MECHANICAL PROPERTIES OF FLUIDS:


 Kimberly Hopkins
 2 years ago
 Views:
Transcription
1 Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is called pressure 3 Density: The density of any material is defined as its mass per unit its volume Its SI unit is Kgm 3 4 Relative Density: The ratio of density of a substance to the density of the water at 4 0 C is called the relative density of the substance It is a unit less quantity 5 Gauge Pressure: The difference between the pressures at any two points in a fluid is called gauge pressure Mathematically it is given by gh ρ = density of the fluid, h = difference in the vertical levels of the two points, g = acceleration due to gravity 6 Atmospheric pressure: The atmospheric pressure at a point is defined as the weight of the column of air of unit crosssectional area extending from that point up to the top of the atmosphere Its value is 03x0 5 Pa at sea level 7 Barometer: A device used to measure the atmospheric pressure using a column of mercury in an inverted tube is called a Barometer 8 Opentube Manometer: It is a device used to measure the pressure of an enclosed gas or liquid 9 Stream line flow: The flow of a liquid is said to be stream lined If each particle of the liquid passing a given point moves along the same path and has the same velocity as its predecessor had at that point 0 Streamline: The path followed by a fluid particle in a steady flow is called a streamline Two stream lines never cross each other Speed of efflux: The speed of outflow of fluid through a small orifice in a tank, is called the speed of efflux V eff orifice V eff gh for an open container, where h is the height of the column above Venturi meter: The venture meter is a device used to measure the rate of flow of a liquid through a pipe It is an application of Bernoulli s principle CMadan Kumar Page
2 3 Dynamic Lift: The upward force experienced by a body when it moves through a fluid is called dynamic lift 4 Magnus effect: When a ball moving in air gets deviated from its path due to its spinning action, this effect is called Magnus effect 5 Aerofoil: A streamlined shaped, solid body that is capable of generating a dynamic lift as it moves through a fluid is called aerofoil 6 Viscosity: The property of a fluid due to which its different layers offer resistance to their relative motion is called viscosity 7 Coefficient of viscosity: It is defined as the ratio of shearing stress and the strain rate produced in the fluid 8 Terminal velocity: The maximum constant velocity acquired by a body while falling through a viscous medium is called its terminal velocity 9 Turbulence: The nature of flow of a fluid when its speed at any point in space varies rapidly and randomly with time is called turbulence 0 Critical Reynold s number: The exact value of Reynold s number at which turbulence sets in a fluid is called critical Reynold s number Surface tension: The property of liquids due to which their free space behaves like an elastic stretched membrane is called surface tension Surface tension in terms of Surface energy: Surface tension is defined as the surface energy per unit area or the force per unit length acting in the plane of the interface between the plane of the liquid and any other substance 3 Surface Energy: The excess energy possessed by the molecules present at the surface of a liquid as compared to those present in the interiors is called surface energy 4 Angle of contact: It is defined as the angle that the tangent to the liquid surface at the point of contact makes with the solid surface inside the liquid 5 Capillary action: The phenomenon of a liquid rising or falling through a tube of very fine bore (capillary), is called capillary action oo0oo CMadan Kumar Page
3 Formula Chart: thrust( F) Pressure, p area( A) Mass( m) Density, Volume( V ) 3 Relative density of a substance substan ce rel 0 4 C waterat 4 Pressure at a point at depth h below a liquid = gh Where, ρ = density of the liquid g = acceleration due to gravity 5 Gauge pressure, gh P g 6 Apparent weight of a body of density σ in a fluid of density ρ, W ' W ( ), W = weight of the body in air 7 Weight of the fluid displaced = Vρg V = volume of the body inside the fluid Ρ = density of the fluid W (a) Relative density of a solid = W W W (b) Relative density of a liquid = W W W 3 W = weight of solid in air W = weight of solid inside water W 3 = weight of solid inside liquid 8 Equation of continuity Av = constant A = crosssectional area of pipe v = fluid velocity 9 Bernoulli s equation: At any point in a streamline flow P gh v = constant CMadan Kumar Page 3 P a
4 P = pressure v = fluid velocity 0 Speed of efflux: v ( P P agh) P = pressure above the free surface of the liquid Torricelli s Law: V eff gh Fl Coefficient of viscosity, va F = viscous force l = separation between two lamina A = Area of each lamina v = Relative velocity of two lamina 3 Stoke s Law: F 6av 4 Terminal velocity a = radius of ball or drop v = velocity of ball or drop v T a ( ) 9 g ρ = density of falling body σ = density of fluid 4 Pr 5 Hagen Poiseuille equation, V 8 L 6 Reynold s number: (a) Vd R e d = diameter of the pipe Inetial force (b) R e Viscous force CMadan Kumar Page 4
