Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures

Size: px
Start display at page:

Download "Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures"

Transcription

1 Hidden Interfaces and High-Temperature Magnetism in Intrinsic Topological Insulator - Ferromagnetic Insulator Heterostructures Valeria Lauter Quantum Condensed Matter Division, Oak Ridge National Laboratory, USA Ferhat Katmis, Jagadeesh S. Moodera Department of Physics and Francis Bitter Magnet Laboratory MIT Cambridge, USA Don Heiman Department of Physics, Northeastern University, Boston ORNL is managed by UT-Battelle for the US Department of Energy

2 Outline EuS Bi 2 Se 3 Topological Insulators - a new phase of matter with TRS Symmetry breaking in TI via magnetic proximity Induce ferromagnetism in Topological Insulator via exchange coupling in TI-FMI + - Polarized Neutron Reflectometry: depth resolved vector magnetometry for TI FMI heterostructures Managed by UT-Battelle 2 Presentation_name

3 Interface ferromagnetism in TI via magnetic proximity Introducing ferromagnetic order in TI: by doping with specific elements: - hard to separate the surface and the bulk phases. - introduces crystal defects, magnetic scattering centers, impurity states in the insulating gap are detrimental to mobility and the transport of spinmomentum locked surface electrons in TIs. by uniformly depositing magnetic atoms (Fe) over the TI surface: - the transport properties of a TI are influenced by the metallic ferromagnetic overlayer or atoms. by magnetic proximity with FI: - the spin-momentum locked helical electronic states in Tis and topological magneto-electric effect 3 Managed by UT-Battelle 3 Presentation_name

4 Topological insulator materials: Magnetic? 4 Mn-doped Bi2(TeSe)3 Checkelsky, et al., Nat. Phys. (2012) Cr-doped (BiSb)2Te3 Chang, et al., Science (2013) V-doped (BiSb)2Te3 Figures and Figure captions: Figure 1 The QAH effect in a 4QL (Bi0.29Sb0.71)1.89V0.11Te3 film (sample S1) measured at 25mK. a, Chang, et al., Nat. Mat. (2015) Magnetic field dependence of the longitudinal resistance curve) at charge neutral point Vg=Vg0. b, c, Expanded yx xx (red curve) and the Hall resistance (b) and xx magnetic field exhibits a value of ± h/e2, while (c) at low magnetic field. xx yx (blue yx at zero at zero magnetic field is only ~ ± h/e2 (~3.35±1.76 ). The dashed lines indicate the expected resistance value in ideal QAH regime. The error bars in (b) and (c) are estimated by the variability of the standard resistor, accuracy of the voltmeters, current source which is reflected in the averaged data. Kou, et al., Nano Lett. (2013) NiFe/Bi2Se3 Fan, et al., Nat. Mat. (2014) Kou, et al., PRL (2014) Bi2Se3/YIG EuS/Bi2Se3 13 Mellnik, et al., Nature (2014) Wei, et al., PRL (2013) by UT-Battelle Presentation_name 4Managed Lang, et al., Nano Lett. (2014)

5 Topological insulator materials: Magnetism via proximity FM TI Substrate TI FM Substrate Increasing Complexity FM TI FM Substrate Increasing Magnetization FM TI FM TI FM Substrate 5 Managed by UT-Battelle 5 Presentation_name

6 Interface ferromagnetism in TI via magnetic proximity The particular type of interface - between a topological insulator and a ferromagnet might become key to the computer industry's future ability. The goal is the ability to manipulate surface electron states. We introduce ferromagnetic order onto the surface of TI Bi 2 Se 3 thin films by using FI EuS. EuS 4f-5d energy gap 1.64 ev Fermi level inside the gap 6 Managed by UT-Battelle 6 Presentation_name

7 Characterization Bi2Se3/EuS bilayers Bi 2 Se 3 HRTEM (B) electron diffraction image with an hexagonal symmetry of Bi 2 Se 3 (C) HRTEM image for substrate and Bi 2 Se 3 (D) HRTEM images for EuS and Bi 2 Se 3 interface 7 Managed by UT-Battelle 7 Presentation_name for the U.S. Department of Energy APS meeting, Denver, March 3 7, 2014

