OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004


 Lenard Greene
 1 years ago
 Views:
Transcription
1 OE465 Vaclav Matousek October 13, Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport
2 OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport
3 OE465 October 13, Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport
4 Keywords: Transport (Horizontal, Vertical, Inclined) Pipe (Length, Diameter) Pump (Type, Size) Goals: Design a pipe o appropriate size Design pumps o appropriate size; Determine a number o required pumps October 13, Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport
5 Objectives: Prediction o energy dissipation in PIPE Prediction o energy production in PUMP Prediction models: Pressure drop vs. mean velocity in PIPE Pressure gain vs. mean velocity in PUMP October 13, Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport
6 Part I. Principles o Mixture Flow in Pipelines 1. Basic Principles o Flow in a Pipe. SoilWater Mixture and Its Phases 3. Flow o Mixture in a Pipeline 4. Modeling o Stratiied Mixture Flows 5. Modeling o NonStratiied Mixture Flows 6. Special Flow Conditions in Dredging Pipelines October 13, Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport
7 Part II. Operational Principles o PumpPipeline Systems Transporting Mixtures 7. Pump and Pipeline Characteristics 8. Operation Limits o a PumpPipeline System 9. Production o Solids in a PumpPipeline System 10. Systems with Pumps in Series October 13, Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport
8 1. BASIC PRINCIPLES OF FLOW IN PIPE CONSERVATION OF MASS CONSERVATION OF MOMENTUM CONSERVATION OF ENERGY October 13, 004 8
9 Conservation o Mass Continuity equation or a control volume (CV): ( ) d mass dt = ( q q ) outlet inlet [kg/s] q [kg/s]... Total mass low rate through all boundaries o the CV October 13, 004 9
10 Conservation o Mass Continuity equation in general orm:.( ρv ) 0 t + = ρ For incompressible (ρ = const.) liquid and steady low (ə/ət = 0) the equation is given in its simplest orm vx v v x y z y z + + = 0 October 13,
11 Conservation o Mass The physical explanation o the equation is that the mass low rates q m = ρva [kg/s] or steady low at the inlets and outlets o the control volume are equal. Expressed in terms o the mean values o quantities at the inlet and outlet o the control volume, given by a pipeline length section, the equation is thus q m = ρva = const. [kg/s] (ρva) inlet = (ρva) outlet October 13,
12 Conservation o Mass in 1Dlow For a circular pipeline o two dierent diameters D 1 and D V 1 D 1 = V D [m 3 /s] V1 D1 D V October 13, 004 1
13 Conservation o Momentum Newton s second law o motion: ( ) d momentum dt = F external The external orces are  body orces due to external ields (gravity, magnetism, electric potential) which act upon the entire mass o the matter within the control volume,  surace orces due to stresses on the surace o the control volume which are transmitted across the control surace. October 13,
14 Conservation o Momentum In an ininitesimal control volume illed with a substance o density the orce balance between inertial orce, on one side, and pressure orce, body orce, riction orce, on the other side, is given by a dierential linear momentum equation in vector orm DV ρ = ( ρv) + ρv. V = P ρg h. T Dt t October 13,
15 Conservation o Momentum ClaudeLouis Navier George Stokes October 13,
16 Conservation o Momentum in 1Dlow In a straight piece o pipe o the dierential distance dx (1Dlow), quantities in the equation are averaged over the pipeline cross section: V V h P + V + g 4 o + + = 0 t x x x D ρ τ October 13,
17 Conservation o Momentum in 1Dlow For additional conditions :  incompressible liquid,  steady and uniorm low in a horizontal straight pipe dp A = τ O o, i.e. dx dp = dx 4τ o D or a pipe o a circular cross section and internal diameter D. October 13,
18 Conservation o Momentum in 1Dlow For a straight horizontal circular pipe τ P P 4 1 = o L D P 1 P t 0 V D t 0 L October 13,
19 Liquid Friction in D Pipe Flow The orcebalance equation generalized or Dlow gives the shear stress distribution in a cylinder: dp =τ dx r October 13,