5 7 Surface tension: F S l F = force required to change area of a film l = length of the edge of the film 8 Excess pressure inside a liquid drop or a cavity of radius R, S P P0 R 4S 9 Excess pressure inside air bubble, P P0 R 0 (a) Surface energy = Surface tension X area of film (b) Work done = Surface tension X change in film area S cos Rise and fall of a liquid in a capillary tube, h rg Quick Recap: = angle of contact ρ = density of liquid g = acceleration due to gravity oo0oo A substance that flow is called fluid Both liquids and gas are fluids They have no definite shop Fluids have a very small shear modulus of rigidity Liquids are treated as incompressible while gases are highly compressible 3 The normal force acting on any surface is called thrust The thrust acting per unit area is called pressure Pressure is a scalar quantity Its SI unit is Nm  or Pascal 4 Fluids also exert pressure on the objects immersed in them 5 Pascal s Law: This law states that pressure in a fluid at rest is same at all points which are at the same height A change in pressure applied to an enclosed fluid is transmitted undiminished to every point of the fluid and the walls of the containing vessel Pascal s law has many practical applications like hydraulic lift and hydraulic brakes etc 6 The pressure at a point located at a depth h below the surface of a incompressible fluid CMadan Kumar Page 5
6 is given as, P Pa gh P a = pressure above the fluid surface which usually is the atmospheric pressure 7 A consequence of Pascal s law is hydrostatic paradox It means that to express the pressure at a point, the height of the fluid column is important and not the crosssectional or base area or the shape of the container 8 Air around us also exerts pressure, it is known as atmospheric pressure Its value is 03X0 5 Pa at sea level 9 Streamline flow is shown by incompressible and nonviscous fluids at low flow speeds The volume of the incompressible fluid passing through a point in a unit time remains constant in a steady flow ie, Av = constant This relation is known as equation of continuity and is a consequence of conservation of mass 0 Another principle, which is based on conservation of energy for incompressible fluids in steady flow, is Bernoulli s principle It says that for the steady flow of an ideal fluid, total energy per unit volume remain constant P v gh = constant P = Pressure v = Kinetic energy per unit volume gh = Potential energy per unit volume Though shear strain in a fluid does not require shear stress, when a shear stress is applied to a fluid, the motion is generated which causes a shear strain grow with time The ratio of shear stress to the shearing strain rate is called coefficient of viscosity η Viscous force acting on a body can also be given by Stoke s law According to it viscous drag F, F 6av () negative sign here shows that drag acts opposite to the direction of motion of the body Thus viscous drag increases with increase in the velocity of moving body in opposite direction CMadan Kumar Page 6
7 3 For liquids, viscosity decreases with increase in temperature while for gases, viscosity increases with increase in temperature 4 For a body falling freely through a fluid, its velocity increases due to acceleration due to gravity acting along on the body As a result viscous drag increases according to Stoke s law As the acceleration due to gravity and viscous drag act in opposite direction, a certain stage is reached when total force on the body remains zero The body then falls down with a constant maximum velocity called terminal velocity V T a Mathematically, V T g 9 5 The molecules present at the surface of a liquid at rest possess extra potential energy as compared to those present well inside the liquid This energy is called surface energy This surface energy makes a liquid surface behave like an elastic stretched membrane which tends to possess a minimum surface area This property of liquid is called surface tension Surface tension is measured as the force acting per unit length of an imaginary line drawn on the liquid surface, the direction of force being perpendicular to this line and tangential to the liquid surface 6 Surface tension give rises to many interesting phenomena like spherical shape of liquid drops, excess pressure inside an air bubble or a drop, capillary action etc, 7 The shape of meniscus of a liquid in a container depends on the angle of contact for the given pair of liquid and solid surfaces oo0oo CMadan Kumar Page 7
MECHANICAL PROPERTIES OF FLUIDS
CHAPTER10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure
More informationTOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationChapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian
Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite
More informationChapter 14. Fluid Mechanics
Chapter 14 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite volume nor shape All of these
More information11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an
Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior
More informationTridib s Physics Tutorials visit
Pressure  If F is the magnitude of this normal force on the piston of area A then the average pressure P av is defined as the normal force acting per unit area. P= F/A, Its dimensions are [ML 1 T 2 ].
