FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)


 Roxanne Hodge
 1 years ago
 Views:
Transcription
1 FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1
2 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K value) and head loss (h L ) in pipes for different water flow rates, pipe diameters and pipe bends..0 Introduction As an incompressible fluid flows through a pipe, a friction force along the pipe wall is created against the fluid. The frictional resistance generates a continuous loss of energy or total head in the fluid and hence decreases the pressure of the fluid as it moves through the pipe. There are four factors that determine friction losses in pipe: i. The velocity of the fluid. ii. The size (inside diameter) of the pipe iii. The direction of flow in the pipe iv. The length of the pipe In addition to energy or head loss due to friction, there are always head losses in pipes due to an enlargement or contraction of the flow section, bends, junctions, and valves etc., which are commonly known as minor or small losses. When the direction of flow is altered or distorted, energy losses occur which are not recovered are dissipated in eddies and additional turbulence and finally lost in the form of heat. However, this energy must be supplied if the fluid is to be maintained in motion, in the same way, as energy must be provided to overcome friction. In practice, in long pipe lines of several kilometres the effect of minor losses may be negligible. For short pipeline the losses may be greater than those for friction. 3.0 Theory In Bernoulli's equation as shown below, h f represents the head loss due to friction between the fluid and the internal surface of the constant diameter pipe as well as the friction between the adjacent fluid layers p 1 /g + V 1 /g + Z1 = p / g + V /g + Z + h f (Eq. 1) This will result in a continuous change of energy from a valuable mechanical form (such as kinetic or potential energies) to a less valuable thermal form that is heat. This change of
3 energy is usually referred to as friction head loss, which represents the amount of energy converted into heat per unit weight of fluid. The head losses (h f ) in pipe due to friction can be determined using DarcyWeisback equation; Turbulent flow h f = 4 flv (Eq. ) gd Laminar flow h f = 3 flq (Eq. 3) gd 5 Where: f = Friction factor L = Length V = Mean velocity (Q/A) g = Gravity D = Constant diameter The friction head loss for both laminar and turbulent flows can be expressed by similar formulas although the original derivation of each one is different: L V h f f (Eq. 4) D g In laminar flow, the friction factor is only a function of Reynolds number while for turbulent flow it is a function of Reynolds (R e ) number and the relative roughness of the pipe. VD Re (Eq. 5) where : density, V: average velocity, D: pipe inside diameter, : viscosity. Based on the nature of the flow, friction factor (f ) can be estimated using the following correlations Laminar flow f = 64 (Eq. 6) R e Turbulent Flow f = x R e 0.5 (Eq. 7) 3
4 Equation (7) is Blausius Equation and only valid for smooth pipe and 3000 < Re< The value of f for turbulent flow can be obtained experimentally from the Moody Chart. Moreover, for turbulent flow, the relationship between h f and V takes the form h f = K. V n (Eq. 8) where K is a loss coefficient and n ranges from 1.7 to.0 (depending on the value of Re and k s /D). This equation can be written as Log h f = Log K + n Log V (Eq. 9) in order to find K and n experimentally, using graph Experimentally, one can obtain the head loss by applying energy equation between any two points along a constant diameter pipe. This is done in Eq. 1 and by noticing that the pipe is horizontal and the diameter is constant. The pressure heads of a fluid between points, h 1 and h, are measured by using Piezometer tubes. The total head loss can be determined experimentally by applying the Bernoulli s equation as follows: h f = (P 1  P ) /g = h 1  h (Eq. 10) Energy losses are proportional to the velocity head of the fluid as it flows around an elbow, through an enlargement or contraction of the flow section, or through a valve. Experimental values for energy losses are usually reported in terms of a resistance or loss coefficient K as follows: h L = KV g (Eq. 11) where h L is the minor loss, K is the resistance or loss coefficient, and V is the average velocity of flow in the pipe in the vicinity where the minor loss occurs. The resistance or loss coefficient is dimensionless because it represents a constant of proportionality between the energy loss and the velocity head. The magnitude of the resistance coefficient depends on the geometry of the device that causes the loss and sometimes on the velocity of flow. Minor losses at sudden enlargement When a fluid flows from a smaller pipe into a larger pipe through a sudden enlargement, its velocity abruptly decreases, causing turbulence, which generates an energy loss. 4
