Fluid Mechanics Introduction


 Bathsheba King
 2 years ago
 Views:
Transcription
1 Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be classified either as gases or liquids, the most notable difference between the two states are that liquids are more denser than gases and gases are highly compressible compared to liquids. Fluid mechanics consider one of the most fundamental subjects not only in civil engineering while in chemical, mechanical, and geotechnical, in addition to aeronautical and marine engineering. Fluid mechanics play a major role in the design and industry of aircrafts, aircraft carries, ships, boats, and submarines which are consider the last technology in advanced countries. Hydraulics is the science that study specifically water as a liquid. What is a fluid? A fluid is a material which is incapable of supporting shear force. What is a shear force? A Shear is a force that is applied tangentially to a material element. 1
2 Solid can support static deflections; fluids need a container. Units and Dimensions The basic dimensions used in fluid mechanics and hydraulics are: MLT : mass length time FLT : force length time Dimension English System Metric System International System Mass (M) Slug Gram Kilogram Force (F) Pound Dyne Newton Length (L) Foot Centimeter Meter Time (T) Second Second Second Newton s second low can relate between these dimensions. Force = Mass * Acceleration Acceleration due to gravity, g in SI units = 9.81 m/s 2 Acceleration due to gravity, g in BS units = 32.2 ft/s 2 2
3 Some useful conversion tables: Table 1.1 Primary Dimensions in SI and BG Systems: 3
4 Table 1.2 Secondary Dimensions in Fluid Mechanics: Properties of fluid 1. Mass density ρ It is the mass per unit volume (kg/m 3 ) Density of water in SI = 1000 kg/m 3, in BS= 1.94 slug/ft 3 2. Weight density γ It is the weight per unit volume (N/m 3 ) γ water = 9810 N/m 3 = 9.81 KN/m 3 From Newton s second low: 4
5 3. Relative density r.d. or specific gravity S.g. It is the ratio of fluid density to water density at 1 atmosphere and 4 C. S.g. oil= 0.85 Hydrometer A directreading instrument for indicating the density or specific gravity of liquids is called hydrometer. Float Section Stem 4. Specific Volume S.V. It is the volume per unit weight ( m 3 / N) 5. Compressibility and Elasticity of Fluid: Compressibility reflects the stressstrain properties of a material. Stress: internal response of a material to an external pressure Strain: measure of the linear or volumetric deformation of a stressed material. 5
6 The modulus of elasticity of fluid is define as (N/ m 2 ) 6. Viscosity of fluid: Viscosity of fluid is due to cohesion between fluid particles and also due to interchange of molecules between the layers of different velocities, its units in( Pa.s.). Viscosity measures a fluids ability to resist shear stress Hypothetical Experiment: 6
7 Real Experiment: One moving shaft inside another hollow shaft filled with oil. In the case the thickness of oil film is equal to: L = R i R s The relationship between the shear stress and viscosity of fluid is given by Newton s law of viscosity: Where τ = shear stress between fluid layers dy = thickness of fluid slip. dv = difference in velocity between adjacent slips. μ = dynamic viscosity of fluid (Pa.s.). 7
8 When τ in viscous fluid at a rest = 0 When y is too small yielding linear velocity profile and Shear stress at the solid surface. Fluids obeying Newton s law of viscosity for which μ has constant value (does not change with the deformation) are known as Newtonian fluids, for which shear stress τ is linearly related to velocity gradient is the absolute viscosity μ. and the slope of the line The ideal fluid, with no viscosity (μ = 0), falls on the horizontal axis, while the true elastic solid plots along the vertical axis. Fluids which do not obey Newton s law of viscosity are known as non Newtonian fluids, There are certain nonnewtonian fluids in which μ varies with the rate of deformation. These are relatively uncommon in engineering usage. Typical nonnewtonian fluids include paints, printer s ink, gels and emulsions as shown in graph below: 8