More informationFluid Mechanics. Chapter 12. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman
Chapter 12 Fluid Mechanics PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 12 To study the concept of density
More informationFor more info
Characteristic of Ideal fluid: (a) It is incompressible (b) It is nonviscous (c) Flow of ideal fluid is irrational (d) It is capable of exhibiting steady flow Stream line flow: Flow of a liquid fluid
More information10  FLUID MECHANICS Page 1
0  FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics
More informationNicholas J. Giordano. Chapter 10 Fluids
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according
More informationChapter 9: Solids and Fluids
Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical
More informationChapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas
Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationChapter 10  Mechanical Properties of Fluids. The blood pressure in humans is greater at the feet than at the brain
Question 10.1: Explain why The blood pressure in humans is greater at the feet than at the brain Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though
More informationChapter 10. Solids and Fluids
Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the
More informationChapter 9. Solids and Fluids. 1. Introduction. 2. Fluids at Rest. 3. Fluid Motion
Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion 1 States of Matter Solid Liquid Gas Plasma 2 Density and Specific Gravity What is Density? How do I calculate it? What are
More informationPROPERTIES OF BULK MATTER
PROPERTIES OF BULK MATTER CONCEPTUAL PROBLEMS Q01 What flows faster than honey. Why? Ans According to poiseuille s formula, the volume V of a liquid flowing per second through a horizontal narrow tube
More informationMECHANICS OF SOLID AND FLUID
MECHANICS OF SOLID AND FLUID Deforming force: A force acting on a body which produces change in its shape of body instead of its state of rest or uniform motion of the body. Elasticity:The property of
More informationPhysics 207 Lecture 18
Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 8000 A 679 B or A/B 346 C or B/C 933 marginal 98 D Physics 07: Lecture 8,
More informationChapter 5(Section1) Friction in Solids and Liquids
Chapter 5(Section1) Friction in Solids and Liquids Que 1: Define friction. What are its causes? Ans : Friction: When two bodies are in contact with each other and if one body is made to move then the
More informationChapter 11. Fluids. continued
Chapter 11 Fluids continued 11.2 Pressure Pressure is the amount of force acting on an area: Example 2 The Force on a Swimmer P = F A SI unit: N/m 2 (1 Pa = 1 N/m 2 ) Suppose the pressure acting on the
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationChapter 12. Fluid Mechanics. A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V.
Chapter 12 Fluid Mechanics 12.1 Density A. The density ρ of a substance of uniform composition is defined as its mass M divided by its volume V. That is,! = M V The density of water at 4 o C is 1000 kg/m
More informationStudy fluid dynamics. Understanding Bernoulli s Equation.
Chapter Objectives Study fluid dynamics. Understanding Bernoulli s Equation. Chapter Outline 1. Fluid Flow. Bernoulli s Equation 3. Viscosity and Turbulence 1. Fluid Flow An ideal fluid is a fluid that
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Atoms or molecules are held in specific locations By electrical forces Vibrate about
More informationChapter 14  Fluids. Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14  Fluids. Objectives (Ch 14)
Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced. Archimedes, On Floating Bodies David J.
