Visualization of flow pattern over or around immersed objects in open channel flow.
|
|
- Erika Morgan
- 2 years ago
- Views:
Transcription
1 EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel: An open channel is a passage in which liquid flows with its upper surface exposed to atmosphere. In comparison to pipe flow, where flow occurs in closed passages under pressure, the flow in open channels takes place under the influence of gravity in open channels. The primary purpose of this piece of apparatus is to demonstrate visually a wide range of hydraulic effects associated with flow in open channels. Velocity Distribution over Channel Cross Section: Typical velocity distribution curves in a straight reach of a rectangular channel are shown in figure below. It is clear from the figure that the velocity diminishes towards the sides and the base of the channel because of frictional resistance. Theoretically the velocity of flow should be maximum at the topmost point on the vertical centre line. However due to effect of surface tension and resistance offered by the air the velocity is reduced at the free water surface. Figure: Horizontal velocity curve Figure: Vertical Velocity curve Source: F1-00, Armfield Ltd. England, April 1996 Vertical velocity curve is a representation of velocity measured along a vertical line of channel cross section. Horizontal velocity curve is a representation measured along a horizontal line of channel cross section. Reynolds Number: It is the ratio of inertia force to the viscous force acting in any flow phenomenon. 25
2 Inertia force = mass X acceleration Viscous force = viscous shear stress X area of flow For open channel, Reynolds Number (Re) = ρvr/μ Where, V = avg. velocity of flow in channel R = Hydraulic radius (ratio of area of flow to wetted parameter) Reynolds number is very useful in predicting whether the flow is laminar or turbulent and for finding out the coefficient of friction in order to determine the frictional loss of head accurately. Laminar flow: When the fluid particle move in layers called lamina, then the flow is called laminar flow. Laminar flow occurs when velocity of flow is small and viscous forces are predominant. It is smooth and regular and thus also known as stream-line flow. There is practically no influence of fluid particles of one layer over those of the adjacent layer. Velocity at any point remains nearly constant in magnitude and direction. Flow through circular pipes with Reynolds number < 2000 is always laminar. In case of channel flow, if Reynolds number < 500, then the flow is laminar. Turbulent flow: When the velocity of flow reaches a certain limit the fluid particles no longer move in layers or lamina. Violent mixing of fluid particles takes place due to which they move in chaotic and random manner. As a result the velocity at any point varies both in magnitude and direction from instant to instant. Such a flow is known as turbulent flow. Flow through circular pipes with Reynolds number > 4000 is turbulent. In case of channel flow, flow with Reynolds number > 2000 is turbulent. Steady and unsteady flow: If the condition of flow e.g. depth of flow, velocity etc. do not vary with respect to time, then the flow is said to be steady. Otherwise it is unsteady flow. Uniform and non uniform flow: If the velocity, depth, cross-section area of flow remains constant over a given length of the channel, then the flow is said to be uniform flow. If the flow conditions change from section to section along the length of channel, then it is non uniform flow. Boundary Layer: When a real fluid flows past a solid surface, a fluid particle on the surface will have the same velocity as that of the surface because of the viscosity of the fluid. The fact is generally known as 26
3 the no-slip condition at the boundary. If the boundary is static, the fluid particle on it will also have zero velocity. Further away from the boundary, the fluid velocity gradually increases. This gives rises to large shear stresses at the boundary. At the outer edge of boundary layer, the fluid velocity is very nearly the same as the local main stream velocity. In the region outside of the boundary layer, the velocity variation at any section is small and hence the shear stresses are practically negligible. Thus the flow in this region can be regarded as frictionless. Boundary layer thickness: The velocity u at any section approaches the local free stream velocity U asymptotically i.e. u U, as y. For prac cal purposes, however, the boundary layer thickness δ is defined as that distance from the plate at which u=0.99 U. Separation of boundary layer flow: When flow takes place over a curved body under adverse or positive pressure gradient i.e. pressure increasing in the direction of flow, then the flow near the boundary is retarded much and, very soon, a point is reached where it separates from the boundary. This is known as separation point. The reason of this phenomenon is the adverse pressure gradient which tends to reduce the momentum of flow within the boundary layer due to higher viscous stresses. Forces on immersed body: Whenever there is relative