9 7. Surface tension and Capillarity: In the figure below, molecule A is attracted in all directions equally by surrounding molecules (cohesion forces) thus the resultant force on A is zero. Molecule B located on the free surface of a liquid will experience resultant force downward, all the molecules on the surface experience downward force, thus the surface of a liquid acts as an elastic membrane under tension. Surface tension (σ) is the work (energy) per unit area required to bring the molecules to the surface N.m/ m 2 = N/ m. Thus surface tension will be formed when the liquids is in contact with gases. Water in contact with air has a surface tension of about N/m at usual ambient temperatures. Molecular forces: Cohesion: is the inner force between liquid molecules. Adhesion: is the attraction force between liquid and a solid surface. Capillarity: is define as a rise or fall of a liquid surface in a small tube relative to adjacent general level of a liquid when the tube is held vertically in a liquid, it is expressed in terms of cm or mm of liquid. Capillary attraction is caused by surface tension and relative value of adhesion to cohesion of the liquid. For capillarity rise, at equilibrium the weight of a liquid of height h is balanced by the force of surface tension of a liquid. 9
10 Where: h capillary rise in the tube. σ surface tension. θ angle of contact between water, and tube. γ specific weight of water. r radius of the tube. For clean glass tube For capillarity depression, at equilibrium, the force of surface tension acting downward is equal to the hydrostatic force acting upward. Tension force = weight of fluid displaced For mercury θ = 130, σ = 0.51 N/m 11
11 8. Vapor Pressure When evaporation take place within an enclosed space, the partial pressure created by the vapor molecules in a space is called vapor pressure and depend on temperature and increase with it. When vapor pressure of a liquid equals the pressure above the liquid (atmospheric) boiling will begin. Ordinary evaporation is a surface phenomenon  some molecules have enough kinetic energy to escape. If the container is closed, equilibrium is reached where an equal number of molecules return to the surface. The pressure of this equilibrium is called the saturation vapor pressure. Temperature C Vapor Pressure (Kpa.) absolute
HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS
1 STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL Syllabus Hydraulics ( Fluid Mechanics ) Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow
More informationFluid Mechanics61341
AnNajah National University College of Engineering Fluid Mechanics61341 Chapter [1] Fundamentals 1 The Book (Elementary Fluid Mechanics by Street, Watters and Vennard) Each chapter includes: Concepts
More informationCHAPTER 1 Fluids and their Properties
FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those
More informationFluid Mechanics Abdusselam Altunkaynak
Fluid Mechanics Abdusselam Altunkaynak 1. Unit systems 1.1 Introduction Natural events are independent on units. The unit to be used in a certain variable is related to the advantage that we get from it.
More informationUniversity of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1
University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311  Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based
More informationIntroduction to Marine Hydrodynamics
1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering First Assignment The first
More informationCE MECHANICS OF FLUIDS UNIT I
CE 6303 MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D14][M/J11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices
More information1. The Properties of Fluids
1. The Properties of Fluids [This material relates predominantly to modules ELP034, ELP035] 1.1 Fluids 1.1 Fluids 1.2 Newton s Law of Viscosity 1.3 Fluids Vs Solids 1.4 Liquids Vs Gases 1.5 Causes of viscosity
More information1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)
1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid
More informationWe may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from
Chapter 1. Introduction 1.1 Some Characteristics of Fluids We may have a general idea that a solid is hard and a fluid is soft. This is not satisfactory from scientific or engineering point of view. In
More informationCHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.
CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,
More informationChapter 1 Fluid Characteristics
Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity
More informationCHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.
CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,
More informationPart II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi
Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi WHAT we will learn I. Characterization of Fluids  What is the fluid? (Physical properties of Fluid) II. Behavior of fluids  Fluid
More informationTOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationMECHANICAL PROPERTIES OF FLUIDS:
Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is
More informationFluid Properties and Units
Fluid Properties and Units CVEN 311 Continuum Continuum All materials, solid or fluid, are composed of molecules discretely spread and in continuous motion. However, in dealing with fluidflow flow relations
More informationLecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:
11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML 1 T 2 ], Density, ρ (kg/m 3 ) or [ML 3 ], Specific weight, γ = ρg (N/m 3 ) or
More informationFRIDAYS 14:00 to 15:40. FRIDAYS 16:10 to 17:50
Brad Peterson, P.E. FRIDAYS 14:00 to 15:40 FRIDAYS 16:10 to 17:50 BRAD PETERSON, P.E., PTOE Brigham Young University, 1975 Highway and Bridge Design Montana, Utah, Idaho, Wyoming Worked 27 Years in Helena,
More informationLiquids and solids are essentially incompressible substances and the variation of their density with pressure is usually negligible.
Properties of Fluids Intensive properties are those that are independent of the mass of a system i.e. temperature, pressure and density. Extensive properties are those whose values depend on the size of
More informationChapter 1 INTRODUCTION
Chapter 1 INTRODUCTION 11 The Fluid. 12 Dimensions. 13 Units. 14 Fluid Properties. 1 11 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid
More informationReview of Fluid Mechanics
Chapter 3 Review of Fluid Mechanics 3.1 Units and Basic Definitions Newton s Second law forms the basis of all units of measurement. For a particle of mass m subjected to a resultant force F the law may
More informationENGR 292 Fluids and Thermodynamics
ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Jan.13, 2017 Review of Last Class Course Outline Class Information Contact Information, Website
More informationPetroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara
Continents Petroleum Engineering Department Fluid Mechanics Second Stage Assist Prof. Dr. Ahmed K. Alshara Chapter 1. Fluid Mechanics Properties of fluids Density, specific gravity, specific volume and
More informationFluid Engineering Mechanics
Fluid Engineering Mechanics Chapter Fluid Properties: Density, specific volume, specific weight, specific gravity, compressibility, viscosity, measurement of viscosity, Newton's equation of viscosity,
More informationDIMENSIONS AND UNITS
DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension
More informationBFC FLUID MECHANICS BFC NOOR ALIZA AHMAD
BFC 10403 FLUID MECHANICS CHAPTER 1.0: Principles of Fluid 1.1 Introduction to Fluid Mechanics 1.2 Thermodynamic Properties of a Fluid: Density, specific weight, specific gravity, viscocity (kelikatan)berat
More informationHomework of chapter (1) (Solution)
بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanicsdiscussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First
More informationFluid Mechanics Discussion. Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad
Discussion Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad 20142015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance
More information10  FLUID MECHANICS Page 1
0  FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics
More informationP = 1 3 (σ xx + σ yy + σ zz ) = F A. It is created by the bombardment of the surface by molecules of fluid.
CEE 3310 Thermodynamic Properties, Aug. 27, 2010 11 1.4 Review A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container
More informationPetroleum Engineering Dept. Fluid Mechanics Second Stage Dr. Ahmed K. Alshara
Continents Chapter 1. Fluid Mechanics Properties of fluids Density, specific gravity, specific volume and Viscosity Newtonian and non Newtonian fluids Surface tension Compressibility Pressure Cavitations
More informationAMME2261: Fluid Mechanics 1 Course Notes
Module 1 Introduction and Fluid Properties Introduction Matter can be one of two states: solid or fluid. A fluid is a substance that deforms continuously under the application of a shear stress, no matter
More informationCOURSE NUMBER: ME 321 Fluid Mechanics I. Fluid: Concept and Properties
COURSE NUMBER: ME 321 Fluid Mechanics I Fluid: Concept and Properties Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 What is Fluid Mechanics? Fluid mechanics
More informationME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water)
ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4 (Buoyancy and Viscosity of water) 16. BUOYANCY Whenever an object is floating in a fluid or when it is completely submerged in
More informationACE Engineering College
ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More information1 FLUIDS AND THEIR PROPERTIES
FLUID MECHANICS CONTENTS CHAPTER DESCRIPTION PAGE NO 1 FLUIDS AND THEIR PROPERTIES PART A NOTES 1.1 Introduction 1.2 Fluids 1.3 Newton s Law of Viscosity 1.4 The Continuum Concept of a Fluid 1.5 Types
More informationINTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION
INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationCHAPTER (2) FLUID PROPERTIES SUMMARY DR. MUNZER EBAID MECH.ENG.DEPT.
