Prediction of Encapsulant Performance Toward Fatigue Properties of Flip Chip Ball Grid Array (FC-BGA) using Accelerated Thermal Cycling (ATC)

Size: px
Start display at page:

Download "Prediction of Encapsulant Performance Toward Fatigue Properties of Flip Chip Ball Grid Array (FC-BGA) using Accelerated Thermal Cycling (ATC)"

Transcription

1 Prediction of Encapsulant Performance Toward Fatigue Properties of Flip Chip Ball Grid Array (FC-BGA) using Accelerated Thermal Cycling (ATC) ZAINUDIN KORNAIN 1, AZMAN JALAR 2,3, SHAHRUM ABDULLAH 3, NOWSHAD AMIN 1 1 Department of Electrical, Electronics and System Engineering 2 School of Applied Physic 3 Institute of Microengineering and Nanoelectronics Universiti Kebangsaan Malaysia, Bangi 43650, Selangor MALAYSIA zkornain@gmail.com; azmn@ukm.my; shahrum@eng.ukm.my; Abstract: - The role of encapsulant or underfill is preserving solder joint reliability and protecting fragile low-k chip dielectric layers in Flip Chip Packaging. Traditionally, solder joints required stiff and rigid underfill. The compliant underfill properties such as low coefficient of thermal expansion (CTE), high stiffness (Young's modulus) and high glass transition temperature (Tg), needed for solder bump protection from fatigue failure. The aim of this study is to pre-evaluate the reliability performance of several commercial underfill materials for the protection against solder bumps in Flip Chip Ball Grid Array (FC- BGA) packages. Viscoplastic finite-element simulation methodologies are utilized to predict solder joint reliability under accelerated temperature cycling (ATC) conditions. The results from Finite Element Analysis (FEA) are summarized and discussed to characterize the performance of each underfill material. Key-Words: - FC-BGA; FEA; solder bump fatigue; thermal stress 1 Introduction Flip Chip method becomes popular technology in electronic packaging industry because of small package size and high electrical performance. Flip Chip technology is a face-down attachment of the active side of the silicon die onto the substrate. This technology using solder bump as connector between silicon die and substrate as prominently referred as Controlled Collapse Chip Connection or C4 [1]. The generic configuration of the C4 package is schematically shown in Fig. 1.. Fig.1 Generic Configuration of FC-BGA One of a major concern of fatigue properties of flip-chip technology is the thermal mechanical fatigue life of the C4 solder joints. This thermal mechanical issue mainly arises from the coefficient of thermal expansion (CTE) mismatch between the silicon chip (2.5 ppm/ C) and the substrate (4 10 ppm/ C for ceramics and ppm/ C for organic). As the distance from the neutral point (DNP) increases, the shear stress at the solder joints increases accordingly. So with the increase in the chip size, the thermal mechanical reliability becomes a critical issue [2]. The invention of underfill was one of the most innovative developments to reduce the thermal mechanical stress between silicon die and substrate. Underfill is a liquid encapsulate, usually epoxy resins heavily filled with SiO, that is applied between the chip and the substrate after flip-chip interconnection. Upon curing, the hardened underfill exhibits high modulus, low CTE matching that of the solder joint, low moisture absorption, and good adhesion towards the chip and the substrate. Thermal stresses on the solder joints due to accelerated thermal cycle test (ATC) are redistributed among the chip, underfill, substrate, and all the solder joints, instead of concentrating on the peripheral joints. It has been demonstrated that the application of underfill can reduce the all- ISSN: ISBN:

2 important solder strain level to of the strain in joints, which are not encapsulated [3]. Therefore, underfill can increase the solder joint fatigue life by 10 to 100 times. However, due to uncertain performance of underfill material, it was found in electronic packaging manufacturer the failure occurred in solder bumps of FC-BGA after accelerated thermal cycling (ATC) reliability test. Fig. 2 shows the condition of bump crack after ATC captured by Scanning Electroscopic Electron (SEM). After certain study, the suitability of current underfill material in production was found as one of major factor to the failure. Therefore the needs of new replacement of underfill have to take place in order to overcome the problems. two CTE values before and after the glass transition temperature Tg, CTE 1 for T < Tg and CTE 2 for T > Tg, are usually provided by experimental results for polymer materials, the ANSYS definition of the mean or effective expansion coefficient was used for the implementation [3]: Eff.CTE ( Tg T1 ) CTE1 + ( T2 Tg) CTE2 = T T (1) where T 2 is the stress-free or reference temperature of the component being modeled. As T 1 was a -40 o c and T 2 was the underfill s curing temperature (165 O C), the effective CTE for underfill was calculated and shown below : 2 1 Underfill Substrate Die Solder crack Fig.2 SEM captured on solder bump crack In this paper, a prediction of solder bump fatigue for various commercial underfill by using commercial FEA tool, Ansys is presented to identify favorable encapsulants for 33 x 33 mm 2 Flip Chip Ball Grid Array (FCBGA) packages under ATC conditions. 2 Material Characterization 2.1 Underfill Properties Seven different types of new commercial underfills have been selected based on proposed target properties range as stated in Tab. 1. Due to consistent test method compared with data obtained from suppliers, material analysis using dynamic mechanical analysis (DMA) and thermo-mechanical analysis (TMA) were conducted in-house for obtaining underfill material properties. Tab. 2 shows the themomechanical properties for all underfill whereas underfill H (font bolded) is current encapsulant used in production and regarded as control item for the whole comparison. While Table 1 Underfill thermomechanical properties Underfill CTE E (Gpa) (ppm/c) Tg UF A UF B UF C UF D UF E UF F UF G UF H Table 2 Material properties for components in package Component Young modulus E (GPa) CTE (ppm/ o C) Poisson Ratio Silicon Die Solder Bump (Pb90Sn10) Substrate Underfill Refer to Table 1 ISSN: ISBN:

3 2.2 Package for Simulation The dimensions of the chip under study were 14.5 mm x 11.9 x 0.75mm and fully populated with high lead solder bumps (Pb90Sn10) with standoff 65 µm. The dimension of the ceramic substrate was 33mm x 33mm x 1.2 m and the underfill fillet height is 100%. The material properties of all components in the package were taken from industry and are shown in Tab. 2. Fig. 3 is the model of the global package. 80 um 80 um 60um 9 um 15 um 65 um Fig. 4 Schematic diagram of solder bump \ Outermost Bump Fig.3 3D Quarter symmetry Model of FC-CBGA 3 Finite element analysis 3.1 Solder Ball Fatigue Model Viscoplastic finite-element simulation methodologies were utilized to predict solder ball joint reliability of the same size stacked die chip scale package under accelerated temperature cycling conditions (-40C to +125C, 15min ramps/15min dwells) [4]. T h e s c h e m a t i c o f solder bump is shown Fig. 4. Due to the complex physics that encompass this type of nonlinear transient finite element analysis, only a diagonal slice of the package was modeled in order to facilitate reasonable model run times. The utilization of slice model as shown in Fig. 5 assures that a worst-case situation was simulated where two rows of bumps near die corners were modeled[5]. The bumps (Pb90Sn10) were modeled with nonlinear, viscoplastic, time and temperature dependent material properties based on Darveaux's modified Anand's. The explanations on solder joint fatigue life prediction methodology by Darveaux can be referred elsewhere [6]. Fig. 5 3D slice model of two outermost bump 3.2 Simulation Thermal Loading Fig. 6 shows the cycles of temperature loading of the simulation based on JEDEC JESD22-A104 condition G. The dwell or ramp period was l5 minutes and the temperature load was ramped up and down between the high of 125 O C and the low of -40 O C with an increment of 10 O C for each load sub-step. The thermal load application was assumed to be uniform throughout the FEA model [5][6].. Temperature (C) Simulated Cycle of Thermal Loading (125C to -40C) Time (sec) Fig. 6 Thermal Cycle Loading for simulation ISSN: ISBN:

4 4 Result and Discussion The solder joint viscoplastic strain energy density accumulated per thermal cycle was used to evaluate the fatigue life of bump interconnects and usually referred as the amount of plastic work accumulated per cycle. The Von Mises stress (Sxy) and inelastic strain (W) after second cycle of thermal loading for UF H are exhibited in Fig. 7 and Fig. 8 respectively. It clearly shown that the maximum shear stress and inelastic strain energy density occurs near the outermost edge of the solder bump. All underfills show the same impact to the contour of thermal stress in solder bumps. The lower the inelastic strain energy density accumulated per TC cycle (ΔW), the longer the thermal fatigue life of the solder joint. Fig. 9 shows the contour of solder plastic work density after second cycle of ATC at - 40 C for UF H and again the outermost solder bump has it maximum value. Fig. 7 Solder Von Mises stress in 2nd cycle at -40C for UF H. Fig. 8 Solder Von Mises inelastic stain in 2nd cycle at -40C for UF H. UBM edge Fig.9 Solder plastic work density after 2 nd cycle at -40C for UF H Fig. 9 shows the contour of solder plastic work density after second cycle of ATC at -40 C for UF H and again the outermost solder bump has it maximum value. The comparison among underfill for its effect to solder fatigue life is shown in Fig. 10. From the result, it shows the type-a underfill generates the lowest solder work per cycle which indicates the lowest solder fatigue life among all underfills. The solder bump maximum stress located, it lies at the high-lead solder bump near Under Bump Metallization (UBM) edge. This UBM edge usually caused stress concentration by its geometry shape To compare the material properties, the type-a underfill owns the intermediate value of Young's modulus and highest Tg. It means the stiff material absorbs the most of thermal stress caused by CTE mismatch between silicon chip and substrate. Therefore, type-a underfill most reduces the stress transferred into bump. In type-f underfill, it owns high Young's modulus and lowest Tg so the solder fatigue life of type-c underfill is observably worst. The combination of low Tg and high Young s modulus certainly will not protect the bump from failure. By referring to the control item (UFH) which ranked middle position, the underfill such as UFA, UFB, UFD and UFG are the possible candidates to be substitute material. UFC, UFE and UFF are totally not considered due their worse performance than UFH. Instead of protecting bump from failure, underfill also need to protect fragile low-k layer in silicon die. This need low Young s modulus of material to protect this layer from delamination. Thus, the adequate underfill material selection ISSN: ISBN:

5 becomes very critical to protect both low-k chip and solder bumps at the same time. In this study, UFA is expected affect good reliability to both critical point of failure. Another analysis for effect of underfill upon low-k dielectric layer is needed to verify this prediction. Fig.10 Solder fatigue life versus various of underfill 5 Conclusion The effects of underfill material properties on the solder bump fatigue life of FC-BGA were studied in his this paper. Seven new underfills as optional material to substitute the existing material have been evaluated to find the most promise material to protect the high lead solder bump from cracking. It was found UF A with lowest Tg and moderate Young s modulus ranked as the best candidate to replace the current material. Three other candidate namely UFB, UFD and UFG also has good potential as replacement item. [3] S. Chungpaiboonpatana and F.G. Shi, Advanced HiCTE Ceramic Flip-Chipping of 90nm Cu/low-k device: A Novel Material, Package Structure, and Process Optimization Study, 55 th Electronics Component. and Technology Conference, 2005, pp [4] K.W. Shim and W.Y. Lo, Solder Fatigue Modeling of Flip-Chip Bumps in Molded Packages, 33 th International. Electronics Manufacturing Technology Conference, 2006, pp [5] H.U. Akay, H. Zhang, and N.H. Paydar, Experimental correlations of an energy-based fatigue life prediction method for solder joints, Journal of Advance in Electronics Packaging, vol. 2. No.34, 1997, pp [6] B.A. Zahn, Comprehensive solder fatigue and thermal characterization of a silicon based multi-chip module package utilizing finite element analysis methodologies, 9 th International. ANSYS Conference and Exhibition, 2000, pp [7] R. Darveaux, Effect of Simulation Methodology on Solder Joint Crack Growth Correlations, 50 th IEEE Electronics Component and Technology Conference, 2000, pp References: [1] L. Wang & C.P. Wong, Recent Advances in Underfill Technology for Flip-Chip, Ball Grid Array, and Chip Scale Package Applications, International Symposium on Electronic Materials & Packaging, 2000, pp [2] K. M. Chen, Effects of Underfill Materials on the Reliability of Low-k Flip Chip Packaging, Journal of Microelectronic Reliability, Vol.46, No.3, 2006, pp ISSN: ISBN:

Reliability assessment for Cu/Low-k structure based on bump shear modeling and simulation method

Reliability assessment for Cu/Low-k structure based on bump shear modeling and simulation method Reliability assessment for Cu/Low-k structure based on bump shear modeling and simulation method Abstract Bump shear is widely used to characterize interface strength of Cu/low-k structure. In this work,

More information

Thermal-Mechanical Analysis of a Different Leadframe Thickness of Semiconductor Package under the Reflow Process

Thermal-Mechanical Analysis of a Different Leadframe Thickness of Semiconductor Package under the Reflow Process American Journal of Applied Sciences 6 (4): 616-625, 2009 ISSN 1546-9239 2009 Science Publications Thermal-Mechanical Analysis of a Different Leadframe Thickness of Semiconductor Package under the Reflow

More information

Shorter Field Life in Power Cycling for Organic Packages

Shorter Field Life in Power Cycling for Organic Packages Shorter Field Life in Power Cycling for Organic Packages S. B. Park e-mail: sbpark@binghamton.edu Izhar Z. Ahmed Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton,