motion between a real fluid and a body, the fluid exerts a force on a body and the body exerts equal and opposite force on the fluid. A body wholly immersed in a real fluid may be subjected to two kinds of forces. a) Drag force: The component of force in the direction of flow on a submerged body is called drag force (F D ). b) Lift force: The component of force in the perpendicular to the flow is called the lift force (F L ). F D = F L = pda sin da cos 0 A A dasin 0 A A pdacos Where P = Pressure Τ = Shear stress A = Cross sectional Area. The component due to pressure is known as pressure drag while the component due to shear stress is known as friction drag / shear drag. The relative contribution of pressure drag and friction drag to the total drag F D in any particular case depends upon the shape of the body. 27
4 In the symmetrical body moving through an ideal fluid (no viscosity) at a uniform velocity, the pressure distribution around a body is symmetrical and hence the resultant force acting on the body is zero. However real fluids such as air, water, posses viscosity and if the is moved through these fluid at a uniform velocity, it is observed that the body does experience a resistance to motion. For the body moving through a fluid density at a uniform velocity U, the mathematical expression for the calculation of the drag and the lift forces are given by F D = C D A U 2 2 F L = C L A U 2 2 Where, C D = coefficient of drag C L = coefficient of lift A = characteristics area = area projected on a plane perpendicular to the relative motion of the fluid, in the case of calculating F D. = area projected on a plane perpendicular to the direction of lift force, in the case of calculating F L. For the symmetrical body such as sphere and cylinder facing the flow is symmetrical, here is no lift force. The production of lift force requires asymmetry of flow, while drag force exists always. It is possible to create drag without lift but impossible to create lift without drag. The fluid viscosity affects the flow around the body causes the force on the body accordingly; at low Reynolds' Number the fluid is deformed in very wide zone around the body causing pressure force & friction force and as Reynolds' Number increases, viscous effects are confined to the boundary layer causes predominant the friction force on the boundary. In case of real fluid flowing past a sphere, the varying pressure distribution present due to viscosity creates drag force. In case of body with sharp corners set normal to the flow, the wake extends across the full projected width of the body resulting in the fairly constant value of C D. If the body has curved sides, it is laminar/turbulent boundary layer. This determines the size of wake and in term the amount pressure drag. For very low Reynolds number (DV/ < 1) the flow about the sphere is completely viscous & the friction drag is given by strokes law: F D = 3 VD. The main objective of s streamline body is to move point of separation as back as possible to minimize size of turbulent wake. The optimization of SL is to minimize the sum of the friction and pressure drag 28
5 III DESCRIPTION OF EQUIPMENT SET-UP: Figure: Flow Visualization Apparatus Source: F1-00, Armfield Ltd. England, April 1996 The inlet pipe (1) is connected direct to the Hydraulics Bench outlet by a quick release connector. The model is positioned on the side channels of the bench top, with the overshot weir adjacent to the volumetric tank. Adjustable feet (13) are provided for leveling the apparatus. Water is fed to the streamlined channel entry via a stilling tank which incorporates marbles ( 2) to reduce turbulence. The channel (8) consists of a Perspex working section of large depth to width ratio incorporating an undershot weir (7), and an overshot weir (10) at the Inlet and discharge ends respectively. Water discharging from the channel is collected in the volumetric tank of the Hydraulics Bench and returned to the sump for recirculation. A dye injection system, consisting of a reservoir (5), flow control valve (4), manifold (3) and hypodermic A tubes (6), is incorporated at the inlet to the channel and permits flow visualization in conjunction with a graticule on the rear face of the channel. The overshot weir (10) is fully raised for low visualisation experiments, this is achieved by releasing thumb screw (11) and weir support (12), moving the weir to the desired position and locking the screws. Before use the packet dye supplied must be diluted with 1 liter of deionised/distilled water. Open the 3gm packet of Blue Dye and pour the contents along with 1 liter of deionised or distilled water 29
6 into the 1 l k e bottle (supplied), "shake well". The 1 liter bottle can be used to store the unused Blue Dye. V QUESTION AND ANSWER: 1. What are the parameters those affect the transformation of laminar flow to turbulent flow? VI. OBSERVATION AND RESULT TABLE: The flow visualization technique involves the use of dye injected at the hypodermic tubes. In operation, the overshot weir should be raised fully and the undershot weir should be removed. With the overshot weir in the raised position, the channel run full of water enabling flow patterns around and over submerged objects to be demonstrated. CASE I: Immersed object: Broad crested weir Flow is laminar at the upstream of the weir and converted into turbulent at the downstream. Turbulence occurs near the weir only. Boundary layer can be clearly viewed. At the top of the downstream of weir, separation of flow occurs. 30