CHAPTER () SUMMARY DR. MUNZER EBAID MECH.ENG.DEPT. 08/1/010 DR.MUNZER EBAID 1 System Is defined as a given quantity of matter. Extensive Property Can be identified when it is Dependent on the total mass
More informationNonNewtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,
CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance
More informationME3250 Fluid Dynamics I
ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/
More informationLECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:
LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION TO FLUID AND BASIC EQUATIONS 2.0 REYNOLDS NUMBER AND CRITICAL VELOCITY 3.0 APPROACH TOWARDS REYNOLDS NUMBER REFERENCES Page 1 of
More informationChapter 1 Fluid Proper2es. CE Fluid Mechanics Diogo Bolster
Chapter 1 Fluid Proper2es CE30460  Fluid Mechanics Diogo Bolster What is a Fluid? A substance that deforms con2nuously when acted on by a shearing stress A solid will deform to a certain point for a given
More informationFluids and their Properties
Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity:  / NonNewtonian Fluids:  Mass Density:  / Specific weight: 
More informationFluid Mechanics 3502 Day 1, Spring 2018
Instructor Fluid Mechanics 3502 Day 1, Spring 2018 Dr. Michele Guala, Civil Eng. Department UMN Office hours: (Tue ?) CEGE 162 9:3010:30? Tue Thu CEGE phone (612) 6267843 (Mon,Wed,Fr) SAFL, 2 third
More informationLecturer, Department t of Mechanical Engineering, SVMIT, Bharuch
Fluid Mechanics By Ashish J. Modi Lecturer, Department t of Mechanical Engineering, i SVMIT, Bharuch Review of fundamentals Properties of Fluids Introduction Any characteristic of a system is called a
More informationLagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field.
Chapter 2 Hydrostatics 2.1 Review Eulerian description from the perspective of fixed points within a reference frame. Lagrangian description from the perspective of a parcel moving within the flow. Streamline
More informationSummary PHY101 ( 2 ) T / Hanadi Al Harbi
الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force
More informationMECHANICAL PROPERTIES OF FLUIDS
CHAPTER10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure
More informations and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
More informationChapter 9: Solids and Fluids
Chapter 9: Solids and Fluids State of matters: Solid, Liquid, Gas and Plasma. Solids Has definite volume and shape Can be crystalline or amorphous Molecules are held in specific locations by electrical
More informationA drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension
A drop forms when liquid is forced out of a small tube. The shape of the drop is determined by a balance of pressure, gravity, and surface tension forces. 2 Objectives 3 i i 2 1 INTRODUCTION Property:
More informationFluid Mechanics61341
AnNajah National University College of Engineering Fluid Mechanics61341 Chapter [2] Fluid Statics 1 Fluid Mechanics2nd Semester 2010 [2] Fluid Statics Fluid Statics Problems Fluid statics refers to
More informationCHAPTER 10. States of Matter
CHAPTER 10 States of Matter Kinetic Molecular Theory Kinetikos  Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,
More informationCHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure
Kinetic Molecular Theory CHAPTER 10 States of Matter Kinetikos  Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,
More informationClass Notes Fall 2014
57:020 Fluid Mechanics Class Notes Fall 2014 Prepared by: Professor Fred Stern Typed by: Stephanie Schrader (Fall 1999) Corrected by: Jun Shao (Fall 2003, Fall 2005) Corrected by: Jun Shao, Tao Xing (Fall
More informationThe online of midtermtests of Fluid Mechanics 1
The online of midtermtests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.
