# Dynamic (absolute) Viscosity

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Viscosity Taken from: The viscosity of a fluid is an important property in the analysis of liquid behavior and fluid motion near solid boundaries. The viscosity is the fluid resistance to shear or flow and is a measure of the adhesive/cohesive or frictional fluid property. The resistance is caused by intermolecular friction exerted when layers of fluids attempt to slide by one another. Viscosity is a measure of a fluid's resistance to flow The knowledge of viscosity is needed for proper design of required temperatures for storage, pumping or injection of fluids. There are two related measures of fluid viscosity - known as dynamic (or absolute) and kinematic viscosity. Dynamic (absolute) Viscosity is the tangential force per unit area required to move one horizontal plane with respect to the other at unit velocity when maintained a unit distance apart by the fluid. The shearing stress between the layers of non turbulent fluid moving in straight parallel lines can be defined for a Newtonian fluid as: The dynamic or absolute viscosity can be expressed like τ = μ dc/dy (1) τ = shearing stress

2 μ = dynamic viscosity Equation (1) is known as the Newtons Law of Friction. In the SI system the dynamic viscosity units are N s/m 2, Pa s or kg/m s 1 Pa s = 1 N s/m 2 = 1 kg/m s The dynamic viscosity is also often expressed in the metric CGS (centimeter-gram-second) system as g/cm.s, dyne.s/cm 2 or poise (p) 1 poise = dyne s/cm 2 = g/cm s = 1/10 Pa s For practical use the Poise is to large and it's usual divided by 100 into the smaller unit called the centipoise (cp) 1 p = 100 cp Water at 68.4 o F (20.2 o C) has an absolute viscosity of one centipoise. Kinematic Viscosity is the ratio of absolute or dynamic viscosity to density - a quantity in which no force is involved. Kinematic viscosity can be obtained by dividing the absolute viscosity of a fluid with it's mass density ν = μ / ρ (2) ν = kinematic viscosity μ = absolute or dynamic viscosity ρ = density In the SI-system the theoretical unit is m 2 /s or commonly used Stoke (St) 1 St = 10-4 m 2 /s Since the Stoke is an unpractical large unit, it is usual divided by 100 to give the unit called Centistokes (cst) 1 St = 100 cst 1 cst = 10-6 m 2 /s Since the specific gravity of water at 68.4 o F (20.2 o C) is almost one (1), the kinematic viscosity of water at 68.4 o F is for all practical purposes 1.0 cst. Viscosity and Reference Temperatures

3 The viscosity of a fluid is highly temperature dependent and for either dynamic or kinematic viscosity to be meaningful, the reference temperature must be quoted. In ISO 8217 the reference temperature for a residual fluid is 100 o C. For a distillate fluid the reference temperature is 40 o C. For a liquid - the kinematic viscosity will decrease with higher temperature For a gas - the kinematic viscosity will increase with higher temperature Other Commonly used Viscosity Units Saybolt Universal Seconds (or SUS, SSU) Saybolt Universal Seconds (or SUS) is used to measure viscosity. The efflux time is Saybolt Universal Seconds (SUS) required for 60 milliliters of a petroleum product to flow through the calibrated orifice of a Saybolt Universal viscometer, under carefully controlled temperature and as prescribed by test method ASTM D 88. This method has largely been replaced by the kinematic viscosity method. Saybolt Universal Seconds is also called the SSU number (Seconds Saybolt Universal) or SSF number (Saybolt Seconds Furol). Kinematic viscosity versus dynamic or absolute viscosity can be expressed as ν = 4.63 μ / SG (3) ν = kinematic vicosity (SSU) μ = dynamic or absolute viscosity (cp) Degree Engler Degree Engler is used in Great Britain as a scale to measure kinematic viscosity. Unlike the Saybolt and Redwood scales, the Engler scale is based on comparing a flow of the substance being tested to the flow of another substance - water. Viscosity in Engler degrees is the ratio of the time of a flow of 200 cubic centimetres of the fluid whose viscosity is being measured - to the time of flow of 200 cubic centimeters of water at the same temperature (usually 20 o C but sometimes 50 o C or 100 o C) in a standardized Engler viscosity meter. Newtonian Fluids Fluids for which the shearing stress is linearly related to the rate of shearing strain are designated as Newtonian Fluids. Newtonian materials are referred to as true liquids since their viscosity or consistency is not affected by shear such as agitation or pumping at a constant temperature. Fortunately most common fluids, both liquids and gases, are Newtonian. Water and oils are examples of Newtonian liquids. Thixotropic Fluids Shear Thinning Fluids or Thixotropic Fluids reduce their viscosity as agitation or pressure is increased at a constant temperature. Ketchup and mayonnaise are examples of thixotropic materials. They appear thick or viscous but are possible to pump quite easily. Dilatant Fluids

4 Shear Thickening Fluids or Dilatant Fluids increase their viscosity with agitation. Some of these liquids can become almost solid within a pump or pipe line. With agitation, cream becomes butter and Candy compounds, clay slurries and similar heavily filled liquids do the same thing. Bingham Plastic Fluids Bingham Plastic Fluids have a yield value which must be exceeded before it will start to flow like a fluid. From that point the viscosity will decrease with increase of agitation. Toothpaste, mayonnaise and tomato catsup are examples of such products. Example - Converting between Kinetic and Absolute Viscosity for Air Kinematic viscosity of air at 1 bar (10 5 Pa, N/m 2 ) and 40 o C is cst ( m 2 /s). The density of air estimated with the Ideal Gas Law ρ = p / R T ρ = density (kg/m 3 ) p = absolute pressure (Pa, N/m 2 ) R = individual gas constant (J/kg K) T = absolute temperature (K) ρ = (10 5 N/m 2 ) / ((287 J/kg/K) (273 o C C) = kg/m 3 Absolute viscosity can be expressed as μ = (1.113 kg/m 3 ) ( m 2 /s) = (kg/m s, Ns/m 2, P) Viscosity and Specific Gravity of some Common Liquids centistokes (cst) Saybolt Second Universal (SSU, SUS) Typical liquid 1 31 Water (20 o C) Milk SAE 20 Crankcase Oil SAE 75 Gear Oil

5 No. 4 fuel oil Cream Vegetable oil SAE 30 Crankcase Oil SAE 85 Gear Oil Tomato Juice SAE 50 Crankcase Oil SAE 90 Gear Oil SAE 140 Gear Oil Glycerine (20 o C) SAE 250 Gear Oil ,000 Honey ,000 Mayonnaise 19,000 86,000 Sour cream Kinematic viscosity can be converted from SSU to Centistokes like ν Centistokes = ν SSU / ν SSU ν SSU < 100 ν Centistokes = ν SSU / ν SSU ν SSU > 100

Dynamic, Absolute and Kinematic Viscosity An introduction to dynamic, absolute and kinematic viscosity and how to convert between CentiStokes (cst), CentiPoises (cp), Saybolt Universal Seconds (SSU), degree

### Viscosity. appearance.

Viscosity Viscosityit is probably bbl the single most important t property of a hydraulic fluid. It is a measure of a fluid's resistance to flow. When the viscosity is low, the fluid flows easily and is

### Non Newtonian Fluid Dynamics

PDHonline Course M417 (3 PDH) Non Newtonian Fluid Dynamics Instructor: Paul G. Conley, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

### Introduction to Fluid Flow

Introduction to Fluid Flow Learning Outcomes After this lecture you should be able to Explain viscosity and how it changes with temperature Write the continuity equation Define laminar and turbulent flow

### Chapter 3 Non-Newtonian fluid

Chapter 3 Non-Newtonian fluid 3-1. Introduction: The study of the deformation of flowing fluids is called rheology; the rheological behavior of various fluids is sketchen Figure 3-1. Newtonian fluids,

### 1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts) Introduction, general information Course overview Fluids as a continuum Density Compressibility Viscosity Exercises: A1 Fluid mechanics Fluid

### Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

### Universal Viscosity Curve Theory

TM Universal Viscosity Curve Theory Turbine Flow Meters and Flow Viscosity Introduction Like any transducer, a turbine flow meter is sensitive to physical parameters other than the one which is of interest.

### Steven Burian Civil & Environmental Engineering September 25, 2013

Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

### Fluid Flow. Fundamentals of Rheology. Rheology is the science of deformation and flow. Food rheology is the material science of food

Fluid Flow Outline Fundamentals and applications of rheology Shear stress and shear rate Viscosity and types of viscometers Rheological classification of fluids Apparent viscosity Effect of temperature

### Tutorial 10. Boundary layer theory

Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0

### A Detailed Analysis of Capillary Viscometer

20122011 American American Transactions Transactions on on Engineering & Applied Sciences. Sciences American Transactions on Engineering & Applied Sciences http://tuengr.com/ateas, http://get.to/research

### 150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

### NON-NEWTONIAN FLUIDS. What are they? AND POLYMERS

NON-NEWTONIAN FLUIDS What are they? AND POLYMERS VOCABULARY Non-Newtonian Dilatant rigid Thixotropic does NOT follow the laws of physics as described by Newton adding energy (shear force) makes a liquid

### Homework of chapter (1) (Solution)

بسم اهلل الرمحن الرحيم The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Mohammed H El Nazli Eng. Sarah R Rostom First

### Introduction to Rheology Basics

Introduction to Rheology Basics RheoTec Messtechnik GmbH Phone: ++49 (035205) 5967-0 Schutterwaelder Strasse 23 Fax: ++49 (035205) 5967-30 D-01458 Ottendorf-Okrilla E-mail: info@rheotec.de Germany Internet:

### Standard Test Method for Measuring Apparent Viscosity at High-Temperature and High-Shear Rate by Multicell Capillary Viscometer 1

Designation: D 5481 04 An American National Standard Standard Test Method for Measuring Apparent Viscosity at High-Temperature and High-Shear Rate by Multicell Capillary Viscometer 1 This standard is issued

### Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

### Universität Duisburg-Essen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi

1 Universität Duisburg-Essen 3. Semester Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi THERMODYNAMICS LAB (ISE) Pressure Measurement 2 2 Pressure Measurement

### Theory and Fundamental of Fluid Mechanics

1 2 Lecture (1) on Fayoum University Theory and Fundamental of Fluid Mechanics By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical

### Lecture 27 (Walker: ) Fluid Dynamics Nov. 9, 2009

Physics 111 Lecture 27 (Walker: 15.5-7) Fluid Dynamics Nov. 9, 2009 Midterm #2 - Monday Nov. 16 Chap. 7,Chap. 8 (not 8.5) Chap. 9 (not 9.6, 9.8) Chap. 10, Chap. 11 (not 11.8-9) Chap. 13 (not 13.6-8) Chap.

### ME3250 Fluid Dynamics I

ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/

### Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:

7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus

### FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1

FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces

### Article for the 29 th Sensing Forum

Article for the 29 th Sensing Forum Characteristics of Tuning-fork Vibration Rheometer RHEO-VISCO RV-10000 Presented by: Naoto Izumo, Yuji Fukami, and Masahiro Kanno R&D Division 5, A&D Company, Limited

### DIMENSIONS AND UNITS

DIMENSIONS AND UNITS A dimension is the measure by which a physical variable is expressed quantitatively. A unit is a particular way of attaching a number to the quantitative dimension. Primary Dimension

### Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

### centrifugal acceleration, whose magnitude is r cos, is zero at the poles and maximum at the equator. This distribution of the centrifugal acceleration

Lecture 10. Equations of Motion Centripetal Acceleration, Gravitation and Gravity The centripetal acceleration of a body located on the Earth's surface at a distance from the center is the force (per unit

### Chemistry Section Review 2.2

Chemistry Section Review 2.2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Standards of measurement are chosen because they a. can be related to everyday

### Objective Methods of Food Analysis. Brookfield Viscometer. Brookfield viscometer

Objective Methods of Food Analysis Brookfield Viscometer Measures the thickness, or viscosity, of liquid dispersions such as salad dressings. A measure of liquid texture. Brookfield viscometer 1 Compensating

### CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

### B. Viscosity Standard Viscosity Standard Viscosity Standard Fluid Viscosity of Water... 14

Contents Basis A. Measurement... 3 1. Viscosity...3 1. Introduction... 3 2. Viscosity... 5 3. Units of Viscosity... 7 2. Measurement Method... 9 1. Vibro Viscometer... 9 2. Rotational Viscometer... 10

### CHE-201. I n t r o d u c t i o n t o Chemical E n g i n e e r i n g. I N S T R U CTOR: D r. N a b e e l S a l i m A b o - Ghander.

I n t r o d u c t i o n t o Chemical E n g i n e e r i n g CHE-201 I N S T R U CTOR: D r. N a b e e l S a l i m A b o - Ghander C h a p t e r 3 Processes and Process Variables Introduction What is a process?

### TALLINN UNIVERSITY OF TECHNOLOGY, DIVISION OF PHYSICS 13. STOKES METHOD

13. STOKES METHOD 1. Objective To determine the coefficient of viscosity of a known fluid using Stokes method.. Equipment needed A glass vessel with glycerine, micrometer calliper, stopwatch, ruler. 3.

### Reference : McCabe, W.L. Smith J.C. & Harriett P., Unit Operations of Chemical

1 Course materials (References) Textbook: Welty J. R., Wicks, C. E., Wilson, R. E., & Rorrer, G., Fundamentals of Momentum Heat, and Mass Transfer, 4th Edition, John Wiley & Sons.2000 Reference : McCabe,

### BME 419/519 Hernandez 2002

Vascular Biology 2 - Hemodynamics A. Flow relationships : some basic definitions Q v = A v = velocity, Q = flow rate A = cross sectional area Ohm s Law for fluids: Flow is driven by a pressure gradient

### Tutorial for the heated pipe with constant fluid properties in STAR-CCM+

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities

### Summary PHY101 ( 2 ) T / Hanadi Al Harbi

الكمية Physical Quantity القانون Low التعريف Definition الوحدة SI Unit Linear Momentum P = mθ be equal to the mass of an object times its velocity. Kg. m/s vector quantity Stress F \ A the external force

### THE COMBINED EFFECT OF IRREGULAR SHAPE PARTICLES AND FLUID RHEOLOGY ON SETTLING VELOCITY MEASUREMENT

HEFAT14 1 th International onference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 14 Orlando, Florida THE OMBINED EFFET OF IRREGULAR SHAPE PARTILES AND FLUID RHEOLOGY ON SETTLING VELOITY

### R09. d water surface. Prove that the depth of pressure is equal to p +.

Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

### FORMULA SHEET. General formulas:

FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

### Laboratory work No 2: Calibration of Orifice Flow Meter

Laboratory work No : Calibration of Orifice Flow Meter 1. Objective Calibrate the orifice flow meter and draw the graphs p = f 1 (Q) and C d = f (Re ).. Necessary equipment 1. Orifice flow meter. Measuring

### Physics. Assignment-1(UNITS AND MEASUREMENT)

Assignment-1(UNITS AND MEASUREMENT) 1. Define physical quantity and write steps for measurement. 2. What are fundamental units and derived units? 3. List the seven basic and two supplementary physical

### Computational Astrophysics

Computational Astrophysics Lecture 1: Introduction to numerical methods Lecture 2:The SPH formulation Lecture 3: Construction of SPH smoothing functions Lecture 4: SPH for general dynamic flow Lecture

### Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt

### Rheological Measurements of Cementitious Suspensions Using a Grooved Measuring Device

ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 17, 2009 Rheological Measurements of Cementitious Suspensions Using a Grooved Measuring Device Helge Hodne 1, Arild Saasen 1,2, and Jone Haugland

### Rheology, or the study of the flow of matter. Panta rei. (Panta rhei)

Rheology, or the study of the flow of matter Panta rei (Panta rhei) Overview Basics of rheology Linear elasticity Linear viscosity Linear viscoelasticity To infinity... and beyond! Coming back to Earth

### ME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)

ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and non-circular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared

### Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

University of Sulaimani School of Pharmacy Dept. of Pharmaceutics Pharmaceutical Compounding Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

### CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION This book is designed to give food technologists an understanding of the engineering principles involved in the processing of food products. They may not have to design process equipment

### PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

/04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,

### INTERNATIONAL SYSTEM OF UNITS

GAP.18.2 A Publication of Global Asset Protection Services LLC INTERNATIONAL SYSTEM OF UNITS INTRODUCTION The U.S. is one of the last countries still officially using the English measurement system. Most

### Fluids. Fluids in Motion or Fluid Dynamics

Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

### How to measure the shear viscosity properly?

testxpo Fachmesse für Prüftechnik 10.-13.10.2016 How to measure the shear viscosity properly? M p v Rotation Capillary Torsten Remmler, Malvern Instruments Outline How is the Shear Viscosity defined? Principle

### Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. L.N.Braginsky, D.Sc. (Was invited to be presented on the CHISA 2010-13th Conference on Process Integration, Modelling

### EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

### Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

### 19 Rheology Chapter Objectives At the conclusion of this chapter the student should be able to:

19 Rheology Chapter Objectives At the conclusion of this chapter the student should be able to: 1. Define rheology, provide examples of fluid pharmaceutical products exhibiting various rheologic behaviors,

### AMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE. PhD Entrance Examination - Syllabus

AMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE PhD Entrance Examination - Syllabus The research being carried out in the department of Chemical Engineering & Materials

### CLASS SCHEDULE 2013 FALL

CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties

### Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

### Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

### CHAPTER 1 Basic Considerations

CHAPTER Basic Considerations FE-type Exam Review Problems: Problems. to. Chapter / Basic Considerations. (C) m = F/a or kg = N/m/s = N s /m. (B) [μ] = [τ/(/dy)] = (F/L )/(L/T)/L = F. T/L. (A) 8 9.6 0 Pa

### Fluids: How thick are liquids?

Fluids: How thick are liquids? Student Advanced Version Introduction: Fluids are substances that can flow under an applied force. What are some examples of fluids? We often think of fluids as substances

### PHY121 Physics for the Life Sciences I

PHY Physics for the Life Sciences I Lecture 0. Fluid flow: kinematics describing the motion. Fluid flow: dynamics causes and effects, Bernoulli s Equation 3. Viscosity and Poiseuille s Law for narrow tubes

### MASS, VOLUME, AND DENSITY HOW TO MAKE LIQUIDS LAYERED!

MASS, VOLUME, AND DENSITY HOW TO MAKE LIQUIDS LAYERED! MASS A measurement of the amount of matter in an object Can be measured with a triple beam balance or electronic balance It is measured in grams!

### Computational Fluid Dynamic (CFD) Analysis of Gas and Liquid Flow Through a Modular Sample System

Computational Fluid Dynamic (CFD) Analysis of Gas and Liquid Flow Through a Modular Sample System Tony Y. Bougebrayel, PE, PhD John J. Wawrowski Swagelok Solon, Ohio IFPAC 2003 Scottsdale, Az January 21-24,

### Measuring structure of low viscosity fluids in oscillation using rheometers with and without a separate torque transducer

ANNUAL RANSACONS OF HE NORDC RHEOLOGY SOCEY, VOL., 003 Measuring structure of low viscosity fluids in oscillation using rheometers with and without a separate torque transducer Aly Franck A nstruments,

### THE INFLUENCE OF TIME OF RHEOLOGICAL PARAMETERS OF FRESH CEMENT SLURRIES**

http://dx.doi.org/10.7494/drill.2014.31.1.123 **, Andrzej Gonet*, * THE INFLUENCE OF TIME OF RHEOLOGICAL PARAMETERS OF FRESH CEMENT SLURRIES** 1. INTRODUCTION The rheological properties of sealing slurries

### PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG

1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity

### The role of rheology in everyday fluid flow

The role of rheology in everyday fluid flow Doireann O Kiely Hannah Conroy Broderick, Alina Dubovskaya, Roberto Galizia, Claire Moran, Saviour Okeke, Shane Walsh, Adrian Wisdom Stokes Modelling Workshop

### In steady flow the velocity of the fluid particles at any point is constant as time passes.

Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point

### Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure

### Lecture 6 Friction. Friction Phenomena Types of Friction

Lecture 6 Friction Tangential forces generated between contacting surfaces are called friction forces and occur to some degree in the interaction between all real surfaces. whenever a tendency exists for

### The Physics of Non-Newtonian Fluids

The Physics of Non-Newtonian Fluids M. Grogan 10. April 2006 [1][4] R. Fox, A. McDonald, P. Pritchard, Introduction to Fluid Mechanics, 6 th Ed. 2004 Wiley, United States of America. p3, p27. [2],[3] B

### PHYSICAL MECHANISM OF CONVECTION

Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

### Lecture 2: Hydrodynamics at milli micrometer scale

1 at milli micrometer scale Introduction Flows at milli and micro meter scales are found in various fields, used for several processes and open up possibilities for new applications: Injection Engineering

### Table 10-T-11 : Alphabetical Listings of Common Conversions

ISHRAE Handbook UNITS AND CONVERSIONS 10.8 Table 10-T-11 : Alphabetical Listings of Common Conversions To convert from To Multiply by Acres Square feet 43,560 Acres Square meters 4074 Acres Square miles

### Uniform Channel Flow Basic Concepts. Definition of Uniform Flow

Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,

### Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

### Transport Properties: Momentum Transport, Viscosity

Transport Properties: Momentum Transport, Viscosity 13th February 2011 1 Introduction Much as mass(material) is transported within luids (gases and liquids), linear momentum is also associated with transport,

### On the Rheological Parameters Governing Oilwell Cement Slurry Stability

ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 12, 2004 On the Rheological Parameters Governing Oilwell Cement Slurry Stability Roni Gandelman, Cristiane Miranda, Kleber Teixeira, André L. Martins

### U. S. Department of Energy

EFFECT OF COAL BENEFCATON PROCESS ON RHEOLOGY/ATOMZATON OF COAL WATER SLURRES. Quarterly Progress Report April 1, 1995 -June 30, 1995 FRANK OHENE Department of Chemistry Grambling State University Grambling,

### Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings

Resistance Coefficients for Non-Newtonian Flows in Pipe Fittings Veruscha Fester 1, Paul Slatter 2 and Neil Alderman 3 7 1 Cape Peninsula University of Technology, 2 Royal Melbourne Institute of Technology,

### CHAPTER 8 ENTROPY GENERATION AND TRANSPORT

CHAPTER 8 ENTROPY GENERATION AND TRANSPORT 8.1 CONVECTIVE FORM OF THE GIBBS EQUATION In this chapter we will address two questions. 1) How is Gibbs equation related to the energy conservation equation?

### of Friction in Fluids Dept. of Earth & Clim. Sci., SFSU

Summary. Shear is the gradient of velocity in a direction normal to the velocity. In the presence of shear, collisions among molecules in random motion tend to transfer momentum down-shear (from faster

### Flow and Transport. c(s, t)s ds,

Flow and Transport 1. The Transport Equation We shall describe the transport of a dissolved chemical by water that is traveling with uniform velocity ν through a long thin tube G with uniform cross section

### cos(θ)sin(θ) Alternative Exercise Correct Correct θ = 0 skiladæmi 10 Part A Part B Part C Due: 11:59pm on Wednesday, November 11, 2015

skiladæmi 10 Due: 11:59pm on Wednesday, November 11, 015 You will receive no credit for items you complete after the assignment is due Grading Policy Alternative Exercise 1115 A bar with cross sectional

### Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

### PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

### THE RHEOLOGICAL BEHAVIOR OF CONCENTRATED ORANGE JUICE

HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 26 July 2014 Orlando, Florida THE RHEOLOGICAL BEHAVIOR OF CONCENTRATED ORANGE JUICE Kar F. and Kaya B. A.

### Translational Motion Rotational Motion Equations Sheet

PHYSICS 01 Translational Motion Rotational Motion Equations Sheet LINEAR ANGULAR Time t t Displacement x; (x = rθ) θ Velocity v = Δx/Δt; (v = rω) ω = Δθ/Δt Acceleration a = Δv/Δt; (a = rα) α = Δω/Δt (

### APPLICATION OF DENSITOMETERS TO LIQUID MEASUREMENT Class #

APPLICATION OF DENSITOMETERS TO LIQUID MEASUREMENT Class # 2010.1 Joe Harris National Sales Manager Anton Paar USA 10215 Timber Ridge Drive Ashland, VA 23005 Introduction There are a variety of accurate

### Computational Fluid Dynamics 2

Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

### Northern Lesson 2 Gear Pump Terminology. Gear Pump 101. Lesson 2: Gear Pump Terminology. When your reputation depends on it!

Gear Pump 101 Lesson 2: Gear Pump Terminology When your reputation depends on it! Symbol Term Metric Unit Abbreviation US Customary Unit Abbreviation Conversion factor a A Area square millimeter mm2 square

### Stress, Strain, and Viscosity. San Andreas Fault Palmdale

Stress, Strain, and Viscosity San Andreas Fault Palmdale Solids and Liquids Solid Behavior: Liquid Behavior: - elastic - fluid - rebound - no rebound - retain original shape - shape changes - small deformations

### Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

### Chapter 1 Fluid Proper2es. CE Fluid Mechanics Diogo Bolster

Chapter 1 Fluid Proper2es CE30460 - Fluid Mechanics Diogo Bolster What is a Fluid? A substance that deforms con2nuously when acted on by a shearing stress A solid will deform to a certain point for a given