8 Epitaxial relationship between EuS & Bi 2 Se 3 Heterostructures grown on Al 2 O 3 (0001) 30 QL Bi 2 Se 3 with 10 nm EuS 10 QL Bi 2 Se 3 with 3 nm EuS 5 QL Bi 2 Se 3 with 1 nm EuS 5 QL Bi 2 Se 3 Bi 2 Se 3 (0001) // Al 2 O 3 (0001) EuS (111) // Bi 2 Se 3 (0001) 8 Managed by UT-Battelle 8 Presentation_name

9 M [emu/cm3] Strong interface magnetization SQUID EuS = 1 nm Bi 2 Se 3 = 20 nm In-plane Out-of-plane 200 H // surface H surface In-plane Out-of-plane 5 K Field [Oe] All samples display ferromagnetism Out-of-plane remanance ratio does not depend on thicknesses > > evidence that the out-of-plane component is at the interface 9 Managed by UT-Battelle 9 Presentation_name for the U.S. Department of Energy APS meeting, Denver, March 3 7, 2014

10 Samples for PNR experiments Al 2 O 3 /EuS/Bi 2 Se 3 //Al 2 O 3 MBE with a base pressure of Torr on substrates Al 2 O 3 EuS (5 nm)bi 2 Se 3 (5nm) EuS (5 nm)bi 2 Se 3 (10nm) EuS (5 nm)bi 2 Se 3 (20nm) EuS (5 nm) reference sample Al 2 O 3 EuS Bi 2 Se 3 sapphire Al 2 O 3 EuS Bi 2 Se 3 sapphire Sample size 20 X 20 mm 2 Al 2 O 3 EuS Bi 2 Se 3 sapphire 10 Managed by UT-Battelle 10 Presentation_name

11 Spallation Neutron Source, ORNL,TN 11 Managed by UT-Battelle 11 Presentation_name for the U.S. Department of Energy Advances in Polarized Neutron Reflectometry, Bochum, July 3 4, 2013

12 Magnetism Reflectometer at SNS 3He analyzer SM FAN analyzer Magnet SM Polarizer Detector Displex 12 Managed by UT-Battelle 12 Presentation_name for the U.S. Department of Energy APS meeting, Denver, March 3 7, 2014

13 Magnetism Reflectometer at SNS High intensity sample size 5x5 mm 2 Low background 10-8 High polarization 98.5% Polarization analysis H Sample rotation 360 deg Polarized and unpolarized beam Fast laser pre-alignment Efficient thermal cycling (5K 750K) Sample environment new features: Displex: In-situ annealing Sample rotation Bias voltage Magnetic Field 1.15 Tesla Electromagnet 1.15 Tesla (50 mm gap) 1.24 Tesla (46 mm gap) 2.40 Tesla (15 mm gap) Sample Temperature from 5K to750k insulating Al 2 O 3 rods 13 Managed by UT-Battelle 13 Presentation_name for the U.S. Department of Energy APS meeting, Denver, March 3 7, 2014

14 Polarized Neutron Reflectometry experiment on Al 2 O 3 /EuS/Bi2Se3//Al 2 O 3 Fermi pseudopotential: V ± = 2pħ/m N(b n ± b m ) Momentum transfer Q = 4psin a i /l Nb n structural composition Nb m absolute magnetization vector profile M! NIm b - absorption profile Perpendicular M Al 2 O 3 /EuS/Bi 2 Se 3 //Al 2 O 3 structure profile Al 2 O 3 /EuS/Bi 2 Se 3 //Al 2 O 3 magnetization profile Al 2 O 3 /EuS/Bi 2 Se 3 //Al 2 O 3 absorbtion profile 14 Managed by UT-Battelle 14 Presentation_name for the U.S. Department of Energy APS meeting, Denver, March 3 7, 2014

15 Configuration of PNR experiment probing the magnetic moment distribution inside Bi2Se3/EuS interface 15 Managed by UT-Battelle 15 Presentation_name

16 Magnetization 5 K Q = 4psin a i /l Spin-Asymmetry : SA = (R + - R - )/(R + + R - ) 16 Managed by UT-Battelle 16 Presentation_name