5 where, V 1 = velocity at small crosssection (upstream) V = velocity at large crosssection (downstream) The minor loss (h L ) due to sudden enlargement of the pipe can be estimated by integrating the momentum, continuity and Bernoulli equations between positions 1 and to give V1 V h L (Eq. 1) g Substituting again for the continuity equation to get an expression involving the two areas, (i.e. V=V1(A1/A) gives KV1 h L (Eq. 13) g Where, K 1 A A 1 D 1 D 1 Minor losses at sudden contraction When a fluid flows from a larger pipe into a smaller pipe through a sudden contraction, the fluid streamlines will converge just downstream of the smaller pipe, known as vena contraction phenomena, creating a turbulence region from the sharp corner of the smaller pipe and extends past the vena contracta, which subsequently generates an energy loss. 5
6 In a sudden contraction, flow contracts from point 1 to point 1', forming a vena contraction. It is possible to assume that energy losses from 1 to 1' are negligible (no separation occurs in contracting flow) but that major losses occur between 1' and as the flow expands again If the vena contract area is A 1 =A c, then the minor loss (h L ) can be estimated by integrating the momentum, continuity and Bernoulli equations between positions 1 and to give h L 1 A A C V g (Eq. 14) The above equation is commonly expressed as a function of loss coefficient (K) and the average velocity (V ) in the smaller pipe downstream from the contraction as follows; Where KV h L (Eq. 15) g A K C 1 A As the difference in pipe diameters gets large (A1/A 0) then this value of K will tend towards 0.5 which is equal to the value for entry loss from a reservoir into a pipe. The value of K depends upon the ratio of the pipe diameters (D /D 1 ) as given below; D /D K
7 Minor Losses at elbow or bend pipe Losses in fittings such as elbow, valves etc have been found to be proportional to the velocity head of the fluid flowing. The energy loss is expressed in the general form, where, h L = KV g (Eq. 16) K = loss coefficient (dependent on the ratio of total angle of bending to radius of bending (R/d) of the curves as the bending occurs) Experimental determination of total head loss In the experiment the pressure heads before and after a fluid undergoing sudden change in pipe diameter or flow direction, h 1 and h, are measured by using Piezometer tubes. The total head loss (major and minor losses) can be determined experimentally by applying the Bernoulli s equation as follows: P 1 /g + V l / g + Z1 = P /g + V / g + Z + h L (Eq. 17) 7
8 h l + V l / g + Z1 = h + V / g + Z + h L (Eq. 18) and since Z 1 = Z, then V1 V h L h1 h (Eq. 19) g 4.0 Apparatus 8
9 9
10 10
11 Table of Water Dynamic Viscosity and Density at Different Temperatures Temperature ( o C) (kg/m 3 ) (x 103 N.s/m 3 )
12 5.0 Experimental Procedure 1) Open all outlet valves of pipes I, II, III, IV and V (valves are in parallel with the pipes). Make certain that the flow control valve in the base module is in closed position (turn clockwise). ) Switch on the pump and slowly open the control valve (turn counterclockwise) until maximum, and wait for a while in order to remove any air bubble in the flowing pipe. 3) Identify which inlet flowing pressure (H 1 ) and outlet flowing pressure (H ) during installation of water manometer rubber tube 4) Determine the direction of water inflow and outflow through the pipe. 5) Perform measurement Adjust desired flow by way of inflow valve. Read off differential pressure as difference in height between the two water columns. Estimate mean value if reading fluctuates. When taking differentialpressure measurements, it is more important to achieve reproducible readings than absolute accuracy. During the process, if air bubbles present in the flowing pipe, the air will move through the water manometer rubber tube. Air bubbles will move to the peak of the higher tube. Remove the air bubbles up to the manometer glass tube. 6) Determine 5 (five) suitable flow rates Q (let the increment as large as possible). Record the values of H1 and H in millimeter (mm) of the inlet and the outlet of water manometer flowing pressures as Q is changed. 7) Operate on all the following types of flow. A) Experiment with Pipe I Friction losses at sudden enlargement and sudden contraction. B) Experiment with Pipe III and IV Friction losses in pipe branches (two types) C) Experiment with Pipe V Friction losses at pipe elbows (three types) 1
13 6.0 Experimental data A) Table for data of sudden enlargement and sudden contraction. Pipe Q (1/min) h 1 (mm) h (mm) Δh (m) Sudden Enlargement Sudden Contraction 13
14 B) Table for data of different branches (two types) Pipe Q (1/min) h 1 (mm) h (mm) Δh (m) Y Type T Type 14
15 C) Table for data of pipe elbows (three types) Pipe Q (1/min) h 1 (mm) h (mm) Δh (m) 90 angle 90 bend 45 angle 15
16 16