7 CASE II: Immersed object: Symmetrical aerofoil placed horizontal Boundary layer separation is not clear. Flow is nearly laminar around the body except the formation of small wake on the upper side of the airfoil. CASE III: Immersed object: Asymmetrical airfoil inclined to horizontal The flow is laminar above the airfoil, though some wakes are present, while the flow below the airfoil is turbulent. The flow is turbulent around the airfoil only. Flow far from the airfoil remains laminar. 31
8 CASE IV: Immersed object: Asymmetrical aerofoil Flow is laminar through out the object except formation of small wake at the trailing edge of the airfoil. The boundary layer separation is clear. CASE V: Immersed object: Narrow crested weir The laminar flow converted into turbulent flow after passing through the narrow crested weir. The flow separation took place at the tip of the weir edge. The boundary layer separation is almost absent. 32
9 CASE VI: Immersed object: Circular object Boundary layer can be viewed clearly around the boundary of circular object. No vortexes were found. The laminar characteristic of flow was not disturbed significantly. 33
Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
Department of Mechanical Engineering
Department of Mechanical Engineering AMEE401 / AUTO400 Aerodynamics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy HOMEWORK ASSIGNMENT #2 QUESTION 1 Clearly there are two mechanisms responsible
ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids
CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific
NPTEL Quiz Hydraulics
Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic
Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows
Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture - 17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In
INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator
Fluid Mechanics. du dy
FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
R09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies
FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1
Basic Fluid Mechanics
Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible
UNIT 4 FORCES ON IMMERSED BODIES. Lecture-01
1 UNIT 4 FORCES ON IMMERSED BODIES Lecture-01 Forces on immersed bodies When a body is immersed in a real fluid, which is flowing at a uniform velocity U, the fluid will exert a force on the body. The
UNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:
PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG
1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity
V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational
DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Fluid Mechanics Lab
DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Fluid Mechanics Lab Introduction Fluid Mechanics laboratory provides a hands on environment that is crucial for developing
Friction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress
Experiment (4): Flow measurement
Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time
BERNOULLI EQUATION. The motion of a fluid is usually extremely complex.
BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over
CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD
CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.
UNIT II CONVECTION HEAT TRANSFER
UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid
UNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of boundary layer Thickness and classification Displacement and momentum thickness Development of laminar and turbulent flows in circular pipes
Applied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
Shell Balances in Fluid Mechanics
Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell
Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.
Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,
Principles of Convection
Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid
Chapter 3 Bernoulli Equation
1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around
BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)
No. of Printed Pages : 6 BME-028 BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) Term-End Examination December, 2011 00792 BME-028 : FLUID MECHANICS Time : 3 hours
1. Introduction Some Basic Concepts
1. Introduction Some Basic Concepts 1.What is a fluid? A substance that will go on deforming in the presence of a deforming force, however small 2. What Properties Do Fluids Have? Density ( ) Pressure
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
Bluff Body, Viscous Flow Characteristics ( Immersed Bodies)
Bluff Body, Viscous Flow Characteristics ( Immersed Bodies) In general, a body immersed in a flow will experience both externally applied forces and moments as a result of the flow about its external surfaces.