17 Absorption effect R+ & R no absorbtion Absorption: Im part of the SLD provides additional information about Eu distribution No Eu atoms are determined in Bi 2 Se 3 Al 2 O 3 /EuS/Bi 2 Se 3 //Al 2 O 3 structure profile Al 2 O 3 /EuS/Bi 2 Se 3 //Al 2 O 3 magnetization profile Al 2 O 3 /EuS/Bi 2 Se 3 //Al 2 O 3 absorbtion profile 17 Managed by UT-Battelle 17 Presentation_name

18 Magnetization 50,75,120,300 K Magnetization behavior of bilayers (10 QL/ 5 nm) Non-zero magnetization present in the 2 QL Bi 2 Se 3 interfacial layer also penetrates into the EuS layer Magnetization reduced by an order of magnitude at higher temperatures No magnetization was detected above ~50 K in the pure EuS film. 18 Managed by UT-Battelle 18 Presentation_name

19 Reference Sample - EuS//Sapphire EuS (5nm) Sapphire 19 Managed by UT-Battelle 19 Presentation_name

20 PNR: Magnetic moment distribution EuS PNR measures In-plane projection of M 2 ML EuS 1 st QL Bi 2 Se 3 2 nd QL Bi 2 Se 3 Bi 2 Se 3 At the interface EuS/Bi 2 Se 3, the strong spin-orbit coupling affects anisotropy direction, leading to an out-of-plane magnetic moment and results in generating a gap in the TI surface state 20 Managed by UT-Battelle 20 Presentation_name

21 M [emu/cm 3 ] M [emu/cm 3 ] SQUID magnetometry measurement Magnetization versus Temperature at various perpendicular applied fields K 100 K 150 K 200 K 300 K 370 K H surface H [Oe] K 100 K 150 K 200 K 300 K 370 K At the interface H [Oe] Large S-O interaction, the spin-momentum locking at Dirac surface state creates strong anisotropy and stabilizes the ferromagnetic state! -0.5 H surface 21 Managed by UT-Battelle 21 Presentation_name

22 LETTER Nature 17635, May 9, 2016 /doi: A high-temperature ferromagnetic topological insulating phase by proximity coupling Ferhat Katmis1,2,3*, Valeria Lauter4*, Flavio S. Nogueira5,6, Badih A. Assaf7,8, Michelle E. Jamer7, Peng Wei1,2,3, Biswarup Satpati9, John W. Freeland10, Ilya Eremin5, Don Heiman7, Pablo Jarillo-Herrero1 & Jagadeesh S. Moodera1,2,3 * Authors contributed equally to this work 22 Managed by UT-Battelle 22 Presentation_name

23 Results PNR - depth resolved vector magnetometry- measures the spatial distribution of magnetization at the buried interfaces of Bi 2 Se 3 /EuS bilayers and the detailed chemical composition of the heterostructre The magnetization in the interfacial 2 ML EuS layer has an outof-plane component. PNR provides evidence that Bi 2 Se 3 /EuS heterostructures exhibit proximity-induced interfacial magnetization in 3QL layer of Bi 2 Se 3 This effect originates through exchange interaction without structural perturbation at the interface Magnetism persists up to high T above the Tc of EuS Acknowledgements The work at SNS was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences and DOE

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface Ilya Eremin Theoretische Physik III, Ruhr-Uni Bochum Work done in collaboration with: F. Nogueira

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI:.38/NMAT4855 A magnetic heterostructure of topological insulators as a candidate for axion insulator M. Mogi, M. Kawamura, R. Yoshimi, A. Tsukazaki,

More information

Physics in Quasi-2D Materials for Spintronics Applications

Physics in Quasi-2D Materials for Spintronics Applications Physics in Quasi-2D Materials for Spintronics Applications Topological Insulators and Graphene Ching-Tzu Chen IBM TJ Watson Research Center May 13, 2016 2016 C-SPIN Topological Spintronics Device Workshop

More information

High-precision observation of nonvolatile quantum anomalous Hall effect

High-precision observation of nonvolatile quantum anomalous Hall effect High-precision observation of nonvolatile quantum anomalous Hall effect The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface Pramod Verma Indian Institute of Science, Bangalore 560012 July 24, 2014 Pramod Verma

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Region mapping. a Pristine and b Mn-doped Bi 2 Te 3. Arrows point at characteristic defects present on the pristine surface which have been used as markers

More information

FIG. 1: (Supplementary Figure 1: Large-field Hall data) (a) AHE (blue) and longitudinal

FIG. 1: (Supplementary Figure 1: Large-field Hall data) (a) AHE (blue) and longitudinal FIG. 1: (Supplementary Figure 1: Large-field Hall data) (a) AHE (blue) and longitudinal MR (red) of device A at T =2 K and V G - V G 0 = 100 V. Bold blue line is linear fit to large field Hall data (larger

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

Direct measurement of proximity-induced magnetism at the buried interface

Direct measurement of proximity-induced magnetism at the buried interface Direct measurement of proximity-induced magnetism at the buried interface between a topological insulator and a ferromagnet Changmin Lee 1, Ferhat Katmis 1,2, Pablo Jarillo-Herrero 1, Jagadeesh S. Moodera

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure Yabin Fan, 1,,* Pramey Upadhyaya, 1, Xufeng Kou, 1, Murong Lang, 1 So Takei, 2 Zhenxing

More information

Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers)

Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers) Time - domain THz spectroscopy on the topological insulator Bi2Se3 (and its superconducting bilayers) N. Peter Armitage The Institute of Quantum Matter The Johns Hopkins University Acknowledgements Liang

More information

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Marino Marsi Laboratoire de Physique des Solides CNRS Univ. Paris-Sud - Université Paris-Saclay IMPACT, Cargèse, August 26

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures

Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures Qing Lin He 1 *, Xufeng Kou 1, Alexander J. Grutter 2, Gen Yin 1, Lei Pan 1, Xiaoyu Che 1, Yuxiang Liu 1,

More information

Tailoring Exchange Couplings in Magnetic Topological. Insulator/Antiferromagnet Heterostructures

Tailoring Exchange Couplings in Magnetic Topological. Insulator/Antiferromagnet Heterostructures Tailoring Exchange Couplings in Magnetic Topological Insulator/Antiferromagnet Heterostructures Qing Lin He 1, Xufeng Kou 1, Alexander J. Grutter 2, Lei Pan 1, Xiaoyu Che 1, Yuxiang Liu 1, Tianxiao Nie

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2014.16 Electrical detection of charge current-induced spin polarization due to spin-momentum locking in Bi 2 Se 3 by C.H. Li, O.M.J. van t Erve, J.T. Robinson,

More information

An Overview of Spintronics in 2D Materials

An Overview of Spintronics in 2D Materials An Overview of Spintronics in 2D Materials Wei Han ( 韩伟 ) 1 2014 ICQM Outline I. Introduction to spintronics (Lecture I) II. Spin injection and detection in 2D (Lecture I) III. Putting magnetic moment

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Magnetic field spectrum of the correlated 2D electron system: Electron interactions lead to a range of manifestations 10? = 4? = 2 Resistance (arb.

More information

InAs/GaSb A New Quantum Spin Hall Insulator

InAs/GaSb A New Quantum Spin Hall Insulator InAs/GaSb A New Quantum Spin Hall Insulator Rui-Rui Du Rice University 1. Old Material for New Physics 2. Quantized Edge Modes 3. Andreev Reflection 4. Summary KITP Workshop on Topological Insulator/Superconductor

More information

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures Hyunsoo Yang Electrical and Computer Engineering, National University of Singapore eleyang@nus.edu.sg Outline Spin-orbit torque (SOT) engineering

More information

Quantum anomalous Hall states on decorated magnetic surfaces

Quantum anomalous Hall states on decorated magnetic surfaces Quantum anomalous Hall states on decorated magnetic surfaces David Vanderbilt Rutgers University Kevin Garrity & D.V. Phys. Rev. Lett.110, 116802 (2013) Recently: Topological insulators (TR-invariant)

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal. and E. D. Dahlberg 3. Abstract

Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal. and E. D. Dahlberg 3. Abstract Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal W.-T. Lee 1, S. G. E. te Velthuis 2, G. P. Felcher 2, F. Klose 1, T. Gredig 3, and E. D. Dahlberg 3. 1 Spallation Neutron Source,

More information

Stripes developed at the strong limit of nematicity in FeSe film

Stripes developed at the strong limit of nematicity in FeSe film Stripes developed at the strong limit of nematicity in FeSe film Wei Li ( ) Department of Physics, Tsinghua University IASTU Seminar, Sep. 19, 2017 Acknowledgements Tsinghua University Prof. Qi-Kun Xue,

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Probing Magnetic Order with Neutron Scattering

Probing Magnetic Order with Neutron Scattering Probing Magnetic Order with Neutron Scattering G.J. Mankey, V.V. Krishnamurthy, F.D. Mackey and I. Zoto University of Alabama in collaboration with J.L. Robertson and M.L. Crow Oak Ridge National Laboratory

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor

Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor www.sciencemag.org/cgi/content/full/332/6036/1410/dc1 Supporting Online Material for Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor Can-Li Song, Yi-Lin Wang, Peng Cheng, Ye-Ping

More information

Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator

Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator J. G. Checkelsky, 1, R. Yoshimi, 1 A. Tsukazaki, 2 K. S. Takahashi, 3 Y. Kozuka, 1 J. Falson,

More information

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material Mahendra DC 1, Mahdi Jamali 2, Jun-Yang Chen 2, Danielle

More information

New materials for high- efficiency spin-polarized. polarized electron source

New materials for high- efficiency spin-polarized. polarized electron source New materials for high- efficiency spin-polarized polarized electron source A. Janotti Metals and Ceramics Division, Oak Ridge National Laboratory, TN In Collaboration with S.-H. Wei, National Renewable

More information

Crossover between Weak Antilocalization and Weak Localization of Bulk States

Crossover between Weak Antilocalization and Weak Localization of Bulk States Correspondence and requests for materials should be addressed to jianwangphysics@pku.edu.cn (Jian Wang) and kehe@aphy.iphy.ac.cn (Ke He) Crossover between Weak Antilocalization and Weak Localization of

More information

Second Harmonic Generation Imaging of a Magnetic Topological Insulator

Second Harmonic Generation Imaging of a Magnetic Topological Insulator Wellesley College Wellesley College Digital Scholarship and Archive Honors Thesis Collection 2016 Second Harmonic Generation Imaging of a Magnetic Topological Insulator Carina Belvin cbelvin@wellesley.edu

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Room temperature spin-orbit torque switching induced by a

Room temperature spin-orbit torque switching induced by a Room temperature spin-orbit torque switching induced by a topological insulator Jiahao Han 1, A. Richardella 2, Saima Siddiqui 1, Joseph Finley 1, N. Samarth 2 and Luqiao Liu 1* 1 Department of Electrical

More information

Electronic Properties of Lead Telluride Quantum Wells

Electronic Properties of Lead Telluride Quantum Wells Electronic Properties of Lead Telluride Quantum Wells Liza Mulder Smith College 2013 NSF/REU Program Physics Department, University of Notre Dame Advisors: Profs. Jacek Furdyna, Malgorzata Dobrowolska,

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

Magnetism and Magnetic Materials

Magnetism and Magnetic Materials Chapter 2 Magnetism and Magnetic Materials 韩伟 量子材料科学中心 2015 年 9 月 27 日 2014 ICQM 提纲 1. Introduction to magnetism 2. How to induce magnetic moment 3. How to control magnetization 2 Review of last class

More information

Exciton in the Topological Kondo Insulator SmB 6

Exciton in the Topological Kondo Insulator SmB 6 Exciton in the Topological Kondo Insulator SmB 6 Collin Broholm* Institute for Quantum Matter, Johns Hopkins University Quantum Condensed Matter Division, Oak Ridge National Laboratory *Supported by U.S.

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University Topological insulators and the quantum anomalous Hall state David Vanderbilt Rutgers University Outline Berry curvature and topology 2D quantum anomalous Hall (QAH) insulator TR-invariant insulators (Z

More information

Supplementary figures

Supplementary figures Supplementary figures Supplementary Figure 1. A, Schematic of a Au/SRO113/SRO214 junction. A 15-nm thick SRO113 layer was etched along with 30-nm thick SRO214 substrate layer. To isolate the top Au electrodes

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM

Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors. Khashayar Khazen Condensed Matter National Lab-IPM Xray Magnetic Circular Dichroism Investigation in Ferromagnetic Semiconductors Khashayar Khazen Condensed Matter National Lab-IPM IPM School of Physics School of Nano Condensed Matter National Lab Technology:

More information

single-layer transition metal dichalcogenides MC2

single-layer transition metal dichalcogenides MC2 single-layer transition metal dichalcogenides MC2 Period 1 1 H 18 He 2 Group 1 2 Li Be Group 13 14 15 16 17 18 B C N O F Ne 3 4 Na K Mg Ca Group 3 4 5 6 7 8 9 10 11 12 Sc Ti V Cr Mn Fe Co Ni Cu Zn Al Ga

More information

Y. S. Hou, and R. Q. Wu Department of Physics and Astronomy, University of California, Irvine, CA , USA

Y. S. Hou, and R. Q. Wu Department of Physics and Astronomy, University of California, Irvine, CA , USA Magnetize Topological Surface States of Bi 2 Se 3 with a CrI 3 Monolayer Y. S. Hou, and R. Q. Wu Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575, USA Abstract To magnetize

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor 1. Surface morphology of InP substrate and the device Figure S1(a) shows a 10-μm-square

More information

LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb

LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb LOW-TEMPERATURE Si (111) HOMOEPITAXY AND DOPING MEDIATED BY A MONOLAYER OF Pb O.D. DUBON, P.G. EVANS, J.F. CHERVINSKY, F. SPAEPEN, M.J. AZIZ, and J.A. GOLOVCHENKO Division of Engineering and Applied Sciences,

More information

Coulomb Drag in Graphene

Coulomb Drag in Graphene Graphene 2017 Coulomb Drag in Graphene -Toward Exciton Condensation Philip Kim Department of Physics, Harvard University Coulomb Drag Drag Resistance: R D = V 2 / I 1 Onsager Reciprocity V 2 (B)/ I 1 =

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. M. Ehlert 1, C. Song 1,2, M. Ciorga 1,*, M. Utz 1, D. Schuh 1, D. Bougeard 1, and D. Weiss 1 1 Institute of Experimental

More information

Optical studies of current-induced magnetization

Optical studies of current-induced magnetization Optical studies of current-induced magnetization Virginia (Gina) Lorenz Department of Physics, University of Illinois at Urbana-Champaign PHYS403, December 5, 2017 The scaling of electronics John Bardeen,

More information

Chiral Majorana fermion from quantum anomalous Hall plateau transition

Chiral Majorana fermion from quantum anomalous Hall plateau transition Chiral Majorana fermion from quantum anomalous Hall plateau transition Phys. Rev. B, 2015 王靖复旦大学物理系 wjingphys@fudan.edu.cn Science, 2017 1 Acknowledgements Stanford Biao Lian Quan Zhou Xiao-Liang Qi Shou-Cheng

More information

Magnetotransport of Topological Insulators: Bismuth Selenide and Bismuth Telluride

Magnetotransport of Topological Insulators: Bismuth Selenide and Bismuth Telluride Magnetotransport of Topological Insulators: Bismuth Selenide and Bismuth Telluride Justin Kelly 2011 NSF/REU Program Physics Department, University of Notre Dame Advisors: Prof. Malgorzata Dobrowolska,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NMAT3449 Topological crystalline insulator states in Pb 1 x Sn x Se Content S1 Crystal growth, structural and chemical characterization. S2 Angle-resolved photoemission measurements at various

More information

arxiv: v2 [cond-mat.mtrl-sci] 20 Apr 2018

arxiv: v2 [cond-mat.mtrl-sci] 20 Apr 2018 Direct evidence of ferromagnetism in a quantum anomalous Hall system Wenbo Wang, 1 Yunbo Ou, 2 Chang Liu, 2 Yayu Wang, 2, 3 Ke He, 2, 3 Qi-kun Xue, 2, 3 and 1, a) Weida Wu 1) Department of Physics and

More information

Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum Wells

Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum Wells Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 5 Proc. XXXVII International School of Semiconducting Compounds, Jaszowiec 2008 Ferroelectric Field Effect Transistor Based on Modulation Doped CdTe/CdMgTe Quantum

More information

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE-

SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- SUPPLEMENTARY NOTE 1: ANISOTROPIC MAGNETORESISTANCE PHE- NOMENOLOGY In the main text we introduce anisotropic magnetoresistance (AMR) in analogy to ferromagnets where non-crystalline and crystalline contributions

More information

Visualizing ferromagnetic domain behavior of magnetic topological insulator thin films

Visualizing ferromagnetic domain behavior of magnetic topological insulator thin films www.nature.com/npjquantmats ARTICLE OPEN Visualizing ferromagnetic domain behavior of magnetic topological insulator thin films Wenbo Wang 1, Cui-Zu Chang 2, Jagadeesh S Moodera 2 and Weida Wu 1 A systematic

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013)

SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013) SYED AMMAL ENGINEERING COLLEGE: RAMANATHAPURAM Dr.E.M.Abdullah Campus DEPARTMENT OF PHYSICS Question Bank Engineering physics II PH6251 (R-2013) PART A UNIT-I Conducting Materials 1. What are the classifications

More information

1 Corresponding author:

1 Corresponding author: Scanning Tunneling Microscopy Study of Cr-doped GaN Surface Grown by RF Plasma Molecular Beam Epitaxy Muhammad B. Haider, Rong Yang, Hamad Al-Brithen, Costel Constantin, Arthur R. Smith 1, Gabriel Caruntu

More information

Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect

Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect Nuclear resonant scattering of synchrotron radiation: a novel approach to the Mössbauer effect Johan Meersschaut Instituut voor Kern- en Stralingsfysica, Katholieke Universiteit Leuven, Belgium Johan.Meersschaut@fys.kuleuven.be

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Reversible Electric Control of Exchange Bias in a Multiferroic Field Effect Device S. M. Wu 1, 2, Shane A. Cybart 1, 2, P. Yu 1, 2, M. D. Abrodos 1, J. Zhang 1, R. Ramesh 1, 2

More information

Making Semiconductors Ferromagnetic: Opportunities and Challenges

Making Semiconductors Ferromagnetic: Opportunities and Challenges Making Semiconductors Ferromagnetic: Opportunities and Challenges J.K. Furdyna University of Notre Dame Collaborators: X. Liu and M. Dobrowolska, University of Notre Dame T. Wojtowicz, Institute of Physics,

More information

High Temperature Ferromagnetism in GaAs-based Heterostructures. with Mn Delta Doping

High Temperature Ferromagnetism in GaAs-based Heterostructures. with Mn Delta Doping High Temperature Ferromagnetism in GaAs-based Heterostructures with Mn Delta Doping A. M. Nazmul, 1,2 T. Amemiya, 1 Y. Shuto, 1 S. Sugahara, 1 and M. Tanaka 1,2 1. Department of Electronic Engineering,

More information

Intrinsic Electronic Transport Properties of High. Information

Intrinsic Electronic Transport Properties of High. Information Intrinsic Electronic Transport Properties of High Quality and MoS 2 : Supporting Information Britton W. H. Baugher, Hugh O. H. Churchill, Yafang Yang, and Pablo Jarillo-Herrero Department of Physics, Massachusetts

More information

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś Spin-orbit effects in graphene and graphene-like materials Józef Barnaś Faculty of Physics, Adam Mickiewicz University, Poznań & Institute of Molecular Physics PAN, Poznań In collaboration with: A. Dyrdał,

More information

Topological Heterostructures by Molecular Beam Epitaxy

Topological Heterostructures by Molecular Beam Epitaxy Topological Heterostructures by Molecular Beam Epitaxy Susanne Stemmer Materials Department, University of California, Santa Barbara Fine Lecture, Northwestern University February 20, 2018 Stemmer Group

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser Heusler compounds: Tunable materials with non trivial topologies Claudia Felser Tunability of Heusler compounds Tuning the band gap Tuning spin orbit coupling Trivial and topological Heusler Adding spins

More information

Anisotropic spin splitting in InGaAs wire structures

Anisotropic spin splitting in InGaAs wire structures Available online at www.sciencedirect.com Physics Physics Procedia Procedia 3 (010) 00 (009) 155 159 000 000 14 th International Conference on Narrow Gap Semiconductors and Systems Anisotropic spin splitting

More information

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003 arxiv:cond-mat/0305637v1 [cond-mat.supr-con] 28 May 2003 The superconducting state in a single CuO 2 layer: Experimental findings and scenario Rushan Han, Wei Guo School of Physics, Peking University,

More information

Surface Plasmon Resonance. Magneto-optical. optical enhancement and other possibilities. Applied Science Department The College of William and Mary

Surface Plasmon Resonance. Magneto-optical. optical enhancement and other possibilities. Applied Science Department The College of William and Mary Surface Plasmon Resonance. Magneto-optical optical enhancement and other possibilities Applied Science Department The College of William and Mary Plasmonics Recently surface plasmons have attracted significant

More information

In order to determine the energy level alignment of the interface between cobalt and

In order to determine the energy level alignment of the interface between cobalt and SUPPLEMENTARY INFORMATION Energy level alignment of the CuPc/Co interface In order to determine the energy level alignment of the interface between cobalt and CuPc, we have performed one-photon photoemission

More information

Italian School of Magnetism

Italian School of Magnetism Spintronics I 1. Introduction 3. Mott paradigm: two currents model 4. Giant MagnetoResistance: story and basic principles 5. Semiclassical model for CIP GMR Italian School of Magnetism Prof. Riccardo Bertacco

More information

0.002 ( ) R xy

0.002 ( ) R xy a b z 0.002 x H y R xy () 0.000-0.002 0 90 180 270 360 (degree) Supplementary Figure 1. Planar Hall effect resistance as a function of the angle of an in-plane field. a, Schematic of the planar Hall resistance

More information

Spin-resolved photoelectron spectroscopy

Spin-resolved photoelectron spectroscopy Spin-resolved photoelectron spectroscopy Application Notes Spin-resolved photoelectron spectroscopy experiments were performed in an experimental station consisting of an analysis and a preparation chamber.

More information

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells

New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells New Quantum Transport Results in Type-II InAs/GaSb Quantum Wells Wei Pan Sandia National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Aharonov-Bohm interference in topological insulator nanoribbons Hailin Peng 1,2, Keji Lai 3,4, Desheng Kong 1, Stefan Meister 1, Yulin Chen 3,4,5, Xiao-Liang Qi 4,5, Shou- Cheng

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Outline: I. Introduction: materials, transport, Hall effects II. III. IV. Composite particles FQHE, statistical transformations Quasiparticle charge

More information

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function of temperature (T) at zero magnetic field. (b) Magnetoresistance

More information

InAs/GaSb A New 2D Topological Insulator

InAs/GaSb A New 2D Topological Insulator InAs/GaSb A New 2D Topological Insulator 1. Old Material for New Physics 2. Quantized Edge Modes 3. Adreev Reflection 4. Summary Rui-Rui Du Rice University Superconductor Hybrids Villard de Lans, France

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Band structure engineering in (Bi 1-x Sb x ) 2 Te 3 ternary topological insulators

Band structure engineering in (Bi 1-x Sb x ) 2 Te 3 ternary topological insulators Band structure engineering in (Bi 1-x Sb x ) 2 Te 3 ternary topological insulators Jinsong Zhang 1,*, Cui-Zu Chang 1,2*, Zuocheng Zhang 1, Jing Wen 1, Xiao Feng 2, Kang Li 2, Minhao Liu 1, Ke He 2,, Lili

More information

Electric-field control of spin-orbit torque in a magnetically doped topological. insulator

Electric-field control of spin-orbit torque in a magnetically doped topological. insulator Electric-field control of spin-orbit torque in a magnetically doped topological insulator Yabin Fan 1 *, Xufeng Kou 1, Pramey Upadhyaya 1, Qiming Shao 1, Lei Pan 1, Murong Lang 1, Xiaoyu Che 1, Jianshi

More information

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR) Ferromagnetism and Electronic Transport There are a number of effects that couple magnetization to electrical resistance. These include: Ordinary magnetoresistance (OMR) Anisotropic magnetoresistance (AMR)

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Experimental realization of an intrinsic magnetic topological insulator. Tsinghua University, Beijing , China

Experimental realization of an intrinsic magnetic topological insulator. Tsinghua University, Beijing , China Experimental realization of an intrinsic magnetic topological insulator Yan Gong 1, Jingwen Guo 1, Jiaheng Li 1, Kejing Zhu 1, Menghan Liao 1, Xiaozhi Liu 2, Qinghua Zhang 2, Lin Gu 2, Lin Tang 1, Xiao

More information