17 7.0 Discussion a) Calculate the loss of coefficient (K) and head loss (n) for each of the flow types; A, B and C as in section 5.0. b) Compare the calculated value with the theoretical value (refer to Fluid Mechanics text book or equation provided in section 3.0) and discuss the possible reasons for different values. c) Discuss the effect of fluid velocity, pipe roughness and pipe diameter on the value of loss coefficient (K) and hence friction loss in pipe. d) Briefly discuss factors contributing to errors or inaccuracy in experimental data and propose recommendation to improve the results. 17
LOSSES DUE TO PIPE FITTINGS
LOSSES DUE TO PIPE FITTINGS Aim: To determine the losses across the fittings in a pipe network Theory: The resistance to flow in a pipe network causes loss in the pressure head along the flow. The overall
More information1Reynold s Experiment
Lect.No.8 2 nd Semester Flow Dynamics in Closed Conduit (Pipe Flow) 1 of 21 The flow in closed conduit ( flow in pipe ) is differ from this occur in open channel where the flow in pipe is at a pressure
More informationExperiment (4): Flow measurement
Experiment (4): Flow measurement Introduction: The flow measuring apparatus is used to familiarize the students with typical methods of flow measurement of an incompressible fluid and, at the same time
More informationEXPERIMENT NO: F5. Losses in Piping Systems
SJSU ME115  THERMAL ENGINEERING LAB EXPERIMENT NO: F5 Losses in Piping Systems Objective One of the most common problems in fluid mechanics is the estimation of pressure loss. It is the objective of this
More informationFLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1
FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationPipe Flow. Lecture 17
Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners
More informationHydraulics and hydrology
Hydraulics and hydrology  project exercises  Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationLesson 37 Transmission Of Air In Air Conditioning Ducts
Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).
More informationChapter 8: Flow in Pipes
81 Introduction 82 Laminar and Turbulent Flows 83 The Entrance Region 84 Laminar Flow in Pipes 85 Turbulent Flow in Pipes 86 Fully Developed Pipe Flow 87 Minor Losses 88 Piping Networks and Pump
More informationViscous Flow in Ducts
Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate
More informationHydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1
Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity
More informationFE Exam Fluids Review October 23, Important Concepts
FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning
More informationExperiment To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.
SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationReynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:
7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus
More informationChapter 10 Flow in Conduits
Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear
More informationWater Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations:
Water Circuit Lab When a fluid flows in a conduit, there is friction between the flowing fluid and the pipe walls. The result of this friction is a net loss of energy in the flowing fluid. The fluid pressure
More informationChapter 6. Losses due to Fluid Friction
Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationINSTRUCTIONS FOR LABORATORY EXPERIMENT IN FLUID MECHANICS
INSTRUCTIONS FOR LABORATORY EXPERIMENT IN FLUID MECHANICS VT2010 Pipe Flow: General Information: Attendance at the laboratory experiment is required for completion of the course. The experiments will be
More information2 Internal Fluid Flow
Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.
More informationQ1 Give answers to all of the following questions (5 marks each):
FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored
More informationFriction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
More informationCHAPTER THREE FLUID MECHANICS
CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under
More information1.060 Engineering Mechanics II Spring Problem Set 4
1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members
More informationChapter 6. Losses due to Fluid Friction
Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More informationV/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and nonuniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and irrotational
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationPiping Systems and Flow Analysis (Chapter 3)
Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution
More informationSignature: (Note that unsigned exams will be given a score of zero.)
Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.
More informationPIPING SYSTEMS. Pipe and Tubing Standards Sizes for pipes and tubes are standardized. Pipes are specified by a nominal diameter and a schedule number.