More informationSummary PHY101 ( 2 ) T / Hanadi Al Harbi
الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force
More informationm V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3
Chapter 11 Fluids 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: ρ m V SI Unit of Mass Density: kg/m 3 11.1 Mass Density
More informationFluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding
Fluid Mechanics HOOKE'S LAW If deformation is small, the stress in a body is proportional to the corresponding strain. In the elasticity limit stress and strain Stress/strain = Const. = Modulus of elasticity.
More information1 FLUIDS AND THEIR PROPERTIES
FLUID MECHANICS CONTENTS CHAPTER DESCRIPTION PAGE NO 1 FLUIDS AND THEIR PROPERTIES PART A NOTES 1.1 Introduction 1.2 Fluids 1.3 Newton s Law of Viscosity 1.4 The Continuum Concept of a Fluid 1.5 Types
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More informations and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
More informationChapter 9. Solids and Fluids 9.3 DENSITY AND PRESSURE
9.3 DENSITY AND PRESSURE Chapter 9 Solids and Fluids The density of an object having uniform composition is defined as its mass M divided by its volume V: M V [9.6] SI unit: kilogram per meter cubed (kg/m
More informationACE Engineering College
ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC
More informationV/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and nonuniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and irrotational
More informationFluid Mechanics Introduction
Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be
More informationChapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2
Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius
More informationm V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3
Chapter Fluids . Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m 3 . Mass Density . Mass Density
More informationLecture 8 Equilibrium and Elasticity
Lecture 8 Equilibrium and Elasticity July 19 EQUILIBRIUM AND ELASTICITY CHAPTER 12 Give a sharp blow one end of a stick on the table. Find center of percussion. Baseball bat center of percussion Equilibrium
More informationGATE PSU. Chemical Engineering. Fluid Mechanics. For. The Gate Coach 28, Jia Sarai, Near IIT Hauzkhas, New Delhi 16 (+91) ,
For GATE PSU Chemical Engineering Fluid Mechanics GATE Syllabus Fluid statics, Newtonian and nonnewtonian fluids, Bernoulli equation, Macroscopic friction factors, energy balance, dimensional analysis,
More informationStates of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!
Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter 1 2 Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force
More informationANSWERS 403 INDEX. Bulk modulus 238 Buoyant force 251
ANSWERS 403 INDEX A Absolute scale temperature 276 Absolute zero 276 Acceleration (linear) 45 Acceleration due to gravity 49,189 Accuracy 22 Actionreaction 97 Addition of vectors 67 Adiabatic process
More informationStates of Matter. Chapter 9 Solids and Fluids. Solids: Stress and Strain. Solids: Stress and Strain. Stress = Force Area. Strain =!L L. Example 9.
Elasticity Chapter 9 Solids and Fluids Archimedes Principle Bernoulli s Equation Solid Liquid Gas Plasmas States of Matter Solids: Stress and Strain Solids: Stress and Strain Stress = Measure of force
More informationI N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
MECHNICS O LUIDS luids are both liquids and gases. The common property of fluids is that the particles can be separated easily (liquids do not have their own shape etc.). Real fluids have something like
More informationFluids. Fluids in Motion or Fluid Dynamics
Fluids Fluids in Motion or Fluid Dynamics Resources: Serway  Chapter 9: 9.79.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT  8: Hydrostatics, Archimedes' Principle,
More informationGeneral Physics I. Lecture 16: Fluid Mechanics. Prof. WAN, Xin ( 万歆 )
General Physics I Lecture 16: Fluid Mechanics Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivations Newton s laws for fluid statics? Force pressure Mass density How to treat
More informationChapter 9 Solids and Fluids. Elasticity Archimedes Principle Bernoulli s Equation
Chapter 9 Solids and Fluids Elasticity Archimedes Principle Bernoulli s Equation States of Matter Solid Liquid Gas Plasmas Solids: Stress and Strain Stress = Measure of force felt by material Stress= Force
More informationLiquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible.
Properties of Fluids Intensive properties are those that are independent of the mass of a system i.e. temperature, pressure and density. Extensive properties are those whose values depend on the size of
More informationPressure in a fluid P P P P
Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all oddball states of matter We
More informationUniversity of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1
University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311  Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More information1. The Properties of Fluids
1. The Properties of Fluids [This material relates predominantly to modules ELP034, ELP035] 1.1 Fluids 1.1 Fluids 1.2 Newton s Law of Viscosity 1.3 Fluids Vs Solids 1.4 Liquids Vs Gases 1.5 Causes of viscosity
More informationCHAPTER 13. Liquids FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes Principle! Upthrust!
