R09. d water surface. Prove that the depth of pressure is equal to p +.


 Adam Edwards
 2 years ago
 Views:
Transcription
1 Code No:A R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal marks a) What is capillarity? Derive an expression for height of a capillary rise. b) What is the difference between cohesion and adhesion? c) Determine the minimum size of glass tube that can be used to measure water level, if the capillary rise in the tube is not to exceed 0.25 mm. Take surface tension of water in contact with air as N/m. [15] 2.a) Derive an expression for the depth of centre of pressure from free surface of liquid of an inclined plane surface submerged in the liquid b) A rectangular sluice gate is situated on the vertical wall of a lock. The vertical side of the sluice is d metres in length and depth of centroid of the area is p metres below the 2 d water surface. Prove that the depth of pressure is equal to p p [15] 3.a) Explain Lagrangian and Eulerian methods of describing fluid flow. b) If the velocity potential function is given by ψ = 3x 4 y. Find the magnitude and direction of the velocity at any point? [15] 4.a) What is a pitot tube? Explain types of Pitot tubes? How is it used to measure velocity of flow at any point in a pipe or channel? b) A horizontal venturimeter with inlet and throat diameters 160 mm and 60 mm respectively is used to measure the flow of an oil of specific gravity 0.8. If the discharge of the oil is 0.05 m 3 / s, find the deflection of oil mercury gauge. Take venturimeter constant=1. [15] 5.a) Explain the characteristics of laminar and turbulent boundary layers. b) Prove that the momentum thickness and energy thickness for boundary layer flows are given by δ 2 u u θ = 1 dy U U u y y = 2 U δ δ. [15] 0
2 6.a) Derive HagenPoiseuilles equation and state the assumptions made. b) In a circular pipe of diameter 100 mm a fluid of viscosity 7 poise and specific gravity is flowing is 1.3. If the maximum shear stress at the wall of the pipe is N/m 2, find: i) The pressure gradient ii) The average velocity iii) Reynolds number of flow. [15] 7. A pipe of diameter 50 cm and length 5000 metres connects two reservoirs A and B. The difference of water levels of these reservoirs is 20 metres. Half way along the pipe there is a branch through which water can be discharged to a third reservoir C. Find the rate of flow to the reservoir B when i) No water is discharged to the reservoir C ii) The discharge to the reservoir C is 0.05 cumec. Take f= [15] 8.a) What do you mean by end contraction of a rectangular weir?. How the loss of discharging capacity due to end contractions can be compensated? b) The head of the water over a 3 metres long weir is 30 cm. Find the discharge by Francis formula. Allow for two end contractions. c) How does a Cippoletti weir differ from a rectangular sharp crested weir? [15] ********
3 Code No:A R09 SET2 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal marks a) Explain briefly the following terms: i) Mass density ii) Weight density iii) Specific volume iv) Specific gravity. b) State and explain the Newton s law of viscosity. c) A U tube is made up of two capillaries of bore 1 mm and 2 mm respectively. The tube is held vertically and is partially filled with liquid of surface tension 0.05 N/m and zero contact angle. Calculate the mass density of the liquid if the estimated difference in the level of two menisci is 12.5 mm. [15] 2.a) Derive expressions for total pressure and centre of pressure for the following two cases. (i) For a vertically immersed surface. (ii) For inclined immersed surface. b) The masonry dam of trapezoidal section has its upstream face vertical. The height is 10 m and top is 3 m wide. Find the minimum width of base if there is no tension at the base and water reaches the top of the dam. Take weight of water as 9.81 k N/m 3 and weight of mansonry is 22kN/m 3. What is then maximum compressive stress at the base? [15] 3.a) Write short notes on : i) Path line ii) Stream line iii) Streak line iv) Stream tube. b) 2 2 A stream function follows the law ψ = x y. Determine the velocity potential function. [15] 4.a) Describe an orifice meter and find an expression for measuring discharge of fluid through a pipe with this device. b) A Venturimeter is used for measuring the flow of petrol in a pipeline inclined at 35 0 to horizontal. The sp. Gravity of the petrol is 0.81 and throat area ratio is 4. If the difference in mercury levels in the gauge is 50 mm calculate the flow in m 3 /s if the pipe diameter is 300. Take venturimeter constant is [15]
4 5.a) Define the following terms: i) Laminar boundary layer ii) Turbulent boundary layer iii) Laminar sub layer iv) Boundary layer thickness. b) For the velocity profile in laminar layer given asφ = log x. Find the thickness of y boundary layer at the end of the plate and the drag force on the side of the plate 1 m long and 0.8 m wide when placed in water flowing with a velocity of 0.15 m/s. Calculate the value of co efficient of drag also. Take μ for water is Ns/m 2. [15] 6.a) For a steady laminar flow through a circular pipe prove that the velocity distribution across the section is parabolic and the average velocity is half of the maximum local velocity. b) An oil of 8 poise and specific gravity 0.9 is flowing through a horizontal pipe of 50 mm diameter. If the pressure drop in 100 m length of the pipe is 2000 kn/m 2, determine: i) Rate of flow of oil ii) Centreline velocity iii) Total frictional drag over 100 m length of pipe iv) Power required to maintain the flow v) Velocity gradient at the pipe wall vi) Velocity and shear stress at 10 mm from the wall. [15] 7.a) Derive formulae for calculating loss of head due to i) Hydraulic gradient line (HGL) ii) Energy Gradient Line (EGL) b) A main pipe divides into two parallel pipes which again forms one pipe. The length and diameter for the first parallel pipe are 2000m and 1.0 m respectively, while the length and diameter of the second pipe are 2000 m and 0.8 meters respectively. If the total flow in the main is 3m3/sec and the coefficient of friction for each parallel pipe is same and equal to 0.005, find the rate of flow in each parallel pipe. [15] 8.a) How does the velocity of approach affect the expression for discharge over a weir? b) A rectangular weir 6 metres long discharges water at a head of 0.30 metre. If the available depth of the waterfall is 40 metres, find the H.P. Take C d = 0.6. c) Why is it necessary to ventilate a nappe? What is the arrangement for ventilating the nappe of a suppressed weir? [15] ********
5 Code No:A R09 SET3 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal marks a) Determine the mass density, specific volume and specific weight of a liquid whose specific gravity is b) A flat plate weighing 0.45 kn has a surface area of 0.1 m 2. It slides down an inclined plane at 30 0 to the horizontal, at a constant speed of 3 m/s. If the inclined plane is lubricated with an oil of viscosity 0.1 N.s/m 2, find the thickness of the oil film. [15] 2.a) Derive an expression for the depth of centre of pressure from free surface of liquid of an inclined plane surface submerged in the liquid b) A rectangular door covering an opening 3m 1.75 high in a vertical wall is hinged about its vertical edge by two points placed symmetrically 0.4 m from either end. The door is locked by clamp placed at the centre of other vertical edge. Determine the reactions at the two hinges and the clamp, when the height of water is 1 m above the top edge of the opening. [15] 3.a) Obtain an equation of continuity for a threedimensional flow. b) A stream function follows the law ψ = a log x. State if the flow is continuous or not. y Also state if the flow is rotational or irrotational. c) In a twodimensional flow, show that the discharge per unit time across a line joining two points is equal to the difference between the stream function between the two points. [15] 4.a) Describe an orifice meter and find an expression for measuring discharge of fluid through a pipe with this device. b) A horizontal venturimeter 300 mm 150mm is used to measure the flow of oil through venturimeter is 0.5 m 3 /s. Find the reading of oil mercury differential manometer. Take venturimeter constant as [15]
6 5.a) How are the thickness of boundary layer, shear stress and the drag force along the flat plate determined by Von Karman momentum equation? b) A kite m weighing N assumes an angle of 12 0 to the horizontal. The string attached to the kite makes an angle of 45 0 to the horizontal. The pull on the string is N when the wind is flowing at a speed of 30km/h. Find the corresponding coefficient of drag and lift, Take ρ for air = 1.25 kg/m 3. [15] 6.a) Derive an expression for the velocity distribution for turbulent flow in smooth pipes. b) A pipeline carrying water has surface protrusions of average height of 0.15 mm. If the shear stress developed is 4.9 N/m 2 determine whether the pipe surface acts as smooth, rough or transition. The kinematic viscosity of water may be taken as 0.01 stokes. [15] 7.a) In a water supply scheme it was originally planned to provide 40 cm diameter pipe line. But it was later found that pipes of diameter more than 35 cm were not available. If it is now proposed to provide two parallel mains of the same diameter find the diameter of each parallel main pipe. b) Two reservoirs are connected by three pipes laid in parallel, their respective diameters being d, 2d and 3d. These are all of the same length l. If f is the same for all the pipes, find the discharge through the large pipes, if the discharge through the smallest is 0.05 cumec. [15] 8.a) The discharge over a rectangular weir is cumec when the head of water is 0.20 metre. What would be the discharge if the head of water is increased to 0.3 metre? b) Show that an error of 1% in the measurement of head produces an error of 2.5% in the discharge over a triangular notch. [15] ********
7 Code No:A R09 SET4 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal marks a) Explain briefly the following mechanical gauges: i) Bourdon tube pressure gauge. ii) Diaphragm gauge. b) A cylinder of 100 mm diameter and 300 mm length rotates about a vertical axis inside a fixed cylindrical tube of 105 mm diameter and 300 mm length. If the space between the tube and the cylinder is filled with liquid of dynamic viscosity of N.s/m 2, determine the speed of rotation of the cylinder which will be obtained, if an external torque of 1 Nm is applied to it. [15] 2.a) A gate which is 2 m wide and 1.2 m high lies in vertical plane and is hinged at the bottom. There is a liquid on upstream side of the gate which extends 1.5 m above the top of the gate has a specific gravity of On the downstream side of the gate there is water upto the top of the gate. Find: i) The resultant force acting on the gate ii) The position of the centre of pressure iii) The least force acting horizontally on the top of the gate which is capable of opening it. b) A rectangular plane surface 1 m wide and 3 m deep lies in water in such a way that its plane makes an angle of 30 0 with the free water surface. Determine the total pressure and position of centre of pressure when the upper edge is 2 m below the free surface. [15] 3.a) Write short notes on i) Pure translation ii) Linear deformation iii) Rotation iv) Angular deformation of a fluid mass. b) In a two dimensional flow, show the line integral from one point to another point is equal to the difference between the velocity potential functions between the two points. c) Calculate the velocity components if the velocity potential function follows the lawφ = log x. [15] y
8 4.a) Derive Euler s equation of motion along with assumptions. b) A venturimeter with inlet and throat diameters 300 mm and 150 mm respectively is attached in a vertical pipe in which flow occurs from bottom to top. The distance between the point of entrance and to the point of throat of the venturimeter is 750 mm. If the difference of mercury levels in the two limbs of differential gauge is 220 mm, find the discharge passing through the vertical pipe. Take coefficient of discharge, C d = [15] 5.a) Define the following terms for an airfoil. i) Chord line ii) Angle of attack iii) Camber iv) Profile centre line. b) A kite weighing 7.85 N has an effective area of 0.8 m 2. It is maintained in air at an angle of 10 0 to the horizontal. The string attached to the kite makes an angle of 45 0 to the horizontal and at this position the values of coefficient of drag and lift are 0.6 and 0.8 respectively. Determine: i) The speed of wind ii) The tension in the string. Take ρ for air = 1.25 kg/m 3 [15] 6.a) Derive expressions for velocity distribution in terms of average velocity for i) Smooth pipe ii) Rough pipe. b) The velocity of flow in a badly corroded 8 cm pipe is found to increase 30 percent as a pitot tube is moved from a point 1 cm from the wall to 3 cm from the wall. Estimate the height of the roughness elements. [15] 7.a) Two reservoirs are connected by a 30 cm diameter pipe, 4000 metres long. The difference in levels of water surfaces of the two reservoirs is 25 metres. Find the discharge to the lower reservoir. If a 30 cm diameter additional pipe is attached to the last 2000 metres length of the existing pipe, find the new discharge to the lower reservoir. Neglect secondary losses. Take f = b) Two reservoirs have a difference of level of 12 metres and are connected by a pipe line 60 cm diameter 2500 metres long feeding a junction from which two pipes of 30 cm diameter and 2500 metres long lead in parallel to the lower reservoirs. Taking f = Calculate the total discharge. [15] 8.a) What are the various ways in which weirs are classified? b) Show that an error of 1% in the measurement of head produces an error of 1.5 % in the discharge over a rectangular weir. c) Find the discharge over a broad crested weir 25 metre long for a head of 0.60 metre. Take C d =0.85 and allow for two end contractions. Neglect velocity of approach. [15] ********
UNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad  00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : III B. Tech Year : 0 0 Course Coordinator
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationS.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100
Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF CIVIL ENGINEERING QUESTION BANK III SEMESTER CE 8302 FLUID MECHANICS Regulation 2017 Academic Year 2018 19 Prepared by Mrs.
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids
CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific
More informationApproximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.
Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface
More informationBACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)
No. of Printed Pages : 6 BME028 BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) TermEnd Examination December, 2011 00792 BME028 : FLUID MECHANICS Time : 3 hours
More informationPROPERTIES OF FLUIDS
Unit  I Chapter  PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pas To find : Shear stress. Step  : Calculate the shear stress at various
More informationUNIT IV. Flow through Orifice and Mouthpieces and Flow through Notchs and Weirs
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : FM(15A01305) Year & Sem: IIB.Tech & ISem Course & Branch: B.Tech 
More informationNPTEL Quiz Hydraulics
Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationV/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and nonuniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and irrotational
More informationACE Engineering College
ACE Engineering College Ankushapur (V), Ghatkesar (M), R.R.Dist 501 301. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MECHANICS OF FLUIDS & HYDRAULIC
More informationCE MECHANICS OF FLUIDS
CE60  MECHANICS OF FLUIDS (FOR III SEMESTER) UNIT II FLUID STATICS & KINEMATICS PREPARED BY R.SURYA, M.E Assistant Professor DEPARTMENT OF CIVIL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SRI VIDYA COLLEGE
More informationCLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
More informationChapter 1 Fluid and their Properties
June 15 Jan  16 GTU Paper Analysis (New Syllabus) Chapter 1 Fluid and their Properties Sr. No. Questions Theory 2. Explain the following terms: Relative density 2. Kinematic viscosity 3. Cavitation 4.
More informationFluid Mechanics Testbank By David Admiraal
Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on
More informationDetailed Outline, M E 320 Fluid Flow, Spring Semester 2015
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous
More informationHydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1
Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationChapter 1 INTRODUCTION
Chapter 1 INTRODUCTION 11 The Fluid. 12 Dimensions. 13 Units. 14 Fluid Properties. 1 11 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid
More informations and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
More information5 ENERGY EQUATION OF FLUID MOTION
5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws
More informationQ1 Give answers to all of the following questions (5 marks each):
FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored
More informationChapter 4 DYNAMICS OF FLUID FLOW
Faculty Of Engineering at Shobra nd Year Civil  016 Chapter 4 DYNAMICS OF FLUID FLOW 41 Types of Energy 4 Euler s Equation 43 Bernoulli s Equation 44 Total Energy Line (TEL) and Hydraulic Grade Line
More informationTutorial 10. Boundary layer theory
Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0
More informationUniversity of Engineering and Technology, Taxila. Department of Civil Engineering
University of Engineering and Technology, Taxila Department of Civil Engineering Course Title: CE201 Fluid Mechanics  I Prerequisite(s): None Credit Hours: 2 + 1 Contact Hours: 2 + 3 Text Book(s): Reference
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationCOURSE CODE : 3072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE
COURSE TITLE : FLUID MECHANICS COURSE CODE : 307 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIOD 1 Properties of Fluids 0 Fluid Friction and Flow
More informationCE MECHANICS OF FLUIDS UNIT I
CE 6303 MECHANICS OF FLUIDS UNIT I 1. Define specific volume of a fluid and write its unit [N/D14][M/J11] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices
More informationIf a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body
Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great
More informationCH.1 Overview of Fluid Mechanics/22 MARKS. 1.1 Fluid Fundamentals.
Content : 1.1 Fluid Fundamentals. 08 Marks Classification of Fluid, Properties of fluids like Specific Weight, Specific gravity, Surface tension, Capillarity, Viscosity. Specification of hydraulic oil
More informationVisualization of flow pattern over or around immersed objects in open channel flow.
EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:
More informationSubject: Fluid Mechanics
Subject: Fluid Mechanics Solution of Board exam question of TU, IOE (New Course)  by Dr. K. N. Dulal 2068, Baishakh (Regular exam) Attempt all questions. 1. Define stream line with its drawing equation.
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationMULTIPLECHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)
MULTIPLECHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.
More informationFluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational
Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler
More informationHomework of chapter (1) (Solution)
بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanicsdiscussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First
More informationUNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow
UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons
More informationExperiment To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.
SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s
More informationBenha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016
Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt
More informationME3560 Tentative Schedule Spring 2019
ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to
More informationFluids and their Properties
Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity:  / NonNewtonian Fluids:  Mass Density:  / Specific weight: 
More information1 FLUIDS AND THEIR PROPERTIES
FLUID MECHANICS CONTENTS CHAPTER DESCRIPTION PAGE NO 1 FLUIDS AND THEIR PROPERTIES PART A NOTES 1.1 Introduction 1.2 Fluids 1.3 Newton s Law of Viscosity 1.4 The Continuum Concept of a Fluid 1.5 Types
More informationHydromechanics: Course Summary
Hydromechanics: Course Summary Hydromechanics VVR090 Material Included; French: Chapters to 9 and 4 + Sample problems Vennard & Street: Chapters 8 + 3, and (part of it) Roberson & Crowe: Chapter Collection
More information2 Internal Fluid Flow
Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.
More information10.52 Mechanics of Fluids Spring 2006 Problem Set 3
10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation
More informationME3560 Tentative Schedule Fall 2018
ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read
More informationMECHANICS OF FLUIDS. (For B.E. Mechanical Engineering Students) As per New Revised Syllabus of APJ Abdul Kalam Technological University
MECHANICS OF FLUIDS (For B.E. Mechanical Engineering Students) As per New Revised Syllabus of APJ Abdul Kalam Technological University Dr. S.Ramachandran, M.E., Ph.D., Mr. K.Pandian, M.E., Mr. YVS. Karthick,
More informationChapter 3 Bernoulli Equation
1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around
More informationFundamentals of Fluid Mechanics
Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
More informationFluid Dynamics Exercises and questions for the course
Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r
More informationHydraulics and hydrology
Hydraulics and hydrology  project exercises  Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge
More informationUNIT 4 FORCES ON IMMERSED BODIES. Lecture01
1 UNIT 4 FORCES ON IMMERSED BODIES Lecture01 Forces on immersed bodies When a body is immersed in a real fluid, which is flowing at a uniform velocity U, the fluid will exert a force on the body. The
More informationMULTIPLECHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)
Test Midterm 1 F2013 MULTIPLECHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function
More informationFE Exam Fluids Review October 23, Important Concepts
FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning
More informationCE FLUID MECHANICS AND MECHINERY UNIT I
CE 6451 FLUID MECHANICS AND MECHINERY UNIT I 1. Define specific volume of a fluid and write its unit. [N/D14] Volume per unit mass of a fluid is called specific volume. Unit: m3 / kg. 2. Name the devices
More informationTOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant ForcesArchimedes Principle
Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant ForcesArchimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation
More informationGATE PSU. Chemical Engineering. Fluid Mechanics. For. The Gate Coach 28, Jia Sarai, Near IIT Hauzkhas, New Delhi 16 (+91) ,
For GATE PSU Chemical Engineering Fluid Mechanics GATE Syllabus Fluid statics, Newtonian and nonnewtonian fluids, Bernoulli equation, Macroscopic friction factors, energy balance, dimensional analysis,
More informationAPPLIED FLUID DYNAMICS HANDBOOK
APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /
More information1.060 Engineering Mechanics II Spring Problem Set 4
1.060 Engineering Mechanics II Spring 2006 Due on Monday, March 20th Problem Set 4 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group members
More informationCHAPTER 28 PRESSURE IN FLUIDS
CHAPTER 8 PRESSURE IN FLUIDS EXERCISE 18, Page 81 1. A force of 80 N is applied to a piston of a hydraulic system of crosssectional area 0.010 m. Determine the pressure produced by the piston in the hydraulic
More informationINTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION
INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION
More informationReynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:
7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus
More informationMM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =6 (1/2) 2 = 3/2 m/s
MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one, two, or threedimensional, and why. ii) Whether the flow
More informationB.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I
Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I LP: CH 16304 Rev. No: 00
More information1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)
1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid
More informationChapter 7 The Energy Equation
Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationEXAMPLE SHEET FOR TOPIC 3 AUTUMN 2013
EXAMPLE SHEET FOR TOPIC ATMN 01 Q1. se dimensional analysis to investigate how the capillary rise h of a liquid in a tube varies with tube diameter d, gravity g, fluid density ρ, surface tension σ and
More informationLecture 13 Flow Measurement in Pipes. I. Introduction
Lecture 13 Flow Measurement in Pipes I. Introduction There are a wide variety of methods for measuring discharge and velocity in pipes, or closed conduits Many of these methods can provide very accurate
More informationFluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition
Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow
More informationOnly if handing in. Name: Student No.: Page 2 of 7
UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 10, 2014 2:00 PM 2.5 HOURS CHE 211F FLUID MECHANICS EXAMINER: PROFESSOR D.G. ALLEN ANSWER ALL SEVEN (7) QUESTIONS
More informationWhat s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube
PHYS 101 Lecture 29x  Viscosity 29x  1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced
More informationPART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG
1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity
More informationExternal Flow and Boundary Layer Concepts
1 2 Lecture (8) on Fayoum University External Flow and Boundary Layer Concepts By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical
More informationHydraulics Part: Open Channel Flow
Hydraulics Part: Open Channel Flow Tutorial solutions by Dr. K.N. Dulal Uniform flow 1. Show that discharge through a channel with steady flow is given by where A 1 and A 2 are the sectional areas of
More informationFluid Mechanics Answer Key of Objective & Conventional Questions
019 MPROVEMENT Mechanical Engineering Fluid Mechanics Answer Key of Objective & Conventional Questions 1 Fluid Properties 1. (c). (b) 3. (c) 4. (576) 5. (3.61)(3.50 to 3.75) 6. (0.058)(0.05 to 0.06) 7.
More informationBRCM COLLEGE OF ENGINEERING & TECHNOLOGY Practical Experiment Instructions Sheet
Exp. Title FLUID MECHANICS I LAB Syllabus FMI Semester4 th Page No. 1 of 1 Internal Marks: 25 L T P External Marks: 25 0 0 2 Total Marks: 50 1. To determine the met centric height of a floating body
More informationFluid Mechanics61341
AnNajah National University College of Engineering Fluid Mechanics61341 Chapter [2] Fluid Statics 1 Fluid Mechanics2nd Semester 2010 [2] Fluid Statics Fluid Statics Problems Fluid statics refers to
More informationShell Balances in Fluid Mechanics
Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell
More informationτ du In his lecture we shall look at how the forces due to momentum changes on the fluid and viscous forces compare and what changes take place.
4. Real fluids The flow of real fluids exhibits viscous effect, that is they tend to stick to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons law
More informationFluid Mechanics II Viscosity and shear stresses
Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small
More informationApplied Fluid Mechanics
Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and
More informationCVE 372 HYDROMECHANICS EXERCISE PROBLEMS
VE 37 HYDROMEHNIS EXERISE PROLEMS 1. pump that has the characteristic curve shown in the accompanying graph is to be installed in the system shown. What will be the discharge of water in the system? Take
More information10  FLUID MECHANICS Page 1
0  FLUID MECHANICS Page Introduction Fluid is a matter in a state which can flow. Liquids, gases, molten metal and tar are examples of fluids. Fluid mechanics is studied in two parts: ( i ) Fluid statics
More informationFluid Mechanics Introduction
Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be
More informationA Model Answer for. Problem Set #7
A Model Answer for Problem Set #7 Pipe Flow and Applications Problem.1 A pipeline 70 m long connects two reservoirs having a difference in water level of 6.0 m. The pipe rises to a height of 3.0 m above
More informationGiven the water behaves as shown above, which direction will the cylinder rotate?
water stream fixed but free to rotate Given the water behaves as shown above, which direction will the cylinder rotate? ) Clockwise 2) Counterclockwise 3) Not enough information F y U 0 U F x V=0 V=0
More informationSCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN
SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN Course code : CH0317 Course Title : Momentum Transfer Semester : V Course Time : July Nov 2011 Required Text
More informationSUMMER 14 EXAMINATION
Important Instructions to examiners: 1) The answers should be examined by key words and not as wordtoword as given in the model answer scheme. 2) The model answer and the answer written by candidate
More informationFluid Mechanics Discussion. Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad
Discussion Prepared By: Dr.Khalil M. AlAstal Eng.Ahmed S. AlAgha Eng.Ruba M. Awad 20142015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance
More informationCHAPTER 1 Fluids and their Properties
FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those
More informationChapter 6. Losses due to Fluid Friction
Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationFLUID MECHANICES LAB:I
Force Area Length FLUID MECHANICES LAB:I Experiment:0 Measurement of viscosity by Redwood viscometer. Aim:  To determine the kinematic viscosity of a liquid and its variation with temperature. Apparatus:
More informationMECHANICAL PROPERTIES OF FLUIDS:
Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is
More information