PIPING SYSTEMS In this chapter we will review some of the basic concepts associated with piping systems. Topics that will be considered in this chapter are  Pipe and tubing standards  Effective and hydraulic
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationUNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow
UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons
More informationMajor and Minor Losses
Abstract Major and Minor Losses Caitlyn Collazo, Team 2 (1:00 pm) A Technovate fluid circuit system was used to determine the pressure drop across a pipe section and across an orifice. These pressure drops
More informationEXPERIMENT II  FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS
MM 30 FLUID MECHANICS II Prof. Dr. Nuri YÜCEL Yrd. Doç. Dr. Nureddin DİNLER Arş. Gör. Dr. Salih KARAASLAN Arş. Gör. Fatih AKTAŞ EXPERIMENT II  FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS A. Objective:
More informationAn overview of the Hydraulics of Water Distribution Networks
An overview of the Hydraulics of Water Distribution Networks June 21, 2017 by, P.E. Senior Water Resources Specialist, Santa Clara Valley Water District Adjunct Faculty, San José State University 1 Outline
More informationACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES
ACCOUNTING FOR FRICTION IN THE BERNOULLI EQUATION FOR FLOW THROUGH PIPES Some background information first: We have seen that a major limitation of the Bernoulli equation is that it does not account for
More information5 ENERGY EQUATION OF FLUID MOTION
5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws
More informationFluid Mechanics II 3 credit hour. Fluid flow through pipesminor losses
COURSE NUMBER: ME 323 Fluid Mechanics II 3 credit hour Fluid flow through pipesminor losses Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Losses in Noncircular
More informationSTEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY
STEADY FLOW THROUGH PIPES DARCY WEISBACH EQUATION FOR FLOW IN PIPES. HAZEN WILLIAM S FORMULA, LOSSES IN PIPELINES, HYDRAULIC GRADE LINES AND ENERGY LINES 1 SIGNIFICANCE OF CONDUITS In considering the convenience
More informationLECTURE 6 ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS
LECTURE 6 ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a
More informationBRCM COLLEGE OF ENGINEERING & TECHNOLOGY Practical Experiment Instructions Sheet
Exp. Title FLUID MECHANICS I LAB Syllabus FMI Semester4 th Page No. 1 of 1 Internal Marks: 25 L T P External Marks: 25 0 0 2 Total Marks: 50 1. To determine the met centric height of a floating body
More informationThe Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz
Solid State Phenomena Vol. 113 (2006) pp 603608 Online available since 2006/Jun/15 at www.scientific.net (2006) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.113.603 The Mechatronics
More informationExternal Flow and Boundary Layer Concepts
1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical
More informationWhen water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).
PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:
More informationThe effect of geometric parameters on the head loss factor in headers
Fluid Structure Interaction V 355 The effect of geometric parameters on the head loss factor in headers A. Mansourpour & S. Shayamehr Mechanical Engineering Department, Azad University of Karaj, Iran Abstract
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationHydraulics for Urban Storm Drainage
Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure
More informationFLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10
Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity
More informationSizing of Gas Pipelines
Sizing of Gas Pipelines Mavis Nyarko MSc. Gas Engineering and Management, BSc. Civil Engineering Kumasi  Ghana mariiooh@yahoo.com AbstractIn this study, an effective approach for calculating the size
More informationBasic Fluid Mechanics
Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible
More informationLecture 3 The energy equation
Lecture 3 The energy equation Dr Tim Gough: t.gough@bradford.ac.uk General information Lab groups now assigned Timetable up to week 6 published Is there anyone not yet on the list? Week 3 Week 4 Week 5
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationPressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.
Design Manual Chapter  Stormwater D  Storm Sewer Design D Storm Sewer Sizing A. Introduction The purpose of this section is to outline the basic hydraulic principles in order to determine the storm
More informationDETERMINATION OF DISCHARGE AND HEAD LOSS USING A FLOWMEASURING APPARATUS
DETERMINATION OF DISCHARGE AND HEAD LOSS USING A FLOWMEASURING APPARATUS 1. INTRODUCTION Through use of the FlowMeasuring Apparatus, this experiment is designed to accustom students to typical methods
More informationI. To find the coefficient of discharge for vcnturi meter. 2. To find the coefficient of discharge for ori rice meter.
Flow Measurement by Venturi and Orifice Meters Objectives: I. To find the coefficient of discharge for vcnturi meter. 2. To find the coefficient of discharge for ori rice meter. Venturi and Orificemeters
More informationFLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationFluid Mechanics Lab (ME216F) List of Experiments
Fluid Mechanics Lab (ME216F) List of Experiments 1. To determine the coefficient of discharge C d, velocity C v, and contraction C c of various types of orifices 2. Determine of discharge coefficients
More informationOE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004
OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie
More informationME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)
ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and noncircular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared
More informationFLOW MEASUREMENT IN PIPES EXPERIMENT
University of Leicester Engineering Department FLOW MEASUREMENT IN PIPES EXPERIMENT Page 1 FORMAL LABORATORY REPORT Name of the experiment: FLOW MEASUREMENT IN PIPES Author: Apollin nana chaazou Partner
More informationChapter 7 FLOW THROUGH PIPES
Chapter 7 FLOW THROUGH PIPES 71 Friction Losses of Head in Pipes 72 Secondary Losses of Head in Pipes 73 Flow through Pipe Systems 48 71 Friction Losses of Head in Pipes: There are many types of losses
More informationFLUID MECHANICS. Dynamics of Viscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines.