20 Liquid Friction in D Pipe Flow Newton s law o liquid viscosity (valid or laminar low): F dv τ µ x = = A dy October 13, 004 0
21 Liquid Friction in D Laminar Flow in Pipe The generalized orcebalance equation or the Dlow in a cylinder + Newton s law o liquid viscosity (valid or laminar low) = dp =τ dx r dv τ µ x = dr Velocity distribution in laminar low in a pipe dv dp r x = dr dx µ October 13, 004 1
22 Liquid Friction in 1D Laminar Flow in Pipe The integration o the velocity gradient equation gives a value or mean velocity in pipe and thus a relationship between pressure drop and mean velocity / 1 8 D V = vda= vrdr x x A D A 0 V D dp = 3µ dx which is the required pressuredrop model or laminar low in pipe dp dx = 3µ V D October 13, 004
23 Liquid Friction in 1D Laminar Flow in Pipe A comparison o the pressuredrop model or laminar low in pipe + dp dx = 3µ V D with the general orce balance (driving orce = resistance orce) or pipe low = gives the equation or the shear stress at the pipe wall in laminar low dp dx = τ = µ o 4τ o D 8V D October 13, 004 3
24 Liquid Friction in 1D Turbulent Flow in Pipe The wall shear stress or turbulent low cannot be determined directly rom the orce balance and Newton's law o viscosity (it does not hold or turbulent low). Instead, it is ormulated + by using dimensional analysis. A unction τ 0 = n(ρ, V, µ, D, k) is assumed. The analysis provides the ollowing relationship between dimensionless groups 1 τ o ρ V k = n Re, D October 13, 004 4
25 Liquid Friction in 1D Turbulent Flow in Pipe The dimensionless group Re, Reynolds number, is a ratio o the inertial orces and the viscous orces in the pipeline low Re V Dρ = = µ inertial. orce viscous. orce Remark: The Reynolds number determines a threshold between the laminar and the turbulent lows in a pipe. October 13, 004 5
26 Liquid Friction in 1D Turbulent Flow in Pipe The dimensionless parameter on the let side o the dimensionalanalysis equation is called the riction actor. It is the ratio between the wall shear stress and kinetic energy o the liquid in a control volume in a pipeline. Fanning riction actor DarcyWeisbach riction coeicient τ o 8 = τ λ o = ρ V ρ V 1 λ = 4 October 13, 004 6
27 Liquid Friction in 1D Flow in Pipe A comparison o the DarcyWeisbach riction coeicient equation + with the linear momentum eq. (driving orce = resistance orce) or pipe low = gives the general pressuredrop equation or the pipe low (DarcyWeisbach equation, 1850) λ = dp = dx dp = dx ρ 8τ o V 4τ o D λ D ρ V October 13, 004 7
28 Liquid Friction in 1D Laminar Flow in Pipe A comparison o the general pressuredrop equation + with the pressuredrop eq. or laminar low in pipe = gives the pipewall riction law or laminar low in pipe dp = dx λ dp = dx λ D ρ V 3µ V D 64µ 64 = = ρ DV Re October 13, 004 8
29 Liquid Friction in 1D Turbulent Flow in Pipe In turbulent lows there is no simple expression linking the velocity distribution with the shear stress (and so with the pressure gradient) in the pipe cross section. The dimensional analysis provides the ollowing relationship between dimensionless groups λ k = n Re, D October 13, 004 9
30 Liquid Friction in 1D Turbulent Flow in Pipe There are three dierent regimes with the dierent wall riction laws: Hydraulically smooth Transitional Hydraulically rough λ =n(re) λ =n(re, k/d) λ =n(k/d) October 13,
31 Liquid Friction in 1D Turbulent Flow in Pipe October 13, Hydraulically smooth Transitional Hydraulically rough λ =n(re) λ =n(re, k/d) λ =n(k/d)
32 Liquid Friction: Moody Diagram October 13, Hydraulically smooth Transitional Hydraulically rough λ =n(re) λ =n(re, k/d) λ =n(k/d)
33 Liquid Friction: Moody Diagram October 13, Hydraulically smooth Transitional Hydraulically rough λ =n(re) λ =n(re, k/d) λ =n(k/d)
34 Conservation o energy P1 V1 P V λ LV + + z 1 = + + z +, ρ g g ρ g g gd where λ is the riction actor, or our case : λ = gd 3 e v R The Colebrook ormula or λ is : 1 λ =, R e 4000,.51 log10 R e λ where R is Reynolds number R e VD = ν e October 13,
When water (fluid) flows in a pipe, for example from point A to point B, pressure drop will occur due to the energy losses (major and minor losses).