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS ii iii iv v vi vii

More information

ADVANCED BOARD LEVEL MODELING FOR WAFER LEVEL PACKAGES

ADVANCED BOARD LEVEL MODELING FOR WAFER LEVEL PACKAGES As originally published in the SMTA Proceedings ADVANCED BOARD LEVEL MODELING FOR WAFER LEVEL PACKAGES Tiao Zhou, Ph.D. Southern Methodist University Dallas, TX, USA tiaoz@smu.edu Zhenxue Han, Ph.D. University

More information

1 INTRODUCTION 2 SAMPLE PREPARATIONS

1 INTRODUCTION 2 SAMPLE PREPARATIONS Chikage NORITAKE This study seeks to analyze the reliability of three-dimensional (3D) chip stacked packages under cyclic thermal loading. The critical areas of 3D chip stacked packages are defined using

More information

Chapter 7 Mechanical Characterization of the Electronic Packages

Chapter 7 Mechanical Characterization of the Electronic Packages Chapter 7 Mechanical Characterization of the Electronic Packages 1 3 Thermal Mismatch Si (CTE=~3 ppm/c) Underfill (CTE=7 ppm/c) EU solder (CTE=5 ppm/c) Substrate (CTE=15~0 ppm/c) Thermal mismatch in electronic

More information

The Reliability Analysis and Structure Design for the Fine Pitch Flip Chip BGA Packaging

The Reliability Analysis and Structure Design for the Fine Pitch Flip Chip BGA Packaging The Reliability Analysis and Structure Design for the Fine Pitch Flip Chip BGA Packaging Chih-Tang Peng 1, Chang-Ming Liu 1, Ji-Cheng Lin 1, Kuo-Ning Chiang E-Mail: Knchiang@pme.nthu.edu.tw Department

More information

Woon-Seong Kwon Myung-Jin Yim Kyung-Wook Paik

Woon-Seong Kwon   Myung-Jin Yim Kyung-Wook Paik Woon-Seong Kwon e-mail: wskwon@kaist.ac.kr Myung-Jin Yim Kyung-Wook Paik Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology Daejon 305-701, Korea Suk-Jin

More information

FEM Analysis on Mechanical Stress of 2.5D Package Interposers

FEM Analysis on Mechanical Stress of 2.5D Package Interposers Hisada et al.: FEM Analysis on Mechanical Stress of 2.5D Package Interposers (1/8) [Technical Paper] FEM Analysis on Mechanical Stress of 2.5D Package Interposers Takashi Hisada, Toyohiro Aoki, Junko Asai,

More information

Mechanical Analysis Challenges in Micro-Electronic Packaging

Mechanical Analysis Challenges in Micro-Electronic Packaging Mechanical Analysis Challenges in Micro-Electronic Packaging Luke J. Garner, and Frank Z. Liang Intel Corporation Electrical and thermal performance enhancing features in modern integrated circuits have

More information

Temperature Cycling Analysis of Lead-Free Solder Joints in Electronic Packaging

Temperature Cycling Analysis of Lead-Free Solder Joints in Electronic Packaging Temperature Cycling Analysis of Lead-Free Solder Joints in Electronic Packaging Shan Li a,*, Zhenyu Huang a and Jianfeng Wang a,shaowu Gao b a Intel (Shanghai) Technology Development Ltd., Shanghai, China

More information

Simulation of the Influence of Manufacturing Quality on Thermomechanical Stress of Microvias

Simulation of the Influence of Manufacturing Quality on Thermomechanical Stress of Microvias As originally published in the IPC APEX EXPO Conference Proceedings. Simulation of the Influence of Manufacturing Quality on Thermomechanical Stress of Microvias Yan Ning, Michael H. Azarian, and Michael

More information

Key words Lead-free solder, Microelectronic packaging, RF packaging, RoHS compliant, Solder joint reliability, Weibull failure distribution

Key words Lead-free solder, Microelectronic packaging, RF packaging, RoHS compliant, Solder joint reliability, Weibull failure distribution Solder Joint Reliability Assessment for a High Performance RF Ceramic Package Paul Charbonneau, Hans Ohman, Marc Fortin Sanmina Corporation 500 Palladium Dr. Ottawa, Ontario K2V 1C2 Canada Ph: 613-886-6000;

More information

Critical Issues in Computational Modeling and Fatigue Life Analysisfor PBGA Solder Joints

Critical Issues in Computational Modeling and Fatigue Life Analysisfor PBGA Solder Joints Critical Issues in Computational Modeling and Fatigue Life Analysis for PBGA Solder Joints Critical Issues in Computational Modeling and Fatigue Life Analysisfor PBGA Solder Joints Xiaowu Zhang and S-W.

More information

Mechanical Simulations for Chip Package Interaction: Failure Mechanisms, Material Characterization, and Failure Data

Mechanical Simulations for Chip Package Interaction: Failure Mechanisms, Material Characterization, and Failure Data Mechanical Simulations for Chip Package Interaction: Failure Mechanisms, Material Characterization, and Failure Data Ahmer Syed Amkor Technology Enabling a Microelectronic World Outline Effect of Chip

More information

Reliability Evaluation Method for Electronic Device BGA Package Considering the Interaction Between Design Factors

Reliability Evaluation Method for Electronic Device BGA Package Considering the Interaction Between Design Factors Reliability Evaluation Method for Electronic Device BGA Package Considering the Interaction Between Design Factors Satoshi KONDO *, Qiang YU *, Tadahiro SHIBUTANI *, Masaki SHIRATORI * *Department of Mechanical

More information

Impact of Uneven Solder Thickness on IGBT Substrate Reliability

Impact of Uneven Solder Thickness on IGBT Substrate Reliability Impact of Uneven Solder Thickness on IGBT Substrate Reliability Hua Lu a, Chris Bailey a, Liam Mills b a Department of Mathematical Sciences, University of Greenwich 30 Park Row, London, SE10 9LS, UK b

More information

Drop Impact Reliability Test and Failure Analysis for Large Size High Density FOWLP Package on Package

Drop Impact Reliability Test and Failure Analysis for Large Size High Density FOWLP Package on Package 2017 IEEE 67th Electronic Components and Technology Conference Drop Impact Reliability Test and Failure Analysis for Large Size High Density FOWLP Package on Package Zhaohui Chen, Faxing Che, Mian Zhi

More information

Sensitivity analysis on the fatigue life of solid state drive solder joints by the finite element method and Monte Carlo simulation

Sensitivity analysis on the fatigue life of solid state drive solder joints by the finite element method and Monte Carlo simulation https://doi.org/10.1007/s00542-018-3819-0 (0456789().,-volV)(0456789().,-volV) TECHNICAL PAPER Sensitivity analysis on the fatigue life of solid state drive solder joints by the finite element method and