FLUID MECHANICS Dynamics of iscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines. Dr. Mohsin Siddique Assistant Professor Steady Flow Through
More informationvector H. If O is the point about which moments are desired, the angular moment about O is given:
The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF CIVIL ENGINEERING QUESTION BANK III SEMESTER CE 8302 FLUID MECHANICS Regulation 2017 Academic Year 2018 19 Prepared by Mrs.
More informationME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey
More informationCH.1 Overview of Fluid Mechanics/22 MARKS. 1.1 Fluid Fundamentals.
Content : 1.1 Fluid Fundamentals. 08 Marks Classification of Fluid, Properties of fluids like Specific Weight, Specific gravity, Surface tension, Capillarity, Viscosity. Specification of hydraulic oil
More informationFLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress
More informationChapter 3 Water Flow in Pipes
The Islamic University o Gaza Faculty o Engineering Civil Engineering Department Hydraulics  ECI 33 Chapter 3 Water Flow in Pipes 3. Description o A Pipe Flow Water pipes in our homes and the distribution
More informationApproximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.
Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface
More informationPIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +
The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into
More informationReview of pipe flow: Friction & Minor Losses
ENVE 204 Lecture 1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationCVE 372 HYDROMECHANICS EXERCISE PROBLEMS
VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take
More informationLABORATORY MANUAL FLUID MECHANICS ME216F
LABORATORY MANUAL FLUID MECHANICS ME216F LIST OF THE EXPERIMENT SNO NAME OF THE EXPERIMENT PAGE NO FROM TO 1. To determine the coefficient of impact for vanes. 2. To determine the coefficient of discharge
More informationS.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100
Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum
More informationPIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1.
PIPE FLOW General Characteristic of Pipe Flow Figure 1 Some of the basic components of a typical pipe system are shown in Figure 1. They include the pipes, the various fitting used to connect the individual
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationDARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY, RAJKOT FLUID MECHANICS ( )
DARSHAN INSTITUTE OF ENGINEERING AND TECHNOLOGY, RAJKOT FLUID MECHANICS (2141906) Sr. No. Experiment Start Date End Date Sign Remark 1. To understand pressure measurement procedure and related instruments/devices.
More informationTeacher s Signature. S. No. Experiment marks. 3 To determine the coefficient of discharge of Notch (V and Rectangular types)
S. No. Index Name of experiment Date of performance 1. To determine the coefficient of impact for vanes. 2 To determine coefficient of discharge of an orificemeter. 3 To determine the coefficient of discharge
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad  00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : III B. Tech Year : 0 0 Course Coordinator
More informationChapter 4 DYNAMICS OF FLUID FLOW
Faculty Of Engineering at Shobra nd Year Civil  016 Chapter 4 DYNAMICS OF FLUID FLOW 41 Types of Energy 4 Euler s Equation 43 Bernoulli s Equation 44 Total Energy Line (TEL) and Hydraulic Grade Line
More informationEXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH
EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH Submitted By: ABDULLAH IBN ABDULRAHMAN ID: 13456789 GROUP A EXPERIMENT PERFORMED
More informationCEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s.
CEE 3310 Control Volume Analysis, Oct. 7, 2015 81 3.21 Review 1D Steady State Head Form of the Energy Equation ( ) ( ) 2g + z = 2g + z h f + h p h s out where h f is the friction head loss (which combines
More informationCOURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour. Basic Equations in fluid Dynamics
COURSE NUMBER: ME 321 Fluid Mechanics I 3 credit hour Basic Equations in fluid Dynamics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Description of Fluid
More informationFRICTION LOSS ALONG A PIPE
FRICTION LOSS ALONG A PIPE 1. INTRODUCTION The frictional resistance to which fluid is subjected as it flows along a pipe results in a continuous loss of energy or total head of the fluid. Fig 1 illustrates
More informationREE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology
REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes
More informationChapter 10. Solids and Fluids
Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the
More informationLecture 13 Flow Measurement in Pipes. I. Introduction
Lecture 13 Flow Measurement in Pipes I. Introduction There are a wide variety of methods for measuring discharge and velocity in pipes, or closed conduits Many of these methods can provide very accurate
More informationChapter 7 The Energy Equation
Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,
More informationChemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017
Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering
More informations and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
More informationFor example an empty bucket weighs 2.0kg. After 7 seconds of collecting water the bucket weighs 8.0kg, then:
Hydraulic Coefficient & Flow Measurements ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 3 1. Mass flow rate If we want to measure the rate at which water is flowing
More information