

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course

Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course Some pictures are taken from the UvA-VU Master Course: Advanced Solid State Physics by Anne de Visser (University of Amsterdam), Solid State Course by Mark Jarrel (Cincinnati University), from Ibach and

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

1 Corresponding author:

1 Corresponding author: Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy Muhammad B. Haider, Rong Yang, Hamad Al-Brithen, Costel Constantin, Arthur R. Smith 1, Gabriel Caruntu

More information

Combined neutron and synchrotron studies of magnetic films

Combined neutron and synchrotron studies of magnetic films PRAMANA c Indian Academy of Sciences Vol. 67, No. 1 journal of July 2006 physics pp. 47 55 Combined neutron and synchrotron studies of magnetic films SUNIL K SINHA 1,2, S ROY 1, M R FITZSIMMONS 2, S PARK

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Mat. Res. Soc. Symp. Proc. Vol. 696 22 Materials Research Society Surface reconstruction and induced uniaxial magnetic fields on Ni films R. A. Lukaszew, B. McNaughton 1, V. Stoica 2 and R. Clarke 2 Department

More information

Artificially layered structures

Artificially layered structures http://accessscience.com/popup.ap x?id=053450&name=print Close Window ENCYCLOPEDIA ARTICLE Artificially layered structures Manufactured, reproducibly layered structures having layer thicknesses approaching

More information

D. Exchange Bias Effect

D. Exchange Bias Effect D. Exchange Bias Effect 6.9 Real time temperature dynamics in exchange coupled double layers upon photoexcitation M.C. Weber, H. Nembach, and B. Hillebrands 1 Recently, significant effort has been focused

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect

Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect Johan Meersschaut Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, Belgium Johan.Meersschaut@fys.kuleuven.be

More information

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE-

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- NOMENOLOGY In the main text we introduce anisotropic magnetoresistance (AMR) in analogy to ferromagnets where non-crystalline and crystalline contributions

More information

Neutron Powder Diffraction Theory and Instrumentation

Neutron Powder Diffraction Theory and Instrumentation NTC, Taiwen Aug. 31, 212 Neutron Powder Diffraction Theory and Instrumentation Qingzhen Huang (qing.huang@nist.gov) NIST Center for Neutron Research (www.ncnr.nist.gov) Definitions E: energy; k: wave vector;

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

Temperature Dependence of Exchange Bias and Coercivity in Ferromagnetic Layer Coupled with Polycrystalline Antiferromagnetic Layer

Temperature Dependence of Exchange Bias and Coercivity in Ferromagnetic Layer Coupled with Polycrystalline Antiferromagnetic Layer Commun. Theor. Phys. (Beijing, China) 41 (2004) pp. 623 628 c International Academic Publishers Vol. 41, No. 4, April 15, 2004 Temperature Dependence of Exchange Bias and Coercivity in Ferromagnetic Layer

More information

Lecture 2: Magnetic Anisotropy Energy (MAE)

Lecture 2: Magnetic Anisotropy Energy (MAE) Lecture : Magnetic Anisotropy Energy (MAE) 1. Magnetic anisotropy energy = f(t). Anisotropic magnetic moment f(t) [111] T=3 K Characteristic energies of metallic ferromagnets M (G) 5 3 [1] 1 binding energy

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Magnetism of ultrathin films: Theory and Experiment

Magnetism of ultrathin films: Theory and Experiment 1/23 Magnetism of ultrathin films: Theory and Experiment Klaus Baberschke Institut für f r Experimentalphysik Freie Universität t Berlin 2/23 New and fundamental aspects are found in nanomagnetism with

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

Neutron Scattering of Magnetic excitations

Neutron Scattering of Magnetic excitations Neutron Scattering of Magnetic excitations Magnetic excitations, magnons, and spin chains by Ibrahima Diallo Technische Universität Muenchen Outline Properties of the Neutron Spin, spin waves, and magnons

More information

New materials for high- efficiency spin-polarized. polarized electron source

New materials for high- efficiency spin-polarized. polarized electron source New materials for high- efficiency spin-polarized polarized electron source A. Janotti Metals and Ceramics Division, Oak Ridge National Laboratory, TN In Collaboration with S.-H. Wei, National Renewable

More information

Correlation Between Magnetism and Structure in Fe alloys: the case of Fe-Cr and Fe-Pt

Correlation Between Magnetism and Structure in Fe alloys: the case of Fe-Cr and Fe-Pt Correlation Between Magnetism and Structure in Fe alloys: the case of Fe-Cr and Fe-Pt Cyrille Barreteau (SPCSI) Chu Chun Fun (SRMP) Romain Soulairol (SRMP) Daniel Spanjaard (LPS) FePt Cr-SDW Service de