vector H. If O is the point about which moments are desired, the angular moment about O is given:
The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment
10.52 Mechanics of Fluids Spring 2006 Problem Set 3
10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation
Fundamentals of Fluid Mechanics
Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
Chapter 4 DYNAMICS OF FLUID FLOW
Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line
Lecture-4. Flow Past Immersed Bodies
Lecture-4 Flow Past Immersed Bodies Learning objectives After completing this lecture, you should be able to: Identify and discuss the features of external flow Explain the fundamental characteristics
MECHANICAL PROPERTIES OF FLUIDS:
Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is
CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer
CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic
The most common methods to identify velocity of flow are pathlines, streaklines and streamlines.
4 FLUID FLOW 4.1 Introduction Many civil engineering problems in fluid mechanics are concerned with fluids in motion. The distribution of potable water, the collection of domestic sewage and storm water,
Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation
Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved
S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100
Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
UNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow
UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons
6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s
Chapter 6 INCOMPRESSIBLE INVISCID FLOW All real fluids possess viscosity. However in many flow cases it is reasonable to neglect the effects of viscosity. It is useful to investigate the dynamics of an
11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an
Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior
Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur
Fluid Mechanics Prof. S.K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 42 Flows with a Free Surface Part II Good morning. I welcome you to this session
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes
Fluid: Air and water are fluids that exert forces on the human body.
Fluid: Air and water are fluids that exert forces on the human body. term fluid is often used interchangeably with the term liquid, from a mechanical perspective, Fluid: substance that flows when subjected
Department of Energy Sciences, LTH
Department of Energy Sciences, LTH MMV11 Fluid Mechanics LABORATION 1 Flow Around Bodies OBJECTIVES (1) To understand how body shape and surface finish influence the flow-related forces () To understand
Chapter 1 INTRODUCTION
Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid
FLOW MEASUREMENT IN PIPES EXPERIMENT
University of Leicester Engineering Department FLOW MEASUREMENT IN PIPES EXPERIMENT Page 1 FORMAL LABORATORY REPORT Name of the experiment: FLOW MEASUREMENT IN PIPES Author: Apollin nana chaazou Partner
6. Basic basic equations I ( )
6. Basic basic equations I (4.2-4.4) Steady and uniform flows, streamline, streamtube One-, two-, and three-dimensional flow Laminar and turbulent flow Reynolds number System and control volume Continuity
An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction
1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies
CLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
OPEN CHANNEL FLOW. One-dimensional - neglect vertical and lateral variations in velocity. In other words, Q v = (1) A. Figure 1. One-dimensional Flow
OPEN CHANNEL FLOW Page 1 OPEN CHANNEL FLOW Open Channel Flow (OCF) is flow with one boundary exposed to atmospheric pressure. The flow is not pressurized and occurs because of gravity. Flow Classification
REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics
REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for
Chapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
MYcsvtu Notes HEAT TRANSFER BY CONVECTION
www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in
Active Control of Separated Cascade Flow
Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.