More informationFluid Mechanics Vikasana Bridge Course 2012
Fluid Mechanics Fluid Liquids and gases can flow. Hence they are called fluids. Fluid is the name given to a substance which begins to flow, when external force is applied on it. This property distinguish
More informationPetroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara
Continents Chapter 1. Fluid Mechanics Properties of fluids Density, specific gravity, specific volume and Viscosity Newtonian and non Newtonian fluids Surface tension Compressibility Pressure Cavitations
More informationLECTURE 4 FLUID FLOW & SURFACE TENSION. Lecture Instructor: Kazumi Tolich
LECTURE 4 FLUID FLOW & SURFACE TENSION Lecture Instructor: Kazumi Tolich Lecture 4 2 Reading chapter 15.6 to 15.9 Continuity equation Bernoulli s equation n Torricelli s law Viscosity Surface tension Equation
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationApproximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.
Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface
More informationFluid Mechanics. The atmosphere is a fluid!
Fluid Mechanics The atmosphere is a fluid! Some definitions A fluid is any substance which can flow Liquids, gases, and plasmas Fluid statics studies fluids in equilibrium Density, pressure, buoyancy Fluid
More informationPhysics 3 Summer 1990 Lab 7  Hydrodynamics
Physics 3 Summer 1990 Lab 7  Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure
More informationPhysics 207 Lecture 20. Chapter 15, Fluids
Chapter 15, Fluids This is an actual photo of an iceberg, taken by a rig manager for Global Marine Drilling in St. Johns, Newfoundland. The water was calm and the sun was almost directly overhead so that
More informationFluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012
Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study
More informationAMME2261: Fluid Mechanics 1 Course Notes
Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter
More informationChapter 9 Fluids. Pressure
Chapter 9 Fluids States of Matter  Solid, liquid, gas. Fluids (liquids and gases) do not hold their shapes. In many cases we can think of liquids as being incompressible. Liquids do not change their volume
More informationPetroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara
Continents Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Chapter 1. Fluid Mechanics Properties of fluids Density, specific gravity, specific volume and
More informationCHAPTER 1 Fluids and their Properties
FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those
More informationChapter 10. Solids & Liquids
Chapter 10 Solids & Liquids Next 6 chapters use all the concepts developed in the first 9 chapters, recasting them into a form ready to apply to specific physical systems. 10.1 Phases of Matter, Mass Density
More informationRate of Flow Quantity of fluid passing through any section (area) per unit time
Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section
More informationClass XI Physics Syllabus One Paper Three Hours Max Marks: 70
Class XI Physics Syllabus 2013 One Paper Three Hours Max Marks: 70 Class XI Weightage Unit I Physical World & Measurement 03 Unit II Kinematics 10 Unit III Laws of Motion 10 Unit IV Work, Energy & Power
More informationGeneral Physics I (aka PHYS 2013)
General Physics I (aka PHYS 2013) PROF. VANCHURIN (AKA VITALY) University of Minnesota, Duluth (aka UMD) OUTLINE CHAPTER 12 CHAPTER 19 REVIEW CHAPTER 12: FLUID MECHANICS Section 12.1: Density Section 12.2:
More informationLiquids CHAPTER 13 FLUIDS FLUIDS. Gases. Density! Bulk modulus! Compressibility. To begin with... some important definitions...
CHAPTER 13 FLUIDS FLUIDS Liquids Gases Density! Bulk modulus! Compressibility Pressure in a fluid! Hydraulic lift! Hydrostatic paradox Measurement of pressure! Manometers and barometers Buoyancy and Archimedes
More information2. For a S.H.O. determine, (a) the total energy (E), the kinetic and potential energies. of half amplitude:
The amplitude of vibration and hence, the energy transferred into the vibrating system is found to depend on the difference between f and, its maximum when the frequency of the external force is equal
More informationFluidi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.