More information

Mat. Res. Soc. Symp. Proc. Vol Materials Research Society

Mat. Res. Soc. Symp. Proc. Vol Materials Research Society Mat. Res. Soc. Symp. Proc. Vol. 746 2003 Materials Research Society Q5.2.1 ORIGIN OF THE MAGNETIC PROXIMITY EFFECT Miguel Kiwi Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306,

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

Conductivity of a disordered ferromagnetic monoatomic film

Conductivity of a disordered ferromagnetic monoatomic film Materials Science-Poland, Vol. 6, No. 4, 008 Conductivity of a disordered ferromagnetic monoatomic film A. PAJA *, B. J. SPISAK Faculty of Physics and Applied Computer Science, AGH University of Science

More information

What is the susceptibility?

What is the susceptibility? What is the susceptibility? Answer which one? M Initial susceptibility Mean susceptibility M st M 0 0 m High field susceptibility i dm = dh H =0 H st H M M st M 0 0 m i H st H H What is the susceptibility?

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

Antiferromagnetic layer thickness dependence of the IrMn/Co exchange bias system

Antiferromagnetic layer thickness dependence of the IrMn/Co exchange bias system Antiferromagnetic layer thickness dependence of the IrMn/Co exchange bias system M. Ali, C. H. Marrows, M. Al-Jawad, and B. J. Hickey Department of Physics and Astronomy, E. C. Stoner Laboratory, University

More information

Transition Elements. pranjoto utomo

Transition Elements. pranjoto utomo Transition Elements pranjoto utomo Definition What is transition metal? One of which forms one or more stable ions which have incompletely filled d orbitals. 30Zn? Definition Zink is not transition elements

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance Zachary Barnett Course: Solid State II; Instructor: Elbio Dagotto; Semester: Spring 2008 Physics Department, University of Tennessee (Dated: February 24, 2008) This paper briefly

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Sequence, symmetry, and magnetic fluctuations of the magnetization reversal in exchange-biased multilayers

Sequence, symmetry, and magnetic fluctuations of the magnetization reversal in exchange-biased multilayers PHYSICAL REVIEW B 70, 224410 (2004) Sequence, symmetry, and magnetic fluctuations of the magnetization reversal in exchange-biased multilayers A. Paul,* E. Kentzinger, U. Rücker, D. E. Bürgler, and P.

More information

Thermal Effects in Magnetic Recording Media

Thermal Effects in Magnetic Recording Media Thermal Effects in Magnetic Recording Media J.W. Harrell MINT Center and Dept. of Physics & Astronomy University of Alabama Work supported by NSF-MRSEC MINT Fall Review, Nov. 21 Stability Problem in Granular

More information

Structure analysis: Electron diffraction LEED TEM RHEED

Structure analysis: Electron diffraction LEED TEM RHEED Structure analysis: Electron diffraction LEED: Low Energy Electron Diffraction SPA-LEED: Spot Profile Analysis Low Energy Electron diffraction RHEED: Reflection High Energy Electron Diffraction TEM: Transmission

More information

Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface

Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface Magnetic anisotropy in frustrated clusters and monolayers: Cr on triangular Au(111) surface László Balogh Krisztián Palotás László Udvardi László Szunyogh Department of Theoretical Physics Budapest University

More information

Magnetic exchange-coupling effects in asymmetric trilayer structures of MBE-grown Co/Cr/Fe

Magnetic exchange-coupling effects in asymmetric trilayer structures of MBE-grown Co/Cr/Fe PHYSICAL REVIEW B VOLUME 53, NUMBER 17 1 MAY 1996-I Magnetic exchange-coupling effects in asymmetric trilayer structures of MBE-grown Co/Cr/Fe Katharina Theis-Bröhl, Rainer Scheidt, Thomas Zeidler, Frank

More information

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles Xavier Batlle and Amílcar Labarta Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia Universitat de Barcelona,

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 0.4 0.2 a 0.0 Averaged di/dv-asymmetry -0.2-0.4 0.04 0.02 0.00-0.02-0.04-0.06-0.2 b Co core 0.0 0.2 0.4 di/dv asymmetry Spin polarization 0.4 0.2 0.0-0.2-0.4-0.6 Spin polarization

More information

Structural and magnetic properties of Cu/Co and Au/Co multilayers

Structural and magnetic properties of Cu/Co and Au/Co multilayers Journal of Magnetism and Magnetic Materials 121 (1993) 208-212 North-Holland Structural and magnetic properties of Cu/Co and Au/Co multilayers S. Pizzini a, F. Baudelet b, E. Dartyge a, m. Fontaine a Ch.

More information