s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
Hydraulics for Urban Storm Drainage
Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure
Day 24: Flow around objects
Day 24: Flow around objects case 1) fluid flowing around a fixed object (e.g. bridge pier) case 2) object travelling within a fluid (cars, ships planes) two forces are exerted between the fluid and the
INTRODUCTION TO FLUID MECHANICS June 27, 2013
INTRODUCTION TO FLUID MECHANICS June 27, 2013 PROBLEM 3 (1 hour) A perfect liquid of constant density ρ and constant viscosity µ fills the space between two infinite parallel walls separated by a distance
ME3560 Tentative Schedule Spring 2019
ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to
Chapter 8: Flow in Pipes
8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump
SENTHIL SELIYAN ELANGO ID: UB3016SC17508 AIU HYDRAULICS (FLUID DYNAMICS)
SENTHIL SELIYAN ELANGO ID: UB3016SC17508 AIU HYDRAULICS (FLUID DYNAMICS) ATLANTIC INTERNATIONAL UNIVERSITY INTRODUCTION Real fluids The flow of real fluids exhibits viscous effect, which are they tend
Chapter Four fluid flow mass, energy, Bernoulli and momentum
4-1Conservation of Mass Principle Consider a control volume of arbitrary shape, as shown in Fig (4-1). Figure (4-1): the differential control volume and differential control volume (Total mass entering
150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)
FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K
Q1 Give answers to all of the following questions (5 marks each):
FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored
Fluid Mechanics. Chapter 9 Surface Resistance. Dr. Amer Khalil Ababneh
Fluid Mechanics Chapter 9 Surface Resistance Dr. Amer Khalil Ababneh Wind tunnel used for testing flow over models. Introduction Resistances exerted by surfaces are a result of viscous stresses which create
ME3560 Tentative Schedule Fall 2018
ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read
Lecture 3 The energy equation
Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5
Hydromechanics: Course Summary
Hydromechanics: Course Summary Hydromechanics VVR090 Material Included; French: Chapters to 9 and 4 + Sample problems Vennard & Street: Chapters 8 + 3, and (part of it) Roberson & Crowe: Chapter Collection
FLUID MECHANICS. Gaza. Chapter CHAPTER 44. Motion of Fluid Particles and Streams. Dr. Khalil Mahmoud ALASTAL
FLUID MECHANICS Gaza Chapter CHAPTER 44 Motion of Fluid Particles and Streams Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Introduce concepts necessary to analyze fluids in motion. Identify differences
External Flow and Boundary Layer Concepts
1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical
Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.
OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric
FE Exam Fluids Review October 23, Important Concepts
FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning
MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)
MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.
APPLIED FLUID DYNAMICS HANDBOOK
APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.-nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /
HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1
HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the
Universal Viscosity Curve Theory
TM Universal Viscosity Curve Theory Turbine Flow Meters and Flow Viscosity Introduction Like any transducer, a turbine flow meter is sensitive to physical parameters other than the one which is of interest.
Lecture 2 Flow classifications and continuity
Lecture 2 Flow classifications and continuity Dr Tim Gough: t.gough@bradford.ac.uk General information 1 No tutorial week 3 3 rd October 2013 this Thursday. Attempt tutorial based on examples from today
Physics 3 Summer 1990 Lab 7 - Hydrodynamics
Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure
Applied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
If a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body
Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great
Turbulent Boundary Layers & Turbulence Models. Lecture 09
Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects
Fluid Mechanics II. Newton s second law applied to a control volume
Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.
1. Introduction, tensors, kinematics
1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and
Momentum (Newton s 2nd Law of Motion)
Dr. Nikos J. Mourtos AE 160 / ME 111 Momentum (Newton s nd Law of Motion) Case 3 Airfoil Drag A very important application of Momentum in aerodynamics and hydrodynamics is the calculation of the drag of
University of Engineering and Technology, Taxila. Department of Civil Engineering
University of Engineering and Technology, Taxila Department of Civil Engineering Course Title: CE-201 Fluid Mechanics - I Pre-requisite(s): None Credit Hours: 2 + 1 Contact Hours: 2 + 3 Text Book(s): Reference
The Bernoulli Equation
The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider
Signature: (Note that unsigned exams will be given a score of zero.)
Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.
Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay
Fluid Mechanics Prof. T. I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture No. # 35 Boundary Layer Theory and Applications Welcome back to the video course on fluid
τ du In his lecture we shall look at how the forces due to momentum changes on the fluid and viscous forces compare and what changes take place.
4. Real fluids The flow of real fluids exhibits viscous effect, that is they tend to stick to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons law
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous
Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders
Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute
Chapter 6 The Impulse-Momentum Principle
Chapter 6 The Impulse-Momentum Principle 6. The Linear Impulse-Momentum Equation 6. Pipe Flow Applications 6.3 Open Channel Flow Applications 6.4 The Angular Impulse-Momentum Principle Objectives: - Develop
Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:
7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus