ME3250 Fluid Dynamics I


 Matilda Oliver
 1 years ago
 Views:
Transcription
1 ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut
2 Course Information Website: Username: s12, Password (case sensitive): Fluids Instructor: Prof. Zhuyin Ren Office: UTEB356, Phone: Office hours: 11:00 am12:00am, Tuesday/Thursday Teaching Assistant: Chao Xu Textbook: Fundamentals of Fluid Mechanics, Munson et al, 7 th Ed., John Wiley & Sons, NY. Homework including one project: Assigned every Thursday; due the following Thursday Grades: HW: 15 %; Midterms & Pop quizzes 55 %; Final 30 % No exams dropped, no makeups for quizzes
3 Chapter 1. Introduction Concept of fluid Gases, Liquids, Granular solids etc A definition: a fluid is a substance that deforms continuously when acted by a shearing stress of any magnitude i.e. fluid can flow Fluid statics: fluid in rest (chap. 2) Fluid kinematics & dynamics: fluid in motion (chap. 312)
4 Examples Involving Fluid & Flow es/water_faucet.jpg _cupofcoffee.jpg ns/0/01/seagull_in_flight.jpg 2_f68f0816a4.jpg cts/graphcuttextures/data/interactio n/littleriver.jpg ain/content/wp/en commons/thumb/1/16/300px Georgia_Aquarium_ _Giant_Grouper_edit.jpg y/ / jpg ia/2216/us%20navy%20 %20Submarine.jpg
5 Types of Flows/Fluids Static vs. dynamic Compressible vs. incompressible Viscous vs. inviscid Laminar vs. turbulent Homogeneous vs. heterogeneous Nonreacting vs. reacting Newtonian vs. nonnewtonian Laminar Turbulent NonNewtonian Newtonian It is important to know fluid properties & their measurement to understand different flows m/images/water_drop.jpg s/uncategorized/ketchup_1.jpg
6 Dimensions & Units Basic units: Length, L; Mass, M; Time, T; Temperature, θ; Derived units: Velocity, v: L/T; Acceleration, a: L/T 2 ; Force: f=m*a: ML/T 2 ; Work/energy: f*l: ML 2 /T 2, Density: Specific weight: Pressure: Stress: Momentum: Dimensional Homogeneity The LHS and RHS of an equation must have the same dimension All additive separate terms in an equations must have the same dimension Example: V = V 0 + a * t [L/T] = [L/T] [L/T 2 ] * [T]
7
8 Systems of Units International System (SI) Length, meter, m Time, second, s Mass, kilogram, kg Temperature, Kelvin, k English Engineering System (EE) Length, foot, ft Time, second, s Mass, pound, lbm Force, pound, lbf Temperature, Rankine, R British Gravitational System (BG) Length, foot, ft Time, second, s Force, pound, lbf Temperature, F Mass: slug, defined based on Newton s 2 nd law f = m * a 1 lbf = 1 slug * 1(ft/s 2 ) f = (m * a)/g c g c = [(lbm*f/s 2 )/lbf]
9 Base Units in SI: a Complete List Table 1. SI base units SI base unit Base quantity Name Symbol length meter m mass kilogram kg time second s electric current ampere A thermodynamic temperature kelvin K amount of substance mole mol luminous intensity candela cd NIST:
10 Example Derived Units in SI SI derived unit Derived quantity Name Symbol area square meter m 2 volume cubic meter m 3 speed, velocity meter per second m/s acceleration meter per second squared m/s 2 wave number reciprocal meter m 1 mass density kilogram per cubic meter kg/m 3 specific volume cubic meter per kilogram m 3 /kg current density ampere per square meter A/m 2 magnetic field strength ampere per meter A/m amountofsubstance concentration mole per cubic meter mol/m 3 luminance candela per square meter cd/m 2 mass fraction kilogram per kilogram, which may be represented by the number 1 kg/kg = 1 NIST:
11 Measures of Fluid Properties Mass/weight Viscosity Compressibility Vapor pressure Speed of sound Surface tension Density: Specific volume: Mass/weight lim 0 =1/ 3 3 Specific weight: = Specific gravity: =
12 Measures of Mass/Weight (cont.) Density of water as a function of temperature In most cases water is considered incompressible, i.e. its density changes negligibly with pressure
13 Ideal Gas Law Ideal gas law: WU2 P is absolute pressure (vs. gauge pressure) ρ is density T is temperature (K) R = R u /W, where R u is the universal gas constant (8.31J/Kmol), W is the average molecular weight Which of the following can be approximated as ideal gas? Atmospheric air Cotton candy p = ρrt Exhaust gas from jet engine Fuel spray in IC engine cylinder
14 Slide 13 WU2 Pressure in a fluid at rest is defined as the normal force per unit area exerted on a plan surface immersed in a fluid and is created by the bombardment of the surface with the fluid molecules. Windows User, 1/6/2012
15 Measurement of Fluid Viscosity The wiki definition: Viscosity is a measure of the resistance of a fluid which is being deformed by either shear stress or extensional stress With similar external force, fluids with higher viscosity deforms slower (can be used to measure viscosity) Fluid viscosity manifest itself in many ways, a prominent one is the shearing flow F F Sharing stress: = Noslip boundary condition: Fluid velocity remains the same as that of the wall on the boundary
16 Shearing Flow (Viscous) = = h µ: Absolute viscosity, or dynamic viscosity [τ]: N/m 2 Kinematic viscosity: = [m2 /s] [du/dy]: (m/s)/m = 1/s Unit of µ: N s/m 2 Reynolds number: Re = ρul = µ ul ν (dimension of Re?)
17 Newtonian Fluid vs. NonNewtonian Fluid Newtonian Fluid: µ is constant NonNewtonian: µ is not a constant
18 Dependence of Viscosity on Temperature Opposite trend for liquid vs gas: Gas: µ with increasing T Liquid: µ with increasing T
19 Compressibility of Fluids Bulk modulus measures the compressibility of fluids Dimension same as pressure E dp dp = = v dρ / ρ dv / v Compression/expansion of ideal gas p = ρrt Isothermal compression/expansion (T = const) p = ρ RT = const Isentropic compression/expansion ( 12/airplane/compexp.html) p c p cv R const k + p =, = = k = const E v =? k /( k 1) ρ c c T v v E v =?
20 Speed of Sound Sound wave is a propagating pressure wave Pressure fluctuation is small (Fig. 1.1) Approximately isentropic dp c = = dρ E v ρ For ideal gas (+isentropic) Mach number Ma<1, subsonic Ma>1, supersonic Ma = V c c = krt = kp ρ
21 Surface Tension Surface tension tends to reduce surface area of a liquid, σ: force per unit length [pictures from wikipedia]
22 Example of Surface Tension Figure 1.7 (p. 25) Forces acting on onehalf of a liquid drop.
23 Example of Surface Tension NonWetting Wetting Figure 1.8 (p. 25) Effect of capillary action in small tubes. Wetting vs. Nonwetting liquid
CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.
CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,
More informationChapter 1 Fluid Proper2es. CE Fluid Mechanics Diogo Bolster
Chapter 1 Fluid Proper2es CE30460  Fluid Mechanics Diogo Bolster What is a Fluid? A substance that deforms con2nuously when acted on by a shearing stress A solid will deform to a certain point for a given
More informationToday s Class. Course Introduction. Thursday Class. Basic Information. . Course Learning Objectives. Course Introduction January 22 24, 2008
Course Introduction January 4, 008 Course Introduction Larry Caretto Mechanical Engineering 390 Fluid Mechanics January and 4, 008 Today s Class First class day items: roll, outline, etc. Class goals and
More informationDIMENSIONS AND UNITS
DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension
More informationTheory and Fundamental of Fluid Mechanics
1 2 Lecture (1) on Fayoum University Theory and Fundamental of Fluid Mechanics By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical
More informationChemistry 451. Prerequisites: CHEM 013, MATH 141, PHYS 202 or PHYS 212. Prof. Mueller/Sykes Chemistry 451 Spring 2004 Lecture 11
Chemistry 451 CHEM 451 PHYSICAL CHEMISTRY ( 3 credits) Introduction to chemical principles, including properties of matter and fundamentals of chemical thermodynamics. Prerequisites: CHEM 013, MATH 141,
More informationCH. I ME2560 STATICS General Principles GENERAL PRINCIPLES. Rigid body mechanics. Fluid mechanics
1. MECHANICS GENERAL PRINCIPLES Mechanics is the branch of physics (classic) that studies the state of rest or motion of bodies subjected to the action of forces. Rigid body mechanics Mechanics Deformable
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationMechanics of Material 11/29/2017. General Information
General Information Assistant Lecturer: Asmaa Ab. Mustafa Email : asmaa.abdulmajeed@ishik.edu.iq Department : Civil Engineering Course Title : Engineering Mechanics I Code : Credit : 2 Office Hour : Monday
More informationUnits and Dimensions. Lecture 1. Introduction to Chemical Engineering Calculations
Introduction to Chemical Engineering Calculations Lecture 1. Mathematics and Engineering In mathematics, If x = 500 and y = 100, then (x + y) = 600 In engineering, If x = 500m and y = 100m, then (x + y)
More informationPhysics 1200 Mechanics, Kinematics, Fluids, Waves
Physics 1200 Mechanics, Kinematics, Fluids, Waves Lecturer: Tom Humanic Contact info: Office: Physics Research Building, Rm. 2144 Email: humanic.1@osu.edu Phone: 614 247 8950 Office hour: Thursday 11:00
More informationMEASUREMENTS. Dimensions of physical quantities
The document contains MCQs on Units & Measurements and is aimed at giving the students an idea of how the problems in the unit can be solved speedily MEASUREMENTS Dimensions of physical quantities IKGOGIA
More informationFluid Mechanics II Viscosity and shear stresses
Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small
More informationSTATICS. Introduction Lecture Notes: J. Walt Oler Texas Tech University. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS:
CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS 1 Ferdinand P. Beer E. Russell Johnston, Jr. Introduction Lecture Notes: J. Walt Oler Texas Tech University Contents What is Mechanics? Fundamental Concepts
More informationBasic Considerations. Outline. Chapter Objectives
1 Basic Considerations Outline 1.1 Introduction 1.2 Dimensions, Units, and Physical Quantities 1.3 Continuum View of Gases and Liquids 1.4 Pressure and Temperature Scales 1.5 Fluid Properties 1.5.1 Density
More informationA Physical Introduction to Fluid Mechanics. Study Guide and Practice Problems Spring 2017
A Physical Introduction to Fluid Mechanics Study Guide and Practice Problems Spring 2017 A Physical Introduction to Fluid Mechanics Study Guide and Practice Problems Spring 2017 by Alexander J. Smits
More informationChapter 2 Similitude Theory and Applications
Chapter 2 Similitude Theory and Applications Wikipedia definition of similitude is a concept that is used in the testing of engineering models. A model is said to have similitude with the real application
More informationM o d u l e B a s i c A e r o d y n a m i c s
Category A B1 B2 B3 Level 1 2 3 M o d u l e 0 80 1 B a s i c A e r o d y n a m i c s P h y s i c s o f t h e A t m o s p h e r e 0801 1 Category A B1 B2 B3 Level 1 2 3 T a b l e o f c o n t e n t s
More informationChemistry and Measurement
Chemistry and Measurement What Is Chemistry? Chemistry is the study of the composition, structure, and properties of matter and energy and changes that matter undergoes. Matter is anything that occupies
More information) = slugs/ft 3. ) = lb ft/s. ) = ft/s
1. Make use of Tables 1. in the text book (See the last page in this assignent) to express the following quantities in SI units: (a) 10. in./in, (b) 4.81 slugs, (c).0 lb, (d) 7.1 ft/s, (e) 0.04 lb s/ft.
More informationAA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS
AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29
More informationPhysics and Measurement
Chapter: 1. Physics and Measurement 1 Length: The Standard International unit of length is the meter. The length of the meter was defined as the distance between two lines on a specific platinum iridium
More information1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)
1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid
More informationHomework of chapter (1) (Solution)
بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanicsdiscussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationComputational Fluid Dynamics 2
Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2
More informationProcess Fluid Mechanics
Process Fluid Mechanics CENG 2220 Instructor: Francesco Ciucci, Room 2577A (Lift 2729), Tel: 2358 7187, email: francesco.ciucci@ust.hk. Office Hours: Tuesday 17:0018:00 or by email appointment Teaching
More informationHomework 1. Problem 1 Browse the 331 website to answer: When you should use data symbols on a graph. (Hint check out lab reports...
Homework 1 Problem 1 Browse te 331 website to answer: Wen you sould use data symbols on a grap. (Hint ceck out lab reports...) Solution 1 Use data symbols to sow data points unless tere is so muc data
More informationPhys 2401: Lecture 1 Chapt. 1: Measurement
Phys 2401: Lecture 1 Chapt. 1: Measurement Martha Casquete Physics and Geology Department Agenda Units Conversion of Units Dimensional analysis Question/Observation of the Week Quizz Introduction Brief
More information4 Compressible Fluid Dynamics
4 Compressible Fluid Dynamics 4. Compressible flow definitions Compressible flow describes the behaviour of fluids that experience significant variations in density under the application of external pressures.
More informationPHYSICAL MECHANISM OF CONVECTION
Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter
More informationCLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
More informationESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr. DeCaria
ESCI 485 Air/Sea Interaction Lesson 1 Stresses and Fluxes Dr DeCaria References: An Introduction to Dynamic Meteorology, Holton MOMENTUM EQUATIONS The momentum equations governing the ocean or atmosphere
More informationPhysics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 1: the SI unit system; significant figures; estimations
Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 1: the SI unit system; significant figures; estimations Slide 11 Course components: Lectures Homework Tests: three midterms and
More informationDIMENSIONAL REASONING
Measurements consist of two properties: ) a quality or dimension, and ) a quantity expressed in terms of "units" Dimensions DIMENSIONAL REASONING A. Everything that can be measured consists of a combination
More informationFuture coaching Institute Tirupur
1 Higher secondary first year Physics volume I Laws and definitions Force: Force is the external agency applied on a body to change its state of rest and motion. Fundamental quantities Fundamental quantities
More informationChapter 1 Introduction
Fundamentals of Thermodynamics Chapter 1 Introduction Prof. Siyoung Jeong Thermodynamics I MEE202201 Thermodynamics : Science of energy and entropy  Science of heat and work and properties related to
More information58:160 Intermediate Fluid Mechanics Bluff Body Professor Fred Stern Fall 2014
Professor Fred Stern Fall 04 Chapter 7 Bluff Body Fluid flows are broadly categorized:. Internal flows such as ducts/pipes, turbomachinery, open channel/river, which are bounded by walls or fluid interfaces:
More informationNicholas J. Giordano. Chapter 10 Fluids
Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according
More informationCollege Physics (PHY 1301)
College Physics (PHY 1301) Lecture 1. Introduction Syllabus and teaching strategy Newtonian Mechanics, Fluid Mechanics and Thermodynamics Physical Quantities, Measurements, Units and Vectors 1 6/1/2015
More informationSummary PHY101 ( 2 ) T / Hanadi Al Harbi
الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force
More informationFDE 211 MATERIAL & ENERGY BALANCES. Instructor: Dr. Ilgin Paker Yikici Fall 2015
FDE 211 MATERIAL & ENERGY BALANCES Instructor: Dr. Ilgin Paker Yikici Fall 2015 Meet & Greet Hello! My name is I am from 2 Class Overview Units & Conversions Process & Process Variables Process Units &
More informationUNIT V : DIMENSIONAL ANALYSIS AND MODEL STUDIES
UNIT V : DIMENSIONAL ANALYSIS AND MODEL STUDIES 1. Define dimensional analysis. Dimensional analysis is a mathematical technique which makes use of the study of dimensions as an aid to solution of several
More informationTute UV1 : MEASUREMENT 1
Tute UV1 : MEASUREMENT 1 We measure physical quantities. To achieve this we firstly define the quantity, then secondly we define units in terms of which that quantity can be measured. Definition of a Quantity:
More informationCHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER
CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER This brief chapter provides an introduction to thermodynamics. The goal is to use phenomenological descriptions of the microscopic details of matter in order
More informationChapter 3A. Measurement and Significant Figures
Chapter 3A. Measurement and Significant Figures A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 NASA PARCS is an atomicclock clock mission
More informationCHAPTER 1 Basic Considerations
CHAPTER Basic Considerations FEtype Exam Review Problems: Problems. to. Chapter / Basic Considerations. (C) m = F/a or kg = N/m/s = N s /m. (B) [μ] = [τ/(/dy)] = (F/L )/(L/T)/L = F. T/L. (A) 8 9.6 0 Pa
More informationAPPENDIX D UNIT CONVERSION TABLES. Sl SYMBOLS AND PREFIXES
UNIT CONVERSION TABLES Sl SYMBOLS AND PREFIXES BASE UNITS Quantity Unit Symbol Length Meter m Mass Kilogram kg Time Second s Electric current Ampere A Thermodynamic temperature Kelvin K Amount of substance
More informationUniversität DuisburgEssen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi
1 Universität DuisburgEssen 3. Semester Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi THERMODYNAMICS LAB (ISE) Pressure Measurement 2 2 Pressure Measurement
More informationBME 419/519 Hernandez 2002
Vascular Biology 2  Hemodynamics A. Flow relationships : some basic definitions Q v = A v = velocity, Q = flow rate A = cross sectional area Ohm s Law for fluids: Flow is driven by a pressure gradient
More informationDynamic (absolute) Viscosity
Viscosity Taken from: http://www.engineeringtoolbox.com/dynamicabsolutekinematicviscosityd_412.html The viscosity of a fluid is an important property in the analysis of liquid behavior and fluid motion
More informationCommon Terms, Definitions and Conversion Factors
1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force
More informationThermodynamics System Surrounding Boundary State, Property Process Quasi Actual Equilibrium English
Session1 Thermodynamics: An Overview System, Surrounding and Boundary State, Property and Process Quasi and Actual Equilibrium SI and English Units Thermodynamic Properties 1 Thermodynamics, An Overview
More informationdf da df = force on one side of da due to pressure
I. Review of Fundamental Fluid Mechanics and Thermodynamics 1. 1 Some fundamental aerodynamic variables htt://en.wikiedia.org/wiki/hurricane_ivan_(2004) 1) Pressure: the normal force er unit area exerted
More informationUS Customary System (USC) Systeme Internationale (SI) Prefixes. Units & Significant Figures
Units & Significant Figures US Customary System (USC) What is the length of this line? Based on things that made sense to people Previously known as English (or British) 1 inch = 3 dry, round, barleycorns
More informationChem 1A General Chemistry. Chapter 1 Keys to the Study of Chemistry
1 / 1 Chem 1A General Chemistry Chapter 1 Keys to the Study of Chemistry Dr. Orlando E. Raola FALL 2012 Overview 2 / 1 3 / 1 Chemistry Chemistry is the study of matter, its properties, the changes that
More informationShell Balances in Fluid Mechanics
Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell
More informationPhysics 201 Chapter 13 Lecture 1
Physics 201 Chapter 13 Lecture 1 Fluid Statics Pascal s Principle Archimedes Principle (Buoyancy) Fluid Dynamics Continuity Equation Bernoulli Equation 11/30/2009 Physics 201, UWMadison 1 Fluids Density
More informationIntroductory Physics PHYS101
Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 3846006 My email: rcyburt@concord.edu TRF 9:3011:00am
More informationHydraulics for Urban Storm Drainage
Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More informationAerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)
Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation
More informationSummary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer
1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic
More informationIsentropic Flow. Gas Dynamics
Isentropic Flow Agenda Introduction Derivation Stagnation properties IF in a converging and convergingdiverging nozzle Application Introduction Consider a gas in horizontal sealed cylinder with a piston
More informationFORMULA SHEET. General formulas:
FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to
More informationPIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation
/04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,
More informationME 2322 Thermodynamics I PRELECTURE Lesson 10 Complete the items below Name:
Lesson 10 1. (5 pt) If P > P sat (T), the phase is a subcooled liquid. 2. (5 pt) if P < P sat (T), the phase is superheated vapor. 3. (5 pt) if T > T sat (P), the phase is superheated vapor. 4. (5 pt)
More informationChapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian
Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite
More informationLecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009
Physics 111 Lecture 27 (Walker: 15.57) Fluid Dynamics Nov. 9, 2009 Midterm #2  Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.89) Chap. 13 (not 13.68) Chap.
More informationFluids, Thermodynamics, Waves, and Optics Fluids
Fluids, Thermodynamics, Waves, and Optics Fluids Lana Sheridan De Anza College April 10, 2018 Overview static fluids pressure liquid pressure Pascal s law Elastic Properties of Solids We are considering
More informationWhat is Physics? It is a Science
It is a Science What is Physics? (What is science?) Physics is a physical science (as compared to earth or life science). Physics is the study of motion and energy. Science is a study Science How is science
More informationFLUID FLOW FOR CHEMICAL ENGINEERS (EKC212) Core Course Semester I (2008/2009)
FLUID FLOW FOR CHEMICAL ENGINEERS (EKC1) Core Course Semester I (008/009) by Mohamad Hekarl Uzir (MSc.,PhD.) School of Chemical Engineering Universiti Sains Malaysia Engineering Campus Seri Ampangan 14300
More informationCustom Search Sponsored Links
Dynamic, Absolute and Kinematic Viscosity An introduction to dynamic, absolute and kinematic viscosity and how to convert between CentiStokes (cst), CentiPoises (cp), Saybolt Universal Seconds (SSU), degree
More informationIntroduction to Mass Transfer
Introduction to Mass Transfer Introduction Three fundamental transfer processes: i) Momentum transfer ii) iii) Heat transfer Mass transfer Mass transfer may occur in a gas mixture, a liquid solution or
More informationcentrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration
Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit
More informationIntroduction to Engineering Mechanics
CHPTER 1 Introduction to Engineering Mechanics The state of rest and state of motion of the bodies under the action of different forces has engaged the attention of philosophers, mathematicians and scientists
More informationDEVELOPMENT OF A COMPRESSED CARBON DIOXIDE PROPULSION UNIT FOR NEARTERM MARS SURFACE APPLICATIONS
DEVELOPMENT OF A COMPRESSED CARBON DIOXIDE PROPULSION UNIT FOR NEARTERM MARS SURFACE APPLICATIONS Erin Blass Old Dominion University Advisor: Dr. Robert Ash Abstract This work has focused on the development
More informationIn recording measurements, it is necessary to understand 1. SIGNIFICANCE of numbers 2. importance of UNITS.