More information

F. G. Marín, D Whalley, H Kristiansen and Z. L. Zhang, Mechanical Performance of Polymer Cored BGA Interconnects, Proceedings of the 10th Electronics

F. G. Marín, D Whalley, H Kristiansen and Z. L. Zhang, Mechanical Performance of Polymer Cored BGA Interconnects, Proceedings of the 10th Electronics F. G. Marín, D Whalley, H Kristiansen and Z. L. Zhang, Mechanical Performance of Polymer Cored BGA Interconnects, Proceedings of the 1th Electronics Packaging Technology Conference, 28. Mechanical Performance

More information

Delamination Modeling for Power Packages and Modules. Rainer Dudek, R. Döring, S. Rzepka Fraunhofer ENAS, Micro Materials Center Chemnitz

Delamination Modeling for Power Packages and Modules. Rainer Dudek, R. Döring, S. Rzepka Fraunhofer ENAS, Micro Materials Center Chemnitz Delamination Modeling for Power Packages and Modules Rainer Dudek, R. Döring, S. Rzepka Fraunhofer ENAS, Micro Materials Center Chemnitz The Micro Materials Center @ Virtual Prototyping Finite Element

More information

Modelling Methodology for Linear Elastic Compound Modelling Versus Visco-Elastic Compound Modelling

Modelling Methodology for Linear Elastic Compound Modelling Versus Visco-Elastic Compound Modelling Modelling Methodology for Linear Elastic Compound Modelling Versus Visco-Elastic Compound Modelling R.B.R van Silfhout 1), J.G.J Beijer 1), Kouchi Zhang 1), W.D. van Driel 2) 1) Philips Applied Technologies,

More information

Cyclic Bend Fatigue Reliability Investigation for Sn-Ag-Cu Solder Joints

Cyclic Bend Fatigue Reliability Investigation for Sn-Ag-Cu Solder Joints Cyclic Bend Fatigue Reliability Investigation for Sn-Ag-Cu Solder Joints F.X. Che* 1, H.L.J. Pang 2, W.H. Zhu 1 and Anthony Y. S. Sun 1 1 United Test & Assembly Center Ltd. (UTAC) Packaging Analysis &

More information

THERMOMECHANICAL ANALYSIS OF ELECTRONIC PACKAGE USING FINITE ELEMENT METHOD

THERMOMECHANICAL ANALYSIS OF ELECTRONIC PACKAGE USING FINITE ELEMENT METHOD THERMOMECHANICAL ANALYSIS OF ELECTRONIC PACKAGE USING FINITE ELEMENT METHOD N.BhargavaRamudu 1, V. Nithin Kumar Varma 2, P.Ravi kiran 3, T.Venkata Avinash 4, Ch. Mohan Sumanth 5, P.Prasanthi 6 1,2,3,4,5,6

More information

THERMO-MECHANICAL RELIABILITY MODELS FOR LIFE PREDICTION OF BALL GRID ARRAYS ON CU-CORE. PCBs IN EXTREME ENVIRONMENTS

THERMO-MECHANICAL RELIABILITY MODELS FOR LIFE PREDICTION OF BALL GRID ARRAYS ON CU-CORE. PCBs IN EXTREME ENVIRONMENTS THERMO-MECHANICAL RELIABILITY MODELS FOR LIFE PREDICTION OF BALL GRID ARRAYS ON CU-CORE PCBs IN EXTREME ENVIRONMENTS Except where reference is made to the work of others, the work described in this thesis

More information

Four-point bending cycling as alternative for Thermal cycling solder fatigue testing

Four-point bending cycling as alternative for Thermal cycling solder fatigue testing Four-point bending as alternative for Thermal solder fatigue testing Bart Vandevelde a, Filip Vanhee b, Davy Pissoort b, Lieven Degrendele c, Johan De Baets c, Bart Allaert d, Ralph Lauwaert e, Riet Labie

More information

Mechanical Modelling of High Power Lateral IGBT for LED Driver Applications

Mechanical Modelling of High Power Lateral IGBT for LED Driver Applications Mechanical Modelling of High Power Lateral IGBT for LED Driver Applications C Bailey 1, P Rajaguru 1, H Lu 1, A Castellazzi 2, M. Antonini 2, V Pathirana 3, N Udugampola 3, F Udrea 3, P D Mitchelson 4,

More information

Ratcheting deformation in thin film structures

Ratcheting deformation in thin film structures Ratcheting deformation in thin film structures Z. SUO Princeton University Work with MIN HUANG, Rui Huang, Jim Liang, Jean Prevost Princeton University Q. MA, H. Fujimoto, J. He Intel Corporation Interconnect

More information

RELIABILITY ASSESSMENT OF SOLDER JOINT USING BGA PACKAGE MEGTRON 6 VERSUS FR4 PRINTED CIRCUIT BOARDS MUGDHA ANISH CHAUDHARI

RELIABILITY ASSESSMENT OF SOLDER JOINT USING BGA PACKAGE MEGTRON 6 VERSUS FR4 PRINTED CIRCUIT BOARDS MUGDHA ANISH CHAUDHARI RELIABILITY ASSESSMENT OF SOLDER JOINT USING BGA PACKAGE MEGTRON 6 VERSUS FR4 PRINTED CIRCUIT BOARDS by MUGDHA ANISH CHAUDHARI Presented to the Faculty of the Graduate School of The University of Texas

More information

Chapter 5: Ball Grid Array (BGA)

Chapter 5: Ball Grid Array (BGA) Chapter 5: Ball Grid Array (BGA) 5.1 Development of the Models The following sequence of pictures explains schematically how the FE-model of the Ball Grid Array (BGA) was developed. Initially a single

More information

314 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 2, MAY Wei Tan, I. Charles Ume, Ying Hung, and C. F. Jeff Wu

314 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 2, MAY Wei Tan, I. Charles Ume, Ying Hung, and C. F. Jeff Wu 314 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 33, NO. 2, MAY 2010 Effects of Warpage on Fatigue Reliability of Solder Bumps: Experimental and Analytical Studies Wei Tan, I. Charles Ume, Ying Hung,

More information

THE demand for plastic packages has increased due to

THE demand for plastic packages has increased due to 294 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 30, NO. 2, JUNE 2007 Predictive Model for Optimized Design Parameters in Flip-Chip Packages and Assemblies Seungbae Park, H. C. Lee,

More information

Next-Generation Packaging Technology for Space FPGAs

Next-Generation Packaging Technology for Space FPGAs Power Matters. Next-Generation Packaging Technology for Space FPGAs Microsemi Space Forum Russia November 2013 Raymond Kuang Director of Packaging Engineering, SoC Products Group Agenda CCGA (ceramic column

More information

Influence of Plating Quality on Reliability of Microvias

Influence of Plating Quality on Reliability of Microvias As originally published in the IPC APEX EXPO Conference Proceedings. Influence of Plating Quality on Reliability of Microvias Yan Ning, Michael H. Azarian, and Michael Pecht Center for Advanced Life Cycle

More information

Probability of Failure for the Thermal Fatigue Life of Solder Joints in BGA Packaging using FORM and MCS Methods

Probability of Failure for the Thermal Fatigue Life of Solder Joints in BGA Packaging using FORM and MCS Methods International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol:17 No:04 1 Probability of Failure for the Thermal Fatigue Life of Solder Joints in BGA Packaging using FORM and MCS Methods

More information

3D Thermal-Diffusion Analysis on a Moisture Loaded Epoxy Sample

3D Thermal-Diffusion Analysis on a Moisture Loaded Epoxy Sample Excerpt from the Proceedings of the COMSOL Conference 2010 Boston 3D Thermal-Diffusion Analysis on a Moisture Loaded Epoxy Sample S. Madduri* 1, W. Infantolino 2, and B.G.Sammakia 1 1 Department of Mechanical

More information

RELIABILITY STUDY OF POWER MODULE BY STOCHASTIC UNCERTAINTY METHOD FOR AN AERONAUTICAL APPLICATION

RELIABILITY STUDY OF POWER MODULE BY STOCHASTIC UNCERTAINTY METHOD FOR AN AERONAUTICAL APPLICATION 26 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES RELIABILITY STUDY OF POWER MODULE BY STOCHASTIC UNCERTAINTY METHOD FOR AN A. Micol a, T. Lhommeau b, R. Meuret c, C. Martin a, M. Mermet-Guyennet

More information

On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections

On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections Microelectronics Reliability 47 (27) 444 449 www.elsevier.com/locate/microrel On the difference between thermal cycling and thermal shock testing for board level reliability of soldered interconnections

More information

CLCC Solder Joint Life Prediction under Complex Temperature Cycling Loading

CLCC Solder Joint Life Prediction under Complex Temperature Cycling Loading CLCC Solder Joint Life Prediction under Complex Temperature Cycling Loading, Michael Osterman, and Michael Pecht Center for Advanced Life Cycle Engineering (CALCE) University of Maryland College Park,

More information

THERMO-MECHANICAL RELIABILITY MODELS FOR LIFE PREDICTION OF AREA ARRAY ELECTRONICS IN EXTREME ENVIRONMENTS

THERMO-MECHANICAL RELIABILITY MODELS FOR LIFE PREDICTION OF AREA ARRAY ELECTRONICS IN EXTREME ENVIRONMENTS THERMO-MECHANICAL RELIABILITY MODELS FOR LIFE PREDICTION OF AREA ARRAY ELECTRONICS IN EXTREME ENVIRONMENTS Except where reference is made to the work of others, the work described in this thesis is my

More information

APPLICABILITY OF VARIOUS Pb-FREE SOLDER JOINT ACCELERATION FACTOR MODELS

APPLICABILITY OF VARIOUS Pb-FREE SOLDER JOINT ACCELERATION FACTOR MODELS APPLICABILITY OF VARIOUS Pb-FREE SOLDER JOINT ACCELERATION FACTOR MODELS Ron Zhang Sun Microsystems Sunnyvale, CA, USA Jean-Paul Clech EPSI Inc. Montclair, NJ, USA ABSTRACT Pb-free solder joint acceleration

More information

Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr

Stress in Flip-Chip Solder Bumps due to Package Warpage -- Matt Pharr Stress in Flip-Chip Bumps due to Package Warpage -- Matt Pharr Introduction As the size of microelectronic devices continues to decrease, interconnects in the devices are scaling down correspondingly.

More information

Process Modeling and Thermal/Mechanical Behavior of ACA/ACF Type Flip-Chip Packages

Process Modeling and Thermal/Mechanical Behavior of ACA/ACF Type Flip-Chip Packages Process Modeling and Thermal/Mechanical Behavior of ACA/ACF Type Flip-Chip Packages K. N. Chiang Associate Professor e-mail: knchiang@pme.nthu.edu.tw C. W. Chang Graduate Student C. T. Lin Graduate Student

More information

An Experimental Validation of Modelling for Pb-free Solder Joint Reliability

An Experimental Validation of Modelling for Pb-free Solder Joint Reliability NPL Report MATC (A) 11 An Experimental Validation of Modelling for Pb-free Solder Joint Reliability Miloš Dušek, Jaspal Nottay and Christopher Hunt Hua Lu, Christopher Bailey, University of Greenwich October

More information

CHIP/PACKAGE CO-ANALYSIS OF THERMAL-INDUCED STRESS FOR FAN-OUT WAFER LEVEL PACKAGING

CHIP/PACKAGE CO-ANALYSIS OF THERMAL-INDUCED STRESS FOR FAN-OUT WAFER LEVEL PACKAGING CHIP/PACKAGE CO-ANALYSIS OF THERMAL-INDUCED STRESS FOR FAN-OUT WAFER LEVEL PACKAGING Stephen Pan, Zhigang Feng, Norman Chang ANSYS, Inc. San Jose, CA, USA stephen.pan, zhigang.feng, nchang@ansys.com ABSTRACT

More information

Drop Test Simulation of a BGA Package: Methods & Experimental Comparison

Drop Test Simulation of a BGA Package: Methods & Experimental Comparison Drop Test Simulation of a BGA Package: Methods & Experimental Comparison Chris Cowan, Ozen Engineering, Inc. Harvey Tran, Intel Corporation Nghia Le, Intel Corporation Metin Ozen, Ozen Engineering, Inc.