Fluidi 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: m V SI Unit of Mass Density: kg/m3 11.1 Mass Density 11.1 Mass Density
More informationPhysics 106 Lecture 13. Fluid Mechanics
Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle
More informationCE MECHANICS OF FLUIDS UNIT I
CE 6303 MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D14][M/J11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices
More informationBarometer Fluid rises until pressure at A, due its weight, equals atmospheric pressure at B. Unit: mm Hg (millimeters that mercury rises)
FLUID MECHANICS The study of the properties of fluids resulting from the action forces. Fluid a liquid, gas, or plasma We will only consider incompressible fluids i.e. liquids Pressure P F A (normal force)
More informationDIVIDED SYLLABUS ( )  CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL
DIVIDED SYLLABUS (201516 )  CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL Unit I: Physical World and Measurement Physics Need for measurement: Units of measurement; systems of units; SI units, fundamental
More informationPHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.
PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion
More informationPhy 212: General Physics II. Daniel Bernoulli ( )
Phy 1: General Physics II Chapter 14: Fluids Lecture Notes Daniel Bernoulli (1700178) Swiss merchant, doctor & mathematician Worked on: Vibrating strings Ocean tides Kinetic theory Demonstrated that as
More informationcos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015
skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional
More informationStates of matter. Density high > high >> low (pressure dependent)
Fluids States of matter Solids Fluids crystalline amorphous liquids gasses Interatomic forces strong > strong >> very weak Density high > high >> low (pressure dependent) Density is an important material
More informationFluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion
Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGrawPHY45 Chap_14HaFluidsRevised 10/13/01 Densities MFMcGrawPHY45 Chap_14HaFluidsRevised
More informationD.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for
D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for 20172018 UNIT NAME OF UNIT WEIGHTAGE 1. 2. 3. Physical World and Measurement Kinemetics Laws of Motion
More informationChapter 4 DYNAMICS OF FLUID FLOW
Faculty Of Engineering at Shobra nd Year Civil  016 Chapter 4 DYNAMICS OF FLUID FLOW 41 Types of Energy 4 Euler s Equation 43 Bernoulli s Equation 44 Total Energy Line (TEL) and Hydraulic Grade Line
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationFluid flow Pressure Bernoulli Principle Surface Tension
Lecture 9. Fluid flow Pressure Bernoulli Principle Surface Tension A v L A is the area Fluid flow Speed of a fluid in a pipe is not the same as the flow rate Relating: Fluid flow rate to Average speed
More informationB.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I
Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I LP: CH 16304 Rev. No: 00
More informationMULTIPLECHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)
MULTIPLECHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.
More information5 ENERGY EQUATION OF FLUID MOTION
5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws
More informationMECHANICAL PROPERTIES OF FLUIDS
Introduction: The branch of physics which deals with the study of fluids at rest is called hydrostatics and that branch of physics which deals with the study of fluids in motion is called hydrodynamics.
More informationChapter 15: Fluids. Mass Density = Volume. note : Fluids: substances which flow
Fluids: substances which flow Chapter 5: Fluids Liquids: take the shape of their container but have a definite volume Gases: take the shape and volume of their container Density m ρ = V Mass Density =
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationBFC FLUID MECHANICS BFC NOOR ALIZA AHMAD
BFC 10403 FLUID MECHANICS CHAPTER 1.0: Principles of Fluid 1.1 Introduction to Fluid Mechanics 1.2 Thermodynamic Properties of a Fluid: Density, specific weight, specific gravity, viscocity (kelikatan)berat
More informationFluid Mechanics Abdusselam Altunkaynak
Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.
More informationA drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:
More informationDetailed Outline, M E 320 Fluid Flow, Spring Semester 2015
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous
More informationCE MECHANICS OF FLUIDS
CE60  MECHANICS OF FLUIDS (FOR III SEMESTER) UNIT II FLUID STATICS & KINEMATICS PREPARED BY R.SURYA, M.E Assistant Professor DEPARTMENT OF CIVIL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SRI VIDYA COLLEGE
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More information