PRESSURE DROP AND OSSES IN PIPE When water (luid) lows in a pipe, or example rom point A to point B, pressure drop will occur due to the energy losses (major and minor losses). A B Bernoulli equation:
More informationBasic Fluid Mechanics
Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationChapter 3 Water Flow in Pipes
The Islamic University o Gaza Faculty o Engineering Civil Engineering Department Hydraulics  ECI 33 Chapter 3 Water Flow in Pipes 3. Description o A Pipe Flow Water pipes in our homes and the distribution
More informationME 305 Fluid Mechanics I. Part 8 Viscous Flow in Pipes and Ducts. Flow in Pipes and Ducts. Flow in Pipes and Ducts (cont d)
ME 305 Fluid Mechanics I Flow in Pipes and Ducts Flow in closed conduits (circular pipes and noncircular ducts) are very common. Part 8 Viscous Flow in Pipes and Ducts These presentations are prepared
More informationFLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress
More informationCONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS. Convective heat transfer analysis of nanofluid flowing inside a
Chapter 4 CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS Convective heat transer analysis o nanoluid lowing inside a straight tube o circular crosssection under laminar and turbulent conditions
More informationME 305 Fluid Mechanics I. Chapter 8 Viscous Flow in Pipes and Ducts
ME 305 Fluid Mechanics I Chapter 8 Viscous Flow in Pipes and Ducts These presentations are prepared by Dr. Cüneyt Sert Department of Mechanical Engineering Middle East Technical University Ankara, Turkey
More informationV/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0
UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and nonuniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and irrotational
More informationFluid Mechanics II Viscosity and shear stresses
Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small
More informationPIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation
/04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,
More informationROAD MAP... D1: Aerodynamics of 3D Wings D2: Boundary Layer and Viscous Effects D3: XFLR (Aerodynamics Analysis Tool)
AE301 Aerodynamics I UNIT D: Applied Aerodynamics ROAD MAP... D1: Aerodynamics o 3D Wings D2: Boundary Layer and Viscous Eects D3: XFLR (Aerodynamics Analysis Tool) AE301 Aerodynamics I : List o Subjects
More informationUniform Channel Flow Basic Concepts. Definition of Uniform Flow
Uniform Channel Flow Basic Concepts Hydromechanics VVR090 Uniform occurs when: Definition of Uniform Flow 1. The depth, flow area, and velocity at every cross section is constant 2. The energy grade line,
More informationReynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:
7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More information12d Model. Civil and Surveying Software. Version 7. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer
1d Model Civil and Surveying Sotware Version 7 Drainage Analysis Module Hydraulics Owen Thornton BE (Mech), 1d Model Programmer owen.thornton@1d.com 9 December 005 Revised: 10 January 006 8 February 007
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationChapter 6. Losses due to Fluid Friction
Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More informationFORMULA SHEET. General formulas:
FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to
More informationModelling of dispersed, multicomponent, multiphase flows in resource industries. Section 3: Examples of analyses conducted for Newtonian fluids
Modelling of dispersed, multicomponent, multiphase flows in resource industries Section 3: Examples of analyses conducted for Newtonian fluids Globex Julmester 017 Lecture # 04 July 017 Agenda Lecture
More informationFACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4)
FACULTY OF CHEMICAL & ENERGY ENGINEERING FLUID MECHANICS LABORATORY TITLE OF EXPERIMENT: MINOR LOSSES IN PIPE (E4) 1 1.0 Objectives The objective of this experiment is to calculate loss coefficient (K
More informationConvective Mass Transfer
Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface
More information39.1 Gradually Varied Unsteady Flow
39.1 Gradually Varied Unsteady Flow Gradually varied unsteady low occurs when the low variables such as the low depth and velocity do not change rapidly in time and space. Such lows are very common in
More informationPrinciples of Convection
Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid
More informationMicrofluidics 1 Basics, Laminar flow, shear and flow profiles
MT0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,
More informationTransport Properties: Momentum Transport, Viscosity
Transport Properties: Momentum Transport, Viscosity 13th February 2011 1 Introduction Much as mass(material) is transported within luids (gases and liquids), linear momentum is also associated with transport,
More informationChapter 8: Flow in Pipes
81 Introduction 82 Laminar and Turbulent Flows 83 The Entrance Region 84 Laminar Flow in Pipes 85 Turbulent Flow in Pipes 86 Fully Developed Pipe Flow 87 Minor Losses 88 Piping Networks and Pump
More information6.2 Governing Equations for Natural Convection
6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed
More informationChapter 8 Laminar Flows with Dependence on One Dimension
Chapter 8 Laminar Flows with Dependence on One Dimension Couette low Planar Couette low Cylindrical Couette low Planer rotational Couette low HeleShaw low Poiseuille low Friction actor and Reynolds number
More information5. MODELING OF NONSTRATIFIED MIXTURE FLOWS (Pseudohomogeneous flows)
5. MODELING OF NONSTRATIFIED MIXTURE FLOWS (Pseudohomogeneous flows) Uniform (or almost uniform) distribution of transported solids across a pipeline cross section is characteristic of pseudohomogeneous
More informationDifferential relations for fluid flow
Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow
More informationFLUID MECHANICS. Lecture 7 Exact solutions
FLID MECHANICS Lecture 7 Eact solutions 1 Scope o Lecture To present solutions or a ew representative laminar boundary layers where the boundary conditions enable eact analytical solutions to be obtained.
More informationComputational Fluid Dynamics 2
Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2
More informationProf. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M.
Page 1 Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (1 point if not circled, or circled incorrectly): Prof. Scalo Prof. Vlachos
More informationDetermination of Pressure Losses in Hydraulic Pipeline Systems by Considering Temperature and Pressure
Strojniški vestnik  Journal of Mechanical Engineering 55(009)4, 74 Paper received: 7.10.008 UDC 61.64 Paper accepted: 0.04.009 Determination of Pressure Losses in Hydraulic Pipeline Systems by Considering
More informationBERNOULLI EQUATION. The motion of a fluid is usually extremely complex.
BERNOULLI EQUATION The motion of a fluid is usually extremely complex. The study of a fluid at rest, or in relative equilibrium, was simplified by the absence of shear stress, but when a fluid flows over
More informationREE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology
REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes
More informationChapter 10 Flow in Conduits
Chapter 10 Flow in Conduits 10.1 Classifying Flow Laminar Flow and Turbulent Flow Laminar flow Unpredictable Turbulent flow Near entrance: undeveloped developing flow In developing flow, the wall shear
More informationFluid Mechanics. Spring 2009
Instructor: Dr. YangCheng Shih Department of Energy and Refrigerating AirConditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 11 General Remarks 12 Scope
More informationFLOW CHARACTERISTICS OF HFC134a IN AN ADIABATIC HELICAL CAPILLARY TUBE
E HEFAT7 5 th International Conerence on Heat Transer, Fluid Mechanics and Thermodynamics Sun City, South Arica Paper number: KM1 FLOW CHARACTERISTICS OF HFC1a IN AN ADIABATIC HELICAL CAPILLARY TUBE Khan
More informationUNIT II CONVECTION HEAT TRANSFER
UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid
More informationCEE 3310 Open Channel Flow,, Nov. 18,
CEE 3310 Open Channel Flow,, Nov. 18, 2016 165 8.1 Review Drag & Lit Laminar vs Turbulent Boundary Layer Turbulent boundary layers stay attached to bodies longer Narrower wake! Lower pressure drag! C D
More informationUNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW
UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW Derivation of uniform flow equation Dimensional analysis Computation of normal depth UNIFORM FLOW 1. Uniform flow is the flow condition obtained from a
More informationReview of pipe flow: Friction & Minor Losses
ENVE 204 Lecture 1 Review of pipe flow: Friction & Minor Losses Assist. Prof. Neslihan SEMERCİ Marmara University Department of Environmental Engineering Important Definitions Pressure Pipe Flow: Refers
More informationBAE 820 Physical Principles of Environmental Systems
BAE 820 Physical Principles of Environmental Systems Stokes' law and Reynold number Dr. Zifei Liu The motion of a particle in a fluid environment, such as air or water m dv =F(t)  F dt d  1 4 2 3 πr3
More informationNonnewtonian Rabinowitsch Fluid Effects on the Lubrication Performances of Sine Film Thrust Bearings
International Journal o Mechanical Engineering and Applications 7; 5(): 667 http://www.sciencepublishinggroup.com/j/ijmea doi:.648/j.ijmea.75.4 ISSN: X (Print); ISSN: 48 (Online) Nonnewtonian Rabinowitsch
More informationViscous Fluids. Amanda Meier. December 14th, 2011
Viscous Fluids Amanda Meier December 14th, 2011 Abstract Fluids are represented by continuous media described by mass density, velocity and pressure. An Eulerian description of uids focuses on the transport
More informationAnNajah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction
1 AnNajah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies
More informationLectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6
Lectures on Nuclear Power Safety Lecture No 6 Title: Introduction to ThermalHydraulic Analysis of Nuclear Reactor Cores Department of Energy Technology KTH Spring 2005 Slide No 1 Outline of the Lecture
More informationHydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1
Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity
More information12d Model. Civil and Surveying Software. Drainage Analysis Module Hydraulics. Owen Thornton BE (Mech), 12d Model Programmer.
1d Model Civil and Surveying Sotware Drainage Analysis Module Hydraulics Owen Thornton BE (Mech), 1d Model Programmer owen.thornton@1d.com 04 June 007 Revised: 3 August 007 (V8C1i) 04 February 008 (V8C1p)
More informationUniform Channel Flow Basic Concepts Hydromechanics VVR090
Uniform Channel Flow Basic Concepts Hydromechanics VVR090 ppt by Magnus Larson; revised by Rolf L Feb 2014 SYNOPSIS 1. Definition of Uniform Flow 2. Momentum Equation for Uniform Flow 3. Resistance equations
More informationFE Exam Fluids Review October 23, Important Concepts
FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning
More informationLesson 37 Transmission Of Air In Air Conditioning Ducts
Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).
More informationChapter 8 Flow in Conduits
57:00 Mechanics of Fluids and Transport Processes Chapter 8 Professor Fred Stern Fall 013 1 Chapter 8 Flow in Conduits Entrance and developed flows Le = f(d, V,, ) i theorem Le/D = f(re) Laminar flow:
More informationFLUID MECHANICS. Dynamics of Viscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines.
FLUID MECHANICS Dynamics of iscous Fluid Flow in Closed Pipe: DarcyWeisbach equation for flow in pipes. Major and minor losses in pipe lines. Dr. Mohsin Siddique Assistant Professor Steady Flow Through
More information2 Internal Fluid Flow
Internal Fluid Flow.1 Definitions Fluid Dynamics The study of fluids in motion. Static Pressure The pressure at a given point exerted by the static head of the fluid present directly above that point.
More informationMasters in Mechanical Engineering. Problems of incompressible viscous flow. 2µ dx y(y h)+ U h y 0 < y < h,
Masters in Mechanical Engineering Problems of incompressible viscous flow 1. Consider the laminar Couette flow between two infinite flat plates (lower plate (y = 0) with no velocity and top plate (y =
More informationBernoulli and Pipe Flow
Civil Engineering Hydraulics Mechanics of Fluids Head Loss Calculations Bernoulli and The Bernoulli equation that we worked with was a bit simplistic in the way it looked at a fluid system All real systems
More informationFluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture  17 Laminar and Turbulent flows
Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay Lecture  17 Laminar and Turbulent flows Welcome back to the video course on fluid mechanics. In
More informationLECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:
LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS: 1.0 INTRODUCTION TO FLUID AND BASIC EQUATIONS 2.0 REYNOLDS NUMBER AND CRITICAL VELOCITY 3.0 APPROACH TOWARDS REYNOLDS NUMBER REFERENCES Page 1 of
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationChapter 6. Losses due to Fluid Friction
Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of
More informationENGR Heat Transfer II
ENGR 7901  Heat Transfer II Convective Heat Transfer 1 Introduction In this portion of the course we will examine convection heat transfer principles. We are now interested in how to predict the value
More informationLaminar Flow. Chapter ZERO PRESSURE GRADIENT
Chapter 2 Laminar Flow 2.1 ZERO PRESSRE GRADIENT Problem 2.1.1 Consider a uniform flow of velocity over a flat plate of length L of a fluid of kinematic viscosity ν. Assume that the fluid is incompressible
More information2, where dp is the constant, R is the radius of
Dynamics of Viscous Flows (Lectures 8 to ) Q. Choose the correct answer (i) The average velocity of a onedimensional incompressible fully developed viscous flow between two fixed parallel plates is m/s.
More informationFriction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
More informationCompressible Duct Flow with Friction
Compressible Duct Flow with Friction We treat only the effect of friction, neglecting area change and heat transfer. The basic assumptions are 1. Steady onedimensional adiabatic flow 2. Perfect gas with
More informationObjectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation
Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved
More informationFLUID MECHANICS. Chapter 9 Flow over Immersed Bodies
FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1
More informationFundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.
Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer
More informationPiping Systems and Flow Analysis (Chapter 3)
Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution
More informationViscous Flow in Ducts
Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate
More informationAn Improved Expression for a Classical Type of Explicit Approximation of the Colebrook White Equation with Only One Internal Iteration
International Journal o Hydraulic Engineering 06, 5(): 93 DOI: 0.593/j.ijhe.06050.03 An Improved Expression or a Classical Type o Explicit Approximation o the Colebrook White Equation with Only One Internal
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationEngineers Edge, LLC PDH & Professional Training
510 N. Crosslane Rd. Monroe, Georgia 30656 (770) 2666915 fax (678) 6431758 Engineers Edge, LLC PDH & Professional Training Copyright, All Rights Reserved Engineers Edge, LLC Pipe FlowFriction Factor
More informationSYSTEMS VS. CONTROL VOLUMES. Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS)
SYSTEMS VS. CONTROL VOLUMES System (closed system): Predefined mass m, surrounded by a system boundary Control volume CV (open system): Arbitrary geometric space, surrounded by control surfaces (CS) Many
More informationChapter 3 NATURAL CONVECTION
Fundamentals of ThermalFluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGrawHill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGrawHill Companies,
More informationThe effect of geometric parameters on the head loss factor in headers
Fluid Structure Interaction V 355 The effect of geometric parameters on the head loss factor in headers A. Mansourpour & S. Shayamehr Mechanical Engineering Department, Azad University of Karaj, Iran Abstract
More informationFLOW IN CONDUITS. Shear stress distribution across a pipe section. Chapter 10
Chapter 10 Shear stress distribution across a pipe section FLOW IN CONDUITS For steady, uniform flow, the momentum balance in s for the fluid cylinder yields Fluid Mechanics, Spring Term 2010 Velocity
More informationReal Flows (continued)
al Flows (continued) So ar we have talked about internal lows ideal lows (Poiseuille low in a tube) real lows (turbulent low in a tube) Strategy or handling real lows: How did we arrive at correlations?
More informationDEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M.
DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M. Sahu 1, Kishanjit Kumar Khatua and Kanhu Charan Patra 3, T. Naik 4 1, &3 Department of Civil Engineering, National Institute of technology,
More informationEXPERIMENT II  FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS
MM 30 FLUID MECHANICS II Prof. Dr. Nuri YÜCEL Yrd. Doç. Dr. Nureddin DİNLER Arş. Gör. Dr. Salih KARAASLAN Arş. Gör. Fatih AKTAŞ EXPERIMENT II  FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS A. Objective:
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationConvection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.
Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,
More informationControlling the Heat Flux Distribution by Changing the Thickness of Heated Wall
J. Basic. Appl. Sci. Res., 2(7)72707275, 2012 2012, TextRoad Publication ISSN 20904304 Journal o Basic and Applied Scientiic Research www.textroad.com Controlling the Heat Flux Distribution by Changing
More informationFluid Dynamics Exercises and questions for the course
Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r
More informationFLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes
More informationHYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO ELASTIC ELECTRICALLY CONDUCTING FLUID
Rita Choudhury et al. / International Journal o Engineering Science and Technology (IJEST) HYDROAGNETIC DIVERGENT CHANNEL FLOW OF A VISCO ELASTIC ELECTRICALLY CONDUCTING FLUID RITA CHOUDHURY Department
More informationHeat Transfer Convection
Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection
More informationInternal Flow: Heat Transfer in Pipes
Internal Flow: Heat Transfer in Pipes V.Vuorinen Aalto University School of Engineering Heat and Mass Transfer Course, Autumn 2016 November 15 th 2016, Otaniemi ville.vuorinen@aalto.fi First about the
More informationChapter 1: Basic Concepts
What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms
More informationFluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational
Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationDimensions represent classes of units we use to describe a physical quantity. Most fluid problems involve four primary dimensions
BEE 5330 Fluids FE Review, Feb 24, 2010 1 A fluid is a substance that can not support a shear stress. Liquids differ from gasses in that liquids that do not completely fill a container will form a free
More informationUNIT II Real fluids. FMM / KRG / MECH / NPRCET Page 78. Laminar and turbulent flow
UNIT II Real fluids The flow of real fluids exhibits viscous effect that is they tend to "stick" to solid surfaces and have stresses within their body. You might remember from earlier in the course Newtons
More informationVisualization of flow pattern over or around immersed objects in open channel flow.
EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:
More informationCONVECTIVE HEAT TRANSFER
CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary
More information