More information

Modal and Harmonic Response Analysis of PBGA and S-N Curve Creation of Solder Joints

Modal and Harmonic Response Analysis of PBGA and S-N Curve Creation of Solder Joints Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Modal and Harmonic Response Analysis of PBGA and S-N Curve Creation of Solder Joints 1 Yu Guo, 1 Kailin Pan, 1, 2 Xin Wang, 1, 2 Tao Lu and

More information

Copyright 2008 Year IEEE. Reprinted from IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 31, NO. 1, MARCH Such permission of

Copyright 2008 Year IEEE. Reprinted from IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 31, NO. 1, MARCH Such permission of Copyright 2008 Year IEEE. Reprinted from IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 31, NO. 1, MARCH 2008. Such permission of the IEEE does not in any way imply IEEE endorsement of

More information

Reliability analysis of different structure parameters of PCBA under drop impact

Reliability analysis of different structure parameters of PCBA under drop impact Journal of Physics: Conference Series PAPER OPEN ACCESS Reliability analysis of different structure parameters of PCBA under drop impact To cite this article: P S Liu et al 2018 J. Phys.: Conf. Ser. 986

More information

MICROCSP is an ADI wafer level chip scale package, the

MICROCSP is an ADI wafer level chip scale package, the IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 28, NO. 3, SEPTEMBER 2005 441 Effect of Geometry and Temperature Cycle on the Reliability of WLCSP Solder Joints Satish C. Chaparala, Brian

More information

Assessment of Soft Errors due to Alpha Emissions from Presolder on Flip Chip Devices Rick Wong, Shi-Jie Wen, Peng Su, Li Li 10/30/09

Assessment of Soft Errors due to Alpha Emissions from Presolder on Flip Chip Devices Rick Wong, Shi-Jie Wen, Peng Su, Li Li 10/30/09 Assessment of Soft Errors due to Alpha Emissions from Presolder on Flip Chip Devices Rick Wong, Shi-Jie Wen, Peng Su, Li Li 10/30/09 1 Introduction Cause of Soft errors a. Ion creates electron hole pairs

More information

Impact of BGA Warpage on Quality. Mike Varnau

Impact of BGA Warpage on Quality. Mike Varnau Impact of BGA Warpage on Quality Mike Varnau 5-11-06 Contents What is a Ball in Cup Failure Case Study Background Problem Identification Solution Results Assembly Related Factors Causing Ball in Cup Component

More information

Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs)

Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs) Manuscript for Review Thermo-structural Model of Stacked Field-programmable Gate Arrays (FPGAs) with Through-silicon Vias (TSVs) Journal: Electronics Letters Manuscript ID: draft Manuscript Type: Letter

More information

Ultrasonic Anisotropic Conductive Films (ACFs) Bonding of Flexible Substrates on Organic Rigid Boards at Room Temperature

Ultrasonic Anisotropic Conductive Films (ACFs) Bonding of Flexible Substrates on Organic Rigid Boards at Room Temperature Ultrasonic Anisotropic Conductive Films (ACFs) Bonding of Flexible Substrates on Organic Rigid Boards at Room Temperature Kiwon Lee, Hyoung Joon Kim, Il Kim, and Kyung Wook Paik Nano Packaging and Interconnect

More information

Thermo-Mechanical Reliability of Micro- Interconnects in Three-Dimensional Integrated Circuits: Modeling and Simulation

Thermo-Mechanical Reliability of Micro- Interconnects in Three-Dimensional Integrated Circuits: Modeling and Simulation Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2010 Thermo-Mechanical Reliability of Micro- Interconnects in Three-Dimensional Integrated Circuits: Modeling

More information

The Increasing Importance of the Thermal Management for Modern Electronic Packages B. Psota 1, I. Szendiuch 1

The Increasing Importance of the Thermal Management for Modern Electronic Packages B. Psota 1, I. Szendiuch 1 Ročník 2012 Číslo VI The Increasing Importance of the Thermal Management for Modern Electronic Packages B. Psota 1, I. Szendiuch 1 1 Department of Microelectronics, Faculty of Electrical Engineering and

More information

A Micromechanics-Based Vapor Pressure Model in Electronic Packages

A Micromechanics-Based Vapor Pressure Model in Electronic Packages X. J. Fan 1 Philips Research USA, 345 Scarborough Road, Briarcliff Manor, NY 10510 e-mail: xuejun.fan@ieee.org J. Zhou Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710 e-mail:

More information

Flip Chip Reliability

Flip Chip Reliability Flip Chip Reliability P e t e r B o r g e s e n, P h. D., S u r face Mount Laboratory, Corporation, Binghamton, New York 13902-0825 Daniel Blass, Sur f a c e M o u n t L a b o r a t o r y, U n i v e r

More information

Thermal-Cyclic Fatigue Life Analysis and Reliability Estimation of a FCCSP based on Probabilistic Design Concept

Thermal-Cyclic Fatigue Life Analysis and Reliability Estimation of a FCCSP based on Probabilistic Design Concept Copyright 2013 Tech Science Press CMC, vol.36, no.2, pp.155-176, 2013 Thermal-Cyclic Fatigue Life Analysis and Reliability Estimation of a FCCSP based on Probabilistic Design Concept Yao Hsu 1, Chih-Yen

More information

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance

Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance Thermal Characterization of Packaged RFIC, Modeled vs. Measured Junction to Ambient Thermal Resistance Steven Brinser IBM Microelectronics Abstract Thermal characterization of a semiconductor device is

More information

A Note on Suhir s Solution of Thermal Stresses for a Die-Substrate Assembly

A Note on Suhir s Solution of Thermal Stresses for a Die-Substrate Assembly M. Y. Tsai e-mail: mytsai@mail.cgu.edu.tw C. H. Hsu C. N. Han Department of Mechanical Engineering, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan 333, ROC A Note on Suhir s Solution of Thermal Stresses

More information

Available online at ScienceDirect. XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17)

Available online at   ScienceDirect. XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 74 ( 2014 ) 165 169 XVII International Colloquium on Mechanical Fatigue of Metals (ICMFM17) Fatigue of Solder Interconnects

More information

Design of Power Electronics Reliability: A New, Interdisciplinary Approach. M.C. Shaw. September 5, 2002

Design of Power Electronics Reliability: A New, Interdisciplinary Approach. M.C. Shaw. September 5, 2002 Design of Power Electronics Reliability: A New, Interdisciplinary Approach M.C. Shaw September 5, 2002 Physics Department California Lutheran University 60 W. Olsen Rd, #3750 Thousand Oaks, CA 91360 (805)

More information

Finite element model for evaluation of low-cycle-fatigue life of solder joints in surface mounting power devices

Finite element model for evaluation of low-cycle-fatigue life of solder joints in surface mounting power devices Finite element model for evaluation of low-cycle-fatigue life of solder joints in surface mounting power devices N. Delmonte *1, F. Giuliani 1, M. Bernardoni 2, and P. Cova 1 1 Dipartimento di Ingegneria

More information

Thermal aspects of 3D and 2.5D integration

Thermal aspects of 3D and 2.5D integration Thermal aspects of 3D and 2.5D integration Herman Oprins Sr. Researcher Thermal Management - imec Co-authors: Vladimir Cherman, Geert Van der Plas, Eric Beyne European 3D Summit 23-25 January 2017 Grenoble,

More information

Tools for Thermal Analysis: Thermal Test Chips Thomas Tarter Package Science Services LLC

Tools for Thermal Analysis: Thermal Test Chips Thomas Tarter Package Science Services LLC Tools for Thermal Analysis: Thermal Test Chips Thomas Tarter Package Science Services LLC ttarter@pkgscience.com INTRODUCTION Irrespective of if a device gets smaller, larger, hotter or cooler, some method

More information

SOLDER JOINT RELIABILITY IN ELECTRONICS UNDER SHOCK AND VIBRATION USING EXPLICIT FINITE-ELEMENT SUB-MODELING. Sameep Gupte

SOLDER JOINT RELIABILITY IN ELECTRONICS UNDER SHOCK AND VIBRATION USING EXPLICIT FINITE-ELEMENT SUB-MODELING. Sameep Gupte SOLDER JOINT RELIABILITY IN ELECTRONICS UNDER SHOCK AND VIBRATION USING EXPLICIT FINITE-ELEMENT SUB-MODELING Except where reference is made to the work of others, the work described in this thesis is my

More information

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function.

New Functions. Test mode and Specimen failure. Power cycle test system with thermal analysis capability using structure function. using structure function. (1) Page 1/5 Test mode and failure There are two modes in a power cycle test: Tj Power cycle that changes the junction temperature (Tj Temperature) inside of the power semiconductor

More information

Fatigue Life Evaluation of Lead-free Solder under Thermal and Mechanical Loads

Fatigue Life Evaluation of Lead-free Solder under Thermal and Mechanical Loads Fatigue Life Evaluation of Lead-free Solder under Thermal and Mechanical Loads Ilho Kim and Soon-Bok Lee* Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology 373-,

More information

Avatrel Dielectric Polymers for Electronic Packaging

Avatrel Dielectric Polymers for Electronic Packaging Avatrel Dielectric Polymers for Electronic Packaging R. A., Shick, S. K. Jayaraman, B. L. Goodall, L. F. Rhodes, W.C. McDougall Advanced Technology Group BF Goodrich Company 9921 Brecksville Road Cleveland,

More information

The Stress Field Characteristics in the Surface Mount Solder Joints under Temperature Cycling: Temperature Effect and Its Evaluation

The Stress Field Characteristics in the Surface Mount Solder Joints under Temperature Cycling: Temperature Effect and Its Evaluation SUPPLEMENT TO THE WELDING JOURNL, JUNE 2002 Sponsored by the merican Welding Society and the Welding Research Council The Stress Field Characteristics in the Surface Mount Solder Joints under Temperature

More information

Stress Relaxation in Plastic Molding Compounds

Stress Relaxation in Plastic Molding Compounds Stress Relaxation in Plastic Molding Compounds Mikyoung Lee and Michael Pecht CALCE Electronic Products and Systems Center University of Maryland, College Park mikylee@calce.umd.edu Xingjia Huang and S.W.

More information

Characterization of Moisture and Thermally Induced Die Stresses in Microelectronic Packages

Characterization of Moisture and Thermally Induced Die Stresses in Microelectronic Packages Characterization of Moisture and Thermally Induced Die Stresses in Microelectronic Packages by Quang Nguyen A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment

More information

AC-829A. Issued on Apr. 15 th 2013 (Version 1.0)

AC-829A. Issued on Apr. 15 th 2013 (Version 1.0) Hitachi Chemical Co., Ltd. Hitachi Anisotropic Conductive Film ANISOLM AC-829A Issued on Apr. 15 th 2013 (Version 1.0) 1. Standard specification, bonding condition, storage condition and characteristic.....1

More information

Assessment of the SMT assemblies and Improvements through Accelerated testing methods. SMTA Chapter Meeting 18 th Jan 2014, India

Assessment of the SMT assemblies and Improvements through Accelerated testing methods. SMTA Chapter Meeting 18 th Jan 2014, India Assessment of the SMT assemblies and Improvements through Accelerated testing methods SMTA Chapter Meeting 18 th Jan 2014, India 1 Contents SMT solder defects due Thermo-Mechanical stress- what and how!

More information

Thermocompression Bonding Process Design and Optimization for Warpage Mitigation of Ultra-thin Low-CTE Package Assemblies

Thermocompression Bonding Process Design and Optimization for Warpage Mitigation of Ultra-thin Low-CTE Package Assemblies 216 IEEE 66th Electronic Components and Technology Conference Thermocompression Bonding Process Design and Optimization for Warpage Mitigation of Ultra-thin Low-CTE Package Assemblies Vidya Jayaram, Scott

More information

BOARD, PACKAGE AND DIE THICKNESS EFFECTS UNDER THERMAL CYCLING CONDITIONS

BOARD, PACKAGE AND DIE THICKNESS EFFECTS UNDER THERMAL CYCLING CONDITIONS BOARD, PACKAGE AND DIE THICKNESS EFFECTS UNDER THERMAL CYCLING CONDITIONS APT2 Session: BGA Reliability Sept. 29, 2015, Rosemont, IL Jean-Paul Clech EPSI Inc. Montclair, NJ 2015 EPSI Inc. 1 Outline Board

More information

TCAD Modeling of Stress Impact on Performance and Reliability

TCAD Modeling of Stress Impact on Performance and Reliability TCAD Modeling of Stress Impact on Performance and Reliability Xiaopeng Xu TCAD R&D, Synopsys March 16, 2010 SEMATECH Workshop on Stress Management for 3D ICs using Through Silicon Vias 1 Outline Introduction

More information

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B

SCB10H Series Pressure Elements PRODUCT FAMILY SPEFICIFATION. Doc. No B PRODUCT FAMILY SPEFICIFATION SCB10H Series Pressure Elements SCB10H Series Pressure Elements Doc. No. 82 1250 00 B Table of Contents 1 General Description... 3 1.1 Introduction... 3 1.2 General Description...

More information

SOLDER RELIABILITY SOLUTIONS: A PC-BASED DESIGN-FOR-RELIABILITY TOOL

SOLDER RELIABILITY SOLUTIONS: A PC-BASED DESIGN-FOR-RELIABILITY TOOL SOLER RELIABILITY SOLUTIONS: A PC-BASE ESIGN-FOR-RELIABILITY TOOL Jean-Paul Clech EPSI Inc. Montclair, New-Jersey, USA, tel. (973)746-3796, e-mail: jpclech@aol.com [Paper appeared in Proceedings, Surface

More information

Organic substrates for flip-chip design: A thermo-mechanical model that accounts for heterogeneity and anisotropy

Organic substrates for flip-chip design: A thermo-mechanical model that accounts for heterogeneity and anisotropy Available online at www.sciencedirect.com Microelectronics Reliability 48 (28) 245 26 www.elsevier.com/locate/microrel Organic substrates for flip-chip design: A thermo-mechanical model that accounts for

More information

Microsemi Power Modules. Reliability tests for Automotive application

Microsemi Power Modules. Reliability tests for Automotive application Microsemi Power Modules Reliability tests for Automotive application on basis of AEC-Q101 SP module line 1/ 10 Introduction With reference to standard AEC-Q101, designed by Automotive Electronics Council

More information

1. Features of Ceramic LED PKG

1. Features of Ceramic LED PKG Ceramic LED PKG 1. Features of Ceramic LED PKG Compactness Compactness (Small, (Small, Low Low profile) profile) High High Reliability Reliability Good Good Thermal Thermal Properties Properties Surface

More information

Measurement and Characterization of the Moisture-Induced Properties of ACF Package

Measurement and Characterization of the Moisture-Induced Properties of ACF Package Measurement and Characterization of the Moisture-Induced Properties of ACF Package Ji-Young Yoon e-mail: koths82@kaist.ac.kr Ilho Kim Soon-Bok Lee Department of Mechanical Engineering, Korea Advanced Institute

More information

Nonlinear Time and Temperature Dependent Analysis of the Lead-Free Solder Sealing Ring of a Photonic Switch

Nonlinear Time and Temperature Dependent Analysis of the Lead-Free Solder Sealing Ring of a Photonic Switch Nonlinear Time and Temperature Dependent Analysis of the Lead-Free Solder Sealing Ring of a Photonic Switch J. Lau, Z. Mei, S. Pang, C. Amsden, J. Rayner and S. Pan Agilent Technologies, Inc. 5301 Stevens

More information

Warpage Studies of Printed Circuit Boards with Shadow Moiré and Simulations

Warpage Studies of Printed Circuit Boards with Shadow Moiré and Simulations Warpage Studies of Printed Circuit Boards with Shadow Moiré and Simulations Sim Jui Oon, Khai Shiang Tan, Teck Yong Tou, Seong Shan Yap Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia

More information

Predicting Fatigue of Solder Joints Subjected to High Number of Power Cycles

Predicting Fatigue of Solder Joints Subjected to High Number of Power Cycles Predicting Fatigue of Solder Joints Subjected to High Number of Power Cycles Craig Hillman 1, Nathan Blattau 1, Matt Lacy 2 1 DfR Solutions, Beltsville, MD 2 Advanced Energy Industries, Fort Collins, CO

More information

Effects of hygrothermal aging on anisotropic conductive adhesive joints: experiments and theoretical analysis

Effects of hygrothermal aging on anisotropic conductive adhesive joints: experiments and theoretical analysis J. Adhesion Sci. Technol., Vol. 20, No. 12, pp. 1383 1399 (2006) VSP 2006. Also available online - www.brill.nl/jast Effects of hygrothermal aging on anisotropic conductive adhesive joints: experiments

More information

Thermally induced deformations in die-substrate assembly

Thermally induced deformations in die-substrate assembly Theoret. Appl. Mech., Vol.35, No.1-3, pp. 305 322, Belgrade 2008 Thermally induced deformations in die-substrate assembly Milena Vujošević Abstract The work focuses on the thermally induced deformations

More information

Fatigue Life Prediction for Solder Interconnects in IGBT Modules for Hybrid Vehicle Application

Fatigue Life Prediction for Solder Interconnects in IGBT Modules for Hybrid Vehicle Application International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volume-4, Issue-1, January 2016 Fatigue Life Prediction for Solder Interconnects in IGBT Modules for

More information

ABSTRACT. Haiyu Qi, Ph.D., Concurrent vibration and thermal environment is commonly encountered in the

ABSTRACT. Haiyu Qi, Ph.D., Concurrent vibration and thermal environment is commonly encountered in the ABSTRACT Title of Dissertation: PLASTIC BALL GRID ARRAY SOLDER JOINT RELIABILITY ASSESSMENT UNDER COMBINED THERMAL CYCLING AND VIBRATION LOADING CONDITIONS Haiyu Qi, Ph.D., 2006 Dissertation Directed By:

More information

MECHANISM AND THERMAL EFFECT OF DELAMINATION IN LIGHT-EMITTING DIODE PACKAGES

MECHANISM AND THERMAL EFFECT OF DELAMINATION IN LIGHT-EMITTING DIODE PACKAGES MECHANISM AND THERMAL EFFECT OF DELAMINATION IN LIGHT-EMITTING DIODE PACKAGES Jianzheng Hu, Lianqiao Yang, Moo Whan Shin To cite this version: Jianzheng Hu, Lianqiao Yang, Moo Whan Shin. MECHANISM AND

More information

Interfacial delamination and fatigue life estimation of 3D solder bumps in flip-chip packages

Interfacial delamination and fatigue life estimation of 3D solder bumps in flip-chip packages Microelectronics Reliability 44 (004) 471 483 www.elsevier.com/locate/microrel Interfacial delamination and fatigue life estimation of 3D solder bumps in flip-chip packages Yu Gu, Toshio Nakamura * Department

More information

DROP TEST performance has been one of the key package

DROP TEST performance has been one of the key package 1802 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 2, NO. 11, NOVEMBER 2012 Finite Element Modeling of System Design and Testing Conditions for Component Solder Ball Reliability

More information

Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages

Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages J. Hu, L. Yang, M.-W. Shin To cite this version: J. Hu, L. Yang, M.-W. Shin. Thermal And Mechanical Analysis of

More information

Effects of underfill material on solder deformation and damage in 3D packages

Effects of underfill material on solder deformation and damage in 3D packages University of New Mexico UNM Digital Repository Mechanical Engineering ETDs Engineering ETDs 9-3-2013 Effects of underfill material on solder deformation and damage in 3D packages Geno Flores Follow this

More information

The Use of COMSOL Multiphysics for Studying the Fracture Pressure of Rectangular Micro-Channels Embedded in Thin Silicon Substrates

The Use of COMSOL Multiphysics for Studying the Fracture Pressure of Rectangular Micro-Channels Embedded in Thin Silicon Substrates The Use of COMSOL Multiphysics for Studying the Fracture Pressure of Rectangular Micro-Channels Embedded in Thin Silicon Substrates Kaitlin Howell 1, H. Georgiou 2, A. Mapelli 3, P. Petagna 3, G. Romagnoli

More information

Thermal Characterization and Simulation of a fcbga-h device

Thermal Characterization and Simulation of a fcbga-h device Thermal Characterization and Simulation of a fcbga-h device Eric Ouyang, Weikun He, YongHyuk Jeong, MyoungSu Chae, SeonMo Gu, Gwang Kim, Billy Ahn STATS ChipPAC Inc Mentor Graphics Company Email: eric.ouyang@statschippac.com;

More information

Effective Evaluation Method A new delamination test method for MUF (molded underfill) package

Effective Evaluation Method A new delamination test method for MUF (molded underfill) package 2017 IEEE 67th Electronic Components and Technology Conference Effective Evaluation Method A new delamination test method for MUF (molded underfill) package Junghwa Kim 1, Seung Han 1, Woochul Na 1, SoYoon

More information