More informationPlease remember all the unit that you use in your calculation. There are no marks for correct answer without unit.
CHAPTER 1 : PROPERTIES OF FLUIDS What is fluid? A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called
More informationChapter 5(Section1) Friction in Solids and Liquids
Chapter 5(Section1) Friction in Solids and Liquids Que 1: Define friction. What are its causes? Ans : Friction: When two bodies are in contact with each other and if one body is made to move then the
More informationWelcome to MECH 280. Ian A. Frigaard. Department of Mechanical Engineering, University of British Columbia. Mech 280: Frigaard
Welcome to MECH 280 Ian A. Frigaard Department of Mechanical Engineering, University of British Columbia Lectures 1 & 2: Learning goals/concepts: What is a fluid Apply continuum hypothesis Stress and viscosity
More informationMiddle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.
Reading Assignments Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr. Sert) Study Set 1 You can find the answers of some of the following
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationFluid Mechanics Testbank By David Admiraal
Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on
More informationFluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding
Fluid Mechanics HOOKE'S LAW If deformation is small, the stress in a body is proportional to the corresponding strain. In the elasticity limit stress and strain Stress/strain = Const. = Modulus of elasticity.
More informationChapter 10. Solids & Liquids
Chapter 10 Solids & Liquids Next 6 chapters use all the concepts developed in the first 9 chapters, recasting them into a form ready to apply to specific physical systems. 10.1 Phases of Matter, Mass Density
More informationFluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118
CVEN 311501 (Socolofsky) Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and
More informationNicholas J. Giordano. Chapter 10 Fluids
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according
More informationMAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI
MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 6113 DEPARTMENT: CIVIL SUB.CODE/ NAME: CE6303/ MECHANICS OF FLUIDS SEMESTER: III UNIT1 FLUID PROPERTIES TWO MARK QUESTIONS AND ANSWERS 1. Define fluid mechanics.(auc
More informationKinetic Theory (Kinetikos  Moving ) Based on the idea that particles of matter are always in motion
Chapter 10 Kinetic Theory (Kinetikos  Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary
More informationChapter 10. Solids and Fluids
Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the
More informationCHEMISTRY Matter and Change. Chapter 12: States of Matter
CHEMISTRY Matter and Change Chapter 12: States of Matter CHAPTER 12 States of Matter Section 12.1 Section 12.2 Section 12.3 Section 12.4 Gases Forces of Attraction Liquids and Solids Phase Changes Click
More informationCourse: TDEC202 (Energy II) dflwww.ece.drexel.edu/tdec
Course: TDEC202 (Energy II) Thermodynamics: An Engineering Approach Course Director/Lecturer: Dr. Michael Carchidi Course Website URL dflwww.ece.drexel.edu/tdec 1 Course Textbook Cengel, Yunus A. and Michael
More information1.3 Analysis of Fluid Behavior
1.3 Analysis of Fluid Behavior Fluid Statics : When the fluid is at rest. Fluid Dynamics : When the fluid is moving. Governing equations : Conservation of Conservation of Conservation of mass momentum
More informationChapter 6(Section1) Surface Tension
Chapter 6(Section1) Surface Tension Free surface of the liquid tends to minimize the surface area. e.g.(1)if the small quantity of mercury is allowed to fall on the floor, it converted in to small spherical
More informationch01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows
ch01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows ch01.qxd 8/4/04 2:33 PM Page 3 Introduction 1 Summary The introduction chapter reviews briefly the basic fluid properties
More informationChapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas
Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationFluid Mechanics II Viscosity and shear stresses
Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationS.3 PHYSICS HOLIDAY WORK Where necessary assume the acceleration due to gravity, g 10ms. 1. 7. 13. 19. 25. 2. 8. 14. 20. 26. 3. 9. 15. 21. 27. 4. 10. 16. 22. 28. 5. 11. 17. 23. 29. 6. 12. 18. 24. 30. SECTION
More informationPHASE CHANGES EVAPORATION EVAPORATION PHYSICAL PROPERTIES OF LIQUID PHYSICAL PROPERTIES OF LIQUID SOME PROPERTIES OF LIQUIDS 2014/08/08
PHYSICAL PROPERTIES OF LIQUID PHYSICAL PROPERTIES OF LIQUID A physical property is a property that can be changed without changing the fundamental components of a substance. SOME PROPERTIES OF LIQUIDS
More informationEngineering Thermodynamics. Chapter 1. Introductory Concepts and Definition
1.1 Introduction Chapter 1 Introductory Concepts and Definition Thermodynamics may be defined as follows : Thermodynamics is an axiomatic science which deals with the relations among heat, work and properties
More informationDynamic (absolute) Viscosity
Viscosity Taken from: http://www.engineeringtoolbox.com/dynamicabsolutekinematicviscosityd_412.html The viscosity of a fluid is an important property in the analysis of liquid behavior and fluid motion
More informationLecture Presentation. Chapter 11. Liquids and Intermolecular Forces Pearson Education, Inc.
Lecture Presentation Chapter 11 Liquids and States of Matter The fundamental difference between states of matter is the strength of the intermolecular forces of attraction. Stronger forces bring molecules
More informationBenha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016
Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt
More informationPHASE CHANGES. * melting * boiling * sublimation. * freezing * condensation * deposition. vs.
PHASE CHANGES endothermic * melting * boiling * sublimation vs. vs. exothermic * freezing * condensation * deposition H enthalpy: heat content of a system under constant pressure HEATING CURVE: Where is
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationFormulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3
CE30 Test 1 Solution Key Date: 26 Sept. 2017 COVER PAGE Write your name on each sheet of paper that you hand in. Read all questions very carefully. If the problem statement is not clear, you should ask
More information2. For a S.H.O. determine, (a) the total energy (E), the kinetic and potential energies. of half amplitude:
The amplitude of vibration and hence, the energy transferred into the vibrating system is found to depend on the difference between f and, its maximum when the frequency of the external force is equal
More informationChapter 9. Solids and Fluids
Chapter 9 Solids and Fluids States of Matter Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationCH.1 Overview of Fluid Mechanics/22 MARKS. 1.1 Fluid Fundamentals.
Content : 1.1 Fluid Fundamentals. 08 Marks Classification of Fluid, Properties of fluids like Specific Weight, Specific gravity, Surface tension, Capillarity, Viscosity. Specification of hydraulic oil
More informationMM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =6 (1/2) 2 = 3/2 m/s
MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one, two, or threedimensional, and why. ii) Whether the flow
More informationChapter 13. liquids. gases. 1) Fluids exert pressure. a) because they're made up of matter with forces applied between (I.M.F.)
\ Chapter 13 Fluids 1) Fluids exert pressure a) because they're made up of matter with forces applied between (I.M.F.) liquids gases b) they are made of matter in constant motion colliding with other matter
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationSUMMER 17 EXAMINATION
(ISO/IEC  700005 Certified) SUMMER 7 EXAMINATION 70 Model ject Code: Important Instructions to examiners: ) The answers should be examined by key words and not as wordtoword as given in the model answer
More informationFluid Mechanics. Spring 2009
Instructor: Dr. YangCheng Shih Department of Energy and Refrigerating AirConditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 11 General Remarks 12 Scope
More informationShell Balances in Fluid Mechanics
Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell
More informationContents. I Introduction 1. Preface. xiii
Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................
More informationPhysics 207 Lecture 18
Physics 07, Lecture 8, Nov. 6 MidTerm Mean 58.4 (64.6) Median 58 St. Dev. 6 (9) High 94 Low 9 Nominal curve: (conservative) 8000 A 679 B or A/B 346 C or B/C 933 marginal 98 D Physics 07: Lecture 8,
More information