CHEMISTRY IS LARGELY A QUANTITATIVE SCIENCE Theories and ideas are tested by measurement Measurements are usually quantitative have numbers Science is built on a foundation of mathematics. In recording
More informationApplied Thermodynamics (Lecture#01)
Applied Thermodynamics (Lecture#0) Course Outline: Basic Concepts, the system, Open and close system, properties of a system, control volume, working substance, heat and work, state and properties, thermodynamic
More informationDimensional Analysis
Mathematical Modeling Lia Vas Dimensional Analysis One of the key steps in the process of mathematical modeling is to determine the relationship between the variables. Considering the dimensions of those
More informationSeveral forms of the equations of motion
Chapter 6 Several forms of the equations of motion 6.1 The NavierStokes equations Under the assumption of a Newtonian stressrateofstrain constitutive equation and a linear, thermally conductive medium,
More informationToday s menu. Last lecture. A/D conversion. A/D conversion (cont d...) Sampling
Last lecture Capacitive sensing elements. Inductive sensing elements. Reactive Deflection bridges. Electromagnetic sensing elements. Thermoelectric sensing elements. Elastic sensing elements. Piezoelectric
More informationNavierStokes Equation: Principle of Conservation of Momentum
Naviertokes Equation: Principle of Conservation of Momentum R. hankar ubramanian Department of Chemical and Biomolecular Engineering Clarkson University Newton formulated the principle of conservation
More informationLecture 30 Review of Fluid Flow and Heat Transfer
Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in
More informationIntroduction to Fluid Dynamics
Introduction to Fluid Dynamics Roger K. Smith Skript  auf englisch! Umsonst im Internet http://www.meteo.physik.unimuenchen.de Wählen: Lehre Manuskripte Download User Name: meteo Password: download Aim
More informationChapter 5. The Laws of Motion
Chapter 5 The Laws of Motion Sir Isaac Newton 1642 1727 Formulated basic laws of mechanics Discovered Law of Universal Gravitation Invented form of calculus Many observations dealing with light and optics
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationPart I. Temperature Measurements in the Range from 0.1 K to 300 K
Part I Temperature Measurements in the Range from 0.1 K to 300 K Introduction Part I describes modem methods for measuring temperatures lower than O C based on the use of substances that are gaseous at
More informationDepartment of Physics PHY 111 GENERAL PHYSICS I
EDO UNIVERSITY IYAMHO Department o Physics PHY 111 GENERAL PHYSICS I Instructors: 1. Olayinka, S. A. (Ph.D.) Email: akinola.olayinka@edouniersity.edu.ng Phone: (+234) 8062447411 2. Adekoya, M. A Email:
More informationChapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201)
Chapter 1. The Properties of Gases 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The Perfect Gas 1.1 The states of gases 1.2 The gas laws Real Gases 1.3 Molecular interactions 1.4 The van
More informationFanno Flow. Gas Dynamics
Fanno Flow Simple frictional flow ( Fanno Flow Adiabatic frictional flow in a constantarea duct * he Flow of a compressible fluid in a duct is Always accompanied by : ariation in the cross sectional
More informationvector H. If O is the point about which moments are desired, the angular moment about O is given:
The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment
More informationcos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015
skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional
More informationFluid Mechanics. Spring Course Outline
Fluid Mechanics (Fluidmekanik) Course Code: 1TV024 5 hp Fluid Mechanics Spring 2011 Instruct: Chris Hieronymus Office: Geocentrum Dk255 Phone: 471 2383 email: christoph.hieronymus@geo.uu.se Literature:
More informationObjectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation
Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved
More informationAPPENDIX B ABBREVIATIONS, SYMBOLS AND CONVERSION FACTORS Abbreviations
APPENDIX B ABBREVIATIONS, SYMBOLS AND CONVERSION FACTORS Abbreviations A ampere AASHTO American Association of State Highway & Transportation Officials ABS (%) Percent of Absorbed Moisture Abs. Vol. Absolute
More information1.060 Engineering Mechanics II Spring Problem Set 1
1.060 Engineering Mechanics II Spring 2006 Due on Tuesday, February 21st Problem Set 1 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group
More informationPressure in stationary and moving fluid. LabOnChip: Lecture 2
Pressure in stationary and moving fluid LabOnChip: Lecture Fluid Statics No shearing stress.no relative movement between adjacent fluid particles, i.e. static or moving as a single block Pressure at
More informationEnergy: The ability to cause changes. thermodynamics stems from therme (heat) and dynamis (power).
Energy: The ability to cause changes. thermodynamics stems from therme (heat) and dynamis (power). Thermodynamics: The science of energy. Conservation of energy principle: During an interaction, energy
More informationGame Physics: Basic Concepts
CMSC 498M: Chapter 8a Game Physics Reading: Game Physics, by David H Eberly, 2004 Physics for Game Developers, by David M Bourg, 2002 Overview: Basic physical quantities: Mass, center of